The Cognitive Exoskeleton: How Technology Can Be Used to Improve the Human Condition

WEABT-header-purple
HERO_BrainSignals

Over the last decade, the amount of data available to help us build models of the world has grown exponentially. We are increasingly connecting our home devices, and even ourselves, to the Internet and uploading data into the cloud. We call this the Internet of Things.

As a result, we’ve amassed at least four zettabytes of data from Internet-connected devices that exist in the world today. To put that in perspective, a zettabyte is one trillion gigabytes.

A lot of this data is about our own health—how many steps we’ve taken, our heart rate, blood oxygen levels. These are all physiological indicators about health and wellness that are being tracked and monitored by wearable devices..

By the end of 2019, analysts estimate there will be at least 500 million wearable devices on the face of the Earth, all of which will provide significant amounts of data about people and their activities.

So, what will we do with all of this data? Researchers like Dr. Bill Casebeer at Lockheed Martin think they have the answer: building tools that improve how humans and their machine teammates interact so as to make life better. These tools are a kind of “cognitive exoskeleton.”  

image1_BrainSignals

Defining an Exoskeleton

An exoskeleton refers to the external covering of the body, seen most commonly in nature in some invertebrate animals. This design allows these animals to manage additional physical weight and load.

Engineers are applying the concept of an exoskeleton to create systems like Lockheed Martin’s FORTIS™, which can make it feel as though workers using heavy tools are operating in an almost weightless environment.   

image2_BrainSignals

From the Body to the Brain

By using data about how the body moves and operates, engineers can apply the principles of biomechanics to FORTIS to transfer the weight of tools to a mechanical arm, then to the lower-body exoskeleton, where the weight is transferred to the ground.

“In the same way a physical exoskeleton is built using data about how the human body performs under stress and load, a ‘cognitive exoskeleton’ can be used to analyze cognitive stress and load,” said Casebeer. “In other words, we can create Big Data-driven ‘scaffolds’ that assist with human mental and cognitive performance.”

Casebeer believes there are three main factors that are critical to building a cognitive exoskeleton.

image3_BrainSignals

Sense

We must first sense the state of the user, which can be done using commercial-off-the-shelf systems such as activity trackers or more advanced systems in development at research labs like Lockheed Martin’s Advanced Technology Laboratories. What is the heart rate data? Blood oxygen level data? Brain wave data? These are all things that tell us about the current state of someone using a piece of technology.

image4_BrainSignals

Assess

Here, machine learning can be used to help make sense of that data in real time. For example, what does your change in heart rate tell me about the cognitive workload you are experiencing?

image5_BrainSignals

Augment

Now, armed with this knowledge, we can change the way we interact with our technologies. For example, we can have our fitness device vibrate to wake us up slightly earlier in morning so our bodies are in better synch with REM cycles.

“In the future, I believe our technologies will become more mobile, adaptive and autonomous,” said Casebeer. “We need to understand how to change behavior to help humans and their tools work better together as a team.”

image6_BrainSignals

The Cognitive Exoskeleton in Action

Cognitive exoskeletons can be used to improve our ability to tell what is important in a set of photographs we are examining. We can use an electro-encephalogram—a device that can sense electrical activity coming from the brain—to assess when an analyst looking at photographs has unconsciously detected an object of interest in the photograph. The augmentation is to have a computer keep track of which photographs cause the most reliable change in this signal of visual processing and offer those to the analyst first so they can spend time with the image that is most likely to be important. This could improve our ability, for instance, to find the wreckage from an airplane that is lost at sea.

image7_BrainSignals

Cognitive exoskeletons can also be used to improve our ability to deliver user-tailored education. For instance, by monitoring where the user of a computer training system is putting their eyes, physiology and attentional state, we can build a digital tutor that interacts with the student to better provide an interesting and useful educational stimulus. 

“Cognitive exoskeletons are an important part of how we will build better teams of people and machines in the future,” noted Casebeer. “ATL’s Human Systems and Autonomy team is excited to be leading the charge in this area.”