Lockheed Martin Corporation 6801 Rockledge Drive MP: CCT-246 Bethesda, MD 20817 Telephone (301) 548-2227

April 7, 2017

VIA PRIVATE CARRIER

Mr. James R. Carroll
Program Administrator
Land Restoration Program
Land Management Administration
Maryland Department of the Environment
1800 Washington Boulevard, Suite 625
Baltimore, Maryland 21230

Subject: Transmittal of the 2016 Surface Water Sampling Report

Lockheed Martin Corporation; Middle River Complex

2323 Eastern Boulevard, Middle River, Baltimore County, Maryland

Dear Mr. Carroll:

For your review please find enclosed two hard copies with a CD of the above-referenced document. This document presents the analytical results for surface water samples collected in June, September, and December 2016 for water bodies adjacent to the Middle River Complex in Middle River, Maryland. If possible, we respectfully request to receive MDE's comments by June 2, 2017.

Please let me know if you have any questions. My office phone is (301) 548-2227.

Sincerely,

Lynnette Drake

Remediation Analyst, Environmental Remediation

cc: (via email without enclosure)

LynnettethDiale

Gary Schold, MDE
Mark Mank, MDE
Christine Kline, Lockheed Martin
Norman Varney, Lockheed Martin
Tom Blackman, Lockheed Martin
Dave Brown, MRAS

John Morgan, LMCPI Michael Martin, Tetra Tech Cannon Silver, CDM Smith

cc: (via mail with CD enclosure)
Jann Richardson, Lockheed Martin
Justin Tetlow, MRAS
Scott Heinlein, LMCPI

cc: (via mail with enclosure)
Ruth Prince, USEPA
Tom Green, LMCPI
Mike Musheno, LMCPI

Doug Mettee, Lockheed Martin MST

2016 Surface Water Sampling Report Middle River Complex 2323 Eastern Boulevard Middle River, Maryland

Prepared for:

Lockheed Martin Corporation

Prepared by:

Tetra Tech, Inc.

April 2017

Michael Martin, P.G. Regional Manager

Milal Mart

Anthony Apanavage, P.G.

Project Manager

TABLE OF CONTENTS

Se	ection_		<u>Page</u>
A(CRONYMS	S	v
1	INTR	ODUCTION	1-1
2	SITE	BACKGROUND	2-1
3	INVE	ESTIGATION APPROACH AND METHODOLOGY	3-1
	3.1 SURI	FACE WATER SAMPLING	3-1
	3.1.1	Surface Water Sampling and Analyses	3-3
	3.1.2	Documentation	3-5
	3.1.3	Sample Nomenclature and Handling	3-5
	3.1.4	Equipment Decontamination	3-6
	3.1.5	Waste Management	3-6
	3.2 DATA	A MANAGEMENT	3-6
	3.2.1	Data Tracking and Control	3-6
	3.2.2	Sample Information	
	3.2.3	Project Data Compilation	
	3.2.4	Geographical Information System	
	3.3 DATA	A REVIEW	3-7
4	RES	ULTS	4-1
	4.1 VOL	ATILE ORGANIC COMPOUNDS	4-2
	4.1.1	June and September Results	4-3
	4.1.2	December Results	4-4
	4.2 1,4-D	DIOXANE	4-5
	4.3 POLY	YCHLORINATED BIPHENYLS	4-5
5	SUM	IMARY	5-1
6	REF	ERENCES	6-1

TABLE OF CONTENTS (continued)

APPENDICES

APPENDIX A—SURFACE-WATER-SAMPLING LOG SHEETS

APPENDIX B—DATA-VALIDATION REPORT

APPENDIX C—CHEMICAL-RESULTS DATA TABLES

APPENDIX D—RISK ESTIMATES FOR RECREATIONAL SWIMMING IN DARK HEAD COVE

LIST OF FIGURES

		<u>Page</u>
Figure 1-1	Middle River Complex Location Map	1-4
Figure 1-2	December 2016 Surface Water Sampling Locations, Southeastern TCE Area, Former UST 2, and October 2016 Probe Groundwater Sampling Area	1-5
Figure 2-1	Site Layout and Tax Blocks, Middle River Complex	2-4
Figure 3-1	2016 Surface Water Sampling Locations	3-10
Figure 4-1	Analytes Detected in Surface Water Samples, June and September 2016, Cow Pen Creek and Hark Head Cove	4-24
Figure 4-2	Concentrations of Major VOCs in Relation to Swimming Criteria for Surface Water Samples, June 2016, Cow Pen Creek and Hark Head Cove.	4-25
Figure 4-3	Concentrations of Major VOCs in Relation to Swimming Criteria for Surface Water Samples, September 2016, Cow Pen Creek and Hark Head Cove	4-26
Figure 4-4	Analytes Detected in Surface Water Samples, December 2016, Hark Head Cove	4-27
Figure 4-5	Concentrations of Major VOCs in Relation to Swimming Criteria for Surface Water Samples, December 2016, Hark Head Cove	4-28

TABLE OF CONTENTS (continued)

LIST OF TABLES

		<u>Page</u>
Table 3-1	Chemical Analyses of Surface Water Samples, 2016	3-9
Table 4-1	Statistical Summary of Surface-Water Sampling Results–June, September, and December 2016	4-7
Table 4-2	Detected Analytes and Screening Level Exceedance in Surface Water Samples, June 2016	4-8
Table 4-3	Detected Analytes and Screening Levels for Surface Water Samples, September 2016	4-22
Table 4-4	Detected Analytes and Screening Levels for Surface Water Samples, December 2016	4-17

This page intentionally left blank.

ACRONYMS

AWQC ambient water quality criteria

BTAG Biological Technical Advisory Group

cis-1,2-DCE cis-1,2-dichloroethene

COC chain of custody

COMAR Code of Maryland Regulations

DO dissolved oxygen

ESA environmental site assessment
GIS geographic information system
GLM Glenn L. Martin Company
GPS global positioning system

Lockheed Martin Corporation

MDE Maryland Department of the Environment

µg/L microgram(s) per liter
MRC Middle River Complex

NRWQC national recommended water quality criteria

ORP oxidation-reduction potential
PCB polychlorinated biphenyl
PDF portable document format

pH a measure of hydrogen-ion content indicating relative acidity or alkalinity

PM project manager

REC recognized environmental condition SVOC semivolatile organic compound

SW surface water
TCE trichloroethene
Tetra Tech Tetra Tech, Inc.

USEPA United States Environmental Protection Agency

UST underground storage tank

VC vinyl chloride

VCP Voluntary Cleanup Program VOC volatile organic compound This page intentionally left blank.

Section 1 Introduction

On behalf of Lockheed Martin Corporation (Lockheed Martin), Tetra Tech, Inc. (Tetra Tech) has prepared this report presenting the analytical results for surface water samples collected in June, September, and December 2016 for water bodies adjacent to the Middle River Complex (MRC) in Middle River, Maryland (see Figure 1-1). Volatile organic compounds (VOCs) in groundwater at two areas of the Middle River Complex appear to have migrated to adjacent surface water bodies. These two areas include the southeastern trichloroethene (TCE) area adjacent to Dark Head Cove, and the southwestern trichloroethene area adjacent to Cow Pen Creek. 1,4-Dioxane, a semivolatile organic compound (SVOC) associated with solvents, is co-located with volatile organic compounds in the southwestern trichloroethene area. 1,4-Dioxane has not yet been sampled for in Dark Head Cove. These constituents may be introduced to Dark Head Cove and Cow Pen Creek surface water from volatile-organic-compound groundwater plumes via direct groundwater seepage at the creek bed or by storm drains intercepting groundwater containing volatile organic compounds and discharging that groundwater at outfall locations to the cove and creek.

This investigation sought to determine the impacts of volatile organic compounds in Middle River Complex groundwater to the adjacent surface waters of Dark Head Cove and Cow Pen Creek. Additional project objectives include assessing 1,4-dioxane concentrations in Cow Pen Creek surface water near the southwestern trichloroethene area, and determining whether polychlorinated biphenyls (PCBs) are in surface water subsequent to a sediment removal action completed in Dark Head Cove by Lockheed Martin Corporation in early 2015. To address these objectives, surface water samples were collected in June and September along five transects in Dark Head Cove (at Outfalls 005, 006, 007, 008, and 009) and at two locations in Cow Pen Creek.

The December 2016 sampling objective differed from that of the June and September surface water sampling. The June and September events focused on sampling near several Dark Head Cove outfalls and in Cow Pen Creek. The December surface water sampling focused on determining concentrations of volatile organic compounds in Dark Head Cove near the recently investigated

landward edge of the southeastern trichloroethene area. In October 2016, groundwater samples were collected in Tax Blocks E and F to delineate the forward edge of the southeastern trichloroethene area at locations hydraulically downgradient of underground storage tank (UST) 2 from the area of Chesapeake Park Plaza south to Dark Head Cove and west of Outfalls 006 and 008 (Figure 1-2). UST 2 was discovered adjacent to the foundation of former Building D in 2013 during construction of the Block E groundwater remedy. UST 2 contained trichloroethene, and is considered the primary source of elevated concentrations of volatile organic compounds in groundwater in the southeastern trichloroethene area. Probe groundwater-sampling using direct-push technology in October 2016 indicated field-analyzed trichloroethene concentrations of more than 60,000 micrograms per liter (µg/L) in groundwater south of Chesapeake Park Plaza. Therefore, surface water samples were collected in Dark Head Cove at six locations adjacent to the newly delineated landward edge of the southeastern trichloroethene area in December 2016 to assess possible elevated volatile organic compound concentrations in surface water in this cove area.

Future sampling of Dark Head Cove and Cow Pen Creek is scheduled for April 2017, June 2017 and September 2017. The current swimming criteria used to screen trichloroethene, *cis*-1,2-dichloroethene (*cis*-1,2-DCE), and vinyl chloride (VC) in the 2016 Middle River Complex surface water data were developed by Lockheed Martin Corporation for Frog Mortar Creek adjacent to Martin State Airport. In 2017, Lockheed Martin Corporation will propose risk-based swimming criteria specifically developed for Dark Head Cove and Cow Pen Creek for Maryland Department of the Environment (MDE) approval, as the contaminants of concern in these two water bodies differ from the contaminants of concern in Frog Mortar Creek. To date, vinyl chloride, the primary risk driver in Frog Mortar Creek, has not been detected in either Dark Head Cove or Cow Pen Creek. Swimming criteria will be developed for 1,4-dioxane and total polychlorinated biphenyls, chemicals that have been found in Dark Head Cove and Cow Pen Creek, but are not contaminants of concern in Frog Mortar Creek.

This technical memorandum is organized as follows:

<u>Section 2—Site Background</u>: Briefly describes the site, and describes where detailed background information and reports of previous investigations can be found.

<u>Section 3—Investigation Approach and Methodology</u>: Presents the technical approach to surface water sampling, and describes the field methodology employed.

<u>Section 4—Results</u>: Presents the field program's investigation results.

<u>Section 5—Summary</u>: Summarizes the investigation approach and findings.

<u>Section 6—References</u>: Cites references used to compile this report.

Aerial photograph provided by ESRI's ArcGIS Online World Imagery map service (© 2013 ESRI and its data suppliers).

FIGURE 1-1

MIDDLE RIVER COMPLEX **LOCATION MAP**

Lockheed Martin Middle River Complex Middle River, Maryland

DATE MODIFIED:

09/18/15

CREATED BY: JEE

Section 2 Site Background

The Middle River Complex (MRC) at 2323 Eastern Boulevard in Middle River, Maryland is part of the Chesapeake Industrial Park, approximately 11.5 miles northeast of Baltimore, Maryland. The MRC comprises approximately 161 acres and includes 12 main buildings, an active industrial area and yard, perimeter parking lots, an athletic field, a vacant concrete lot, trailer storage areas, and numerous grassy spaces along its perimeter. The MRC is bounded by Eastern Boulevard (Route 150) to the north, Martin State Airport to the east, Dark Head Cove to the south, and Cow Pen Creek to the west. Figure 2-1 shows the MRC layout.

LMC Properties, Inc. (the current MRC property owner) is responsible for facility and building management and maintenance. The main site tenant, MRA Systems, Inc. (a subsidiary of General Electric Company), designs, manufactures, fabricates, tests, overhauls, repairs, and maintains aeronautical structures, parts, and components for military and commercial applications. Lockheed Martin Rotary and Mission Systems (formerly Mission Systems & Training) (a Lockheed Martin Corporation [Lockheed Martin] business segment) engineers, fabricates, assembles, tests, and otherwise supports vertical-launch systems. A Lockheed Martin subsidiary, Applied NanoStructured Solutions, LLC, also occupies a portion of MRC, where it researches and designs nanotechnology applications.

In 1929, the Glenn L. Martin Company (GLM) (a predecessor entity of Lockheed Martin) acquired large parcels of undeveloped land in Middle River, Maryland on which to manufacture aircraft for United States government and commercial clients. In the early 1960s, GLM merged with American-Marietta Company to form Martin Marietta Corporation. Around 1975, the adjacent airport to the east (currently Martin State Airport, comprising approximately 750 acres) was transferred to the State of Maryland. In 1995, Martin Marietta Corporation merged with Lockheed Corporation to form Lockheed Martin Corporation. Shortly after the merger, General Electric Company acquired most of Lockheed Martin's aeronautical business in Middle River and a General Electric subsidiary, MRA Systems, Inc., began operations at MRC.

Numerous environmental investigations have been conducted at the Lockheed Martin MRC. These include underground storage-tank closures and abandonments, soil excavations, Phase I environmental site assessments (ESAs), and Phase II ESAs. A 2003 facility-wide Phase I ESA at the Lockheed Martin MRC identified 13 recognized environmental conditions (RECs) at the facility, associated primarily with then-current site conditions (Earth Tech, 2003). Subsequent review of historical site activities identified another 18 RECs at the facility (Tetra Tech, 2004). Many RECs are in the southern portion of the facility along the waterfront.

Soil and groundwater sampling have identified contamination in the environmental media underlying the facility. Studies of soil and groundwater are ongoing (Tetra Tech, 2012). The MRC was previously entered into the Maryland Department of the Environment (MDE) Voluntary Cleanup Program (VCP). Withdrawal from the VCP began in September 2013. Remediation of the MRC is now conducted pursuant to an Administrative Consent Order signed in December 2015, whereby work is performed under the MDE Controlled Hazardous Substances framework, allowing both on- and off-site issues to be addressed under the same regulatory program.

Surface water and sediment adjacent to the MRC's southern and western property boundaries were first sampled in March 2005. Subsequent samples were collected in 2005, and each year from 2010–2015, to characterize surface water and sediment, support the design development of the sediment remedy, and support the groundwater remedy and storm-drain investigations. Trichloroethene (TCE), one of the primary volatile organic compounds (VOCs) in groundwater at the MRC, has been detected at concentrations well below ecologic and human-health screening criteria in Dark Head Cove and Cow Pen Creek surface water samples. 1,4-Dioxane has been detected in Cow Pen Creek surface water samples, also at concentrations below its ecological and human-health screening criteria. Samples have not yet been collected for 1,4-dioxane analysis in Dark Head Cove. Polychlorinated biphenyls (PCBs) have also been detected sporadically in Dark Head Cove samples; however, a risk assessment indicated that swimming exposures were not associated with significant cancer or noncancer risks.

The current annual sampling program seeks to determine the extent to which constituents in groundwater and surface soil at the MRC have been transported to surface water. Studies at Dark Head Cove and Cow Pen Creek from 1997–2015, and details of the area's physical setting, land use, physiography, and surface/subsurface conditions (i.e., soils, hydrology, and geology), are

summarized in the 20. repeated herein.	15 Surface Water Samp	oling Report (Tetra T	ech, 2015a), and the	erefore are not

This page intentionally left blank.

Figure 2-1

Section 3 Investigation Approach and Methodology

3.1 SURFACE WATER SAMPLING

Previous surface-water sampling data for Dark Head Cove and Cow Pen Creek supported the need for additional investigations to assess the extent to which contaminants detected in Middle River Complex (MRC) groundwater plumes are affecting adjacent surface water bodies. The volatile organic compound (VOC) trichloroethene (TCE) and other VOCs have previously been detected in surface water samples collected from the cove and creek. 1,4-Dioxane has been detected in the creek and polychlorinated biphenyls (PCBs) have been detected in the cove. These analytes have also been detected in groundwater and soil at the MRC. Although VOC and 1,4-dioxane concentrations in previously collected surface water samples have been below ecological and human health screening criteria expressed in guidance issued by governmental authorities, PCBs have been detected in Dark Head Cove surface water samples at concentrations exceeding such criteria. Note, however, that a site-specific risk assessment conducted in accordance with guidance published by governmental authorities determined that these PCB concentrations were not associated with unacceptable risks to swimmers and recreational users of the cove.

The June and September 2016 surface water sampling sought to provide additional and updated surface-water-quality data for Dark Head Cove and Cow Pen Creek. Specifically, the goals of these two sampling events were to determine whether:

- VOCs detected in groundwater and site soil are reaching Dark Head Cove and Cow Pen Creek via groundwater infiltration or transport through storm drains.
- 1,4-Dioxane detected in MRC groundwater and soil is reaching Cow Pen Creek via groundwater infiltration or transport through storm drains. Sampling for 1,4-dioxane in Dark Head Cove is planned in 2017.

 Polychlorinated biphenyls (PCBs) detected in Block E soil may be reaching Dark Head Cove through the storm-drain system. They also are in surface water, perhaps due to sediment contamination.

The December 2016 surface water sampling sought to provide surface-water-quality data to determine whether:

- VOCs in the recently investigated landward edge of the southeastern TCE area in Tax Blocks E and F are reaching Dark Head Cove via groundwater seepage through cove-bed sediments.
- VOC concentrations in Dark Head Cove from the recently investigated landward edge of the southeastern TCE area in Tax Blocks E and F vary at near-surface water depth and groundwater seepage locations above the cove sediment.

Concentrations of VOCs, 1,4-dioxane, and PCB homologs in surface water were detected through laboratory analyses of the environmental samples. Chemical concentrations detected in surface water samples collected in 2016 were compared to United States Environmental Protection Agency (USEPA) national recommended water quality criteria (NRWQC), Maryland ambient water quality criteria (AWQC), USEPA Biological Technical Advisory Group (BTAG) surface water screening-benchmarks, and site-specific screening levels for swimming developed by Lockheed Martin Corporation (Lockheed Martin) for nearby Frog Mortar Creek adjacent to Martin State Airport. A Massachusetts drinking water guideline was used to screen 1,4-dioxane results, because Maryland does not currently have a screening level for 1,4-dioxane.

Future sampling of Dark Head Cove and Cow Pen Creek is scheduled for April, June, and September 2017. Also in 2017, Lockheed Martin will propose risk-based swimming criteria specifically developed for Dark Head Cove and Cow Pen Creek for Maryland Department of the Environment (MDE) approval, as some of the contaminants of concern in these two water bodies differ from the contaminants of concern in Frog Mortar Creek (i.e., the study area where the current swimming criteria used in this report were developed). To date, vinyl chloride, the primary risk driver in Frog Mortar Creek, has not been detected in either Dark Head Cove or Cow Pen Creek. Additional swimming criteria will be developed for 1,4-dioxane and total PCBs, chemicals that have been found in Dark Head Cove and Cow Pen Creek, but which are not contaminants of concern in Frog Mortar Creek.

3.1.1 Surface Water Sampling and Analyses

Sampling was conducted according to the 2016–2017 Groundwater and Surface Water Monitoring Work Plan (Tetra Tech, Inc. [Tetra Tech], 2015b) and work plan addenda (Tetra Tech, 2016a, b). On June 13 and September 27, 2016, surface water samples were collected along transects originating at Outfalls 005 through 009 in Dark Head Cove (locations MRC-SW5A through MRC-SW9B on Figure 3-1), and at two locations in Cow Pen Creek (MRC-SW1A and MRC-SW2A on Figure 3-1). On December 13, 2016, 12 samples (two each at MRC-SW10A through MRC-SW12B on Figure 3-1) were collected in Dark Head Cove south of Chesapeake Park Plaza and west of Outfall 008. The December sampling was to characterize the areal and vertical distributions of VOCs in Dark Head Cove in an area adjacent to and hydraulically downgradient of the recently investigated landward extent of the southeastern TCE area in Tax Blocks E and F (Figure 3-1). In October 2016, elevated concentrations of TCE in groundwater (more than 60,000 micrograms per liter [μg/L]) were found in Tax Block F near Dark Head Cove (see Section 1). Therefore, these samples were collected to determine the extent to which VOCs were emanating from groundwater to Dark Head Cove.

All samples were analyzed for VOCs (the primary contaminants of concern in MRC groundwater). Samples collected in June were also analyzed for PCB homologs (same locations as TCE samples in Dark Head Cove) and 1,4-dioxane (both locations in Cow Pen Creek). Table 3-1 summarizes (by surface-water sampling location) the chemical analyses conducted for the 2016 monitoring program.

In June and September 2016, two samples were collected along each transect near Outfalls 006 through 009 in Dark Head Cove: one sample per transect was collected 10-feet from shore ("A" sample), and a second was collected 50-feet from shore ("B" sample). At Outfall 005, (which has two outlets), one sample was collected at each outlet 10-feet from shore ("A1" and "A2" samples), and a single sample was collected 50-feet from shore, approximately midway between the two outlets ("B" sample). All June and September 2016 samples in Dark Head Cove were collected one foot below the surface. Cow Pen Creek surface water samples were also collected in June and September 2016 adjacent to the southwestern TCE area. These samples were collected along the approximate centerline of the creek, one foot below the water surface upstream and downstream of the estimated boundaries of the southwestern TCE area.

December samples were collected from two depths at six locations in Dark Head Cove along three transects. Along each transect, samples were collected 10-feet from shore ("A" sample) and 50-feet from shore ("B" sample). At each location, a shallow ("S") depth sample was collected one foot below the water surface, and a deep ("D") sample was collected one foot above the cove bed. The shallow and deep samples are an initial characterization of VOC distributions in the Dark Head Cove water column near the landward edge of the southeastern TCE area.

The deep "D"-sample results provide VOC concentrations in the water column near the groundwater seepage interface with the cove, and can be used (with further sampling or pore-water sampling) to delineate the full extent of the groundwater seepage zone. The deep-sample results represent concentrations of VOCs emanating from groundwater to Dark Head Cove with minimal dilution. The shallow "S" samples provide insight into dilution and volatilization that occurs between the deep and shallow sampling zones. Results for both samples are used to assess risk to possible human recreational users of the cove and ecological receptors.

All surface water samples were collected as grab samples using a stainless-steel discrete-interval sampler and direct-fill sampling techniques. The sampler was lowered below the water surface to the sampling depth, and the check valve was disengaged until the sampler was full; the sampler was then brought to the surface and the water was removed through the valve to fill laboratory-supplied containers. Laboratory-cleaned, hydrochloric-acid-preserved, 40-milliliter (mL) sample vials were used for the VOC samples; separate containers were used to collect samples for the 1,4-dioxane and PCB analyses. All equipment, including the discrete-interval sampler, was cleaned by rinsing with distilled water after each sample had been collected.

Samples were analyzed for VOCs at a fixed-base laboratory (TestAmerica, North Canton, Ohio) via USEPA Method 8260C, for 1,4-dioxane via Method 522, and for PCBs via Method 680. One duplicate sample was collected for each analyte group (i.e., VOCs, 1,4-dioxane, and PCB homologs) in June and September; duplicates were not collected in December. Trip blanks were placed in each cooler containing VOC samples to ensure quality assurance/quality control. Water-quality parameters, including temperature, pH (a measure of hydrogen-ion content indicating relative acidity or alkalinity), specific conductance, hardness, salinity, turbidity, dissolved oxygen, color, and oxidation-reduction potential, were measured at all surface water sampling locations at the time of sampling. The water depth at each sampling location was also recorded. Sample

information and water depths were documented on surface water sample forms (Appendix A) and in the master site logbook.

Surface-water sampling locations (horizontal coordinates) were surveyed using a handheld global positioning system (GPS) receiver and recorded in the field logbook. Sampling latitude and longitude coordinates were recorded in degrees, minutes, and have an accuracy of approximately 15 feet. Coordinates were converted to the Maryland State Plane North American Datum 1983 (feet) for use in the MRC geographical information system (GIS).

3.1.2 Documentation

A logbook was maintained as an overall record of field activities. Sampling documentation includes completing chain of custody (COC) forms and matrix-specific sampling log sheets. A COC form is a standardized form that summarizes and documents pertinent sampling information, such as identification, matrix, and type, date and time of collection, sample preservation, requested analyses, and the times and dates of custody transfers. Sample custody procedures document sample acquisition and integrity. COC forms and data-validation reports for samples collected during this investigation are in Appendix B.

3.1.3 Sample Nomenclature and Handling

Surface water samples were identified with a unique sample-identification tag that includes an "SW" prefix followed by the sample number, followed by an "A" (designating a sample collected 10 feet from the shoreline) or a "B" (designating a sample collected 50 feet from the shoreline), followed by a six-digit sampling date. For example, a surface water sample collected on June 13, 2016 from transect MRC-SW6 at the 10-foot ("A") location is labeled MRC-SW6A-061316. December sample identifications also include an "S" (shallow sample) or a "D" (deep sample) between the sampling location and the sample date (e.g., MRC-SW10A-S-121316) denoting the sampling depth. Trip blanks were labeled with a "TB" prefix followed by the blank's six-digit submittal date (e.g., TB-061316).

Sample handling includes field-related considerations concerning the selection of sample containers, preservatives, allowable holding times, and analyses requested. Proper custody procedures were followed throughout all phases of sample collection and handling. COC protocols

used throughout sample handling ensure the evidentiary integrity of sample containers and contents.

Sample containers were released under signature from the laboratory and accepted under signature by the sampler(s) or individual responsible for maintaining custody until the sample containers were transferred to the sampler(s). Transport containers returned to the laboratory were sealed with strapping tape and a tamper-proof custody seal. The custody seal includes the signature of the individual initially releasing the transport container, along with the date and time.

3.1.4 Equipment Decontamination

To minimize decontamination, disposable equipment was used for surface water sampling where appropriate (e.g., gloves, rope). The stainless-steel discrete-interval sampler (i.e., a "bacon bomb" sampler) was rinsed with distilled water before the first sample was collected and after each use.

3.1.5 Waste Management

Disposable waste (i.e., gloves, rope, etc.) was placed in plastic bags and disposed of in the proper waste disposal containers at the facility. Rinse water (i.e., distilled water) from cleaning the discrete-interval sampler was allowed to drain to the water body being sampled.

3.2 DATA MANAGEMENT

Laboratory data-handling procedures met the requirements of the laboratory subcontract. All analytical and field data are maintained in project files. These files include copies of the COC forms, sampling log forms, sampling location maps, and documentation of laboratory quality assurance.

3.2.1 Data Tracking and Control

A sample-tracking system was used from the beginning to the end of each sampling event. This system allows for early detection of errors made in the field so adjustments can be made while the field team is still mobilized. Before field mobilization, the field operations leader coordinated and initiated sample tracking. Sample jar labels were handwritten in the field and reviewed to ensure that they were accurate and adhered to work plan requirements.

The project manager (PM) coordinated with the analytical laboratory to ensure that they were aware of the number and types of samples and analyses being submitted. On the day that samples

were collected in the field, the field operations leader forwarded the COC form(s) to the PM (or designee) and the laboratory. The PM or designee confirmed that the COC forms provided the information required by the work plan. After all requested analyses had been completed, the laboratory submitted an electronic deliverable for every sample delivery group. When all electronic deliverables had been received from the laboratory, the PM or designee ensured that the laboratory had performed all requested analyses.

3.2.2 Sample Information

Data from field measurements were recorded using appropriate log sheets and summarized in tabular form. Raw instrument-data from the laboratory were also tabulated. The field operations leader verified field data daily; laboratory data were verified by the group supervisor and then by the laboratory's quality control/documentation department.

3.2.3 Project Data Compilation

The analytical laboratory generated a portable document format (PDF) file of the analytical data packages, as well as electronic database deliverables. The electronic data were checked against the PDF file from the laboratory, and updated as required by applying data-qualifier flags during data validation. All data, such as units of measure and chemical nomenclature, are consistent with the project database.

3.2.4 Geographical Information System

Data management systems consist of a relational database and GIS used to manage environmental information pertaining to the MRC. The relational database stores chemical, geological, hydrogeological, and other environmental data collected during environmental investigations; the GIS is created from the relational database and contains subsets of the larger data pool. The GIS allows posting of environmental data onto base maps to represent the information graphically. Compiled sampling, chemical, and positional data were incorporated into the GIS.

3.3 DATA REVIEW

Data from the laboratory were entered into a sample database and evaluated against various screening criteria. Data validation (consisting of data completeness, holding time, calibrations, lab check standards, laboratory contamination, detection limits, surrogate recovery, and method blanks) was completed concurrent with the data evaluation. The review was based on USEPA

Region 3's *Modifications to the National Functional Guidelines for Data Review* (USEPA, 1993 and 1994) and the specifics of the analytical method used.

Data from the sampling consist of chemical results from surface water samples. Data-validation reports and chain of custody forms are in Appendix B as PDF files (on compact disc). Appendix C contains tables of all 2016 MRC surface-water-sample analytical data, and includes validation qualifiers, non-detects, and analytical detection limits.

Validation of the MRC data concluded that they are acceptable for their intended uses (i.e., risk screening and risk assessment). Data qualifiers (i.e., flags) applied to the chemical results during data validation are listed below:

- J The analyte is considered present in the sample, but the value is estimated and may not meet highest accuracy or precision standards. In this program, samples were qualified with "J" because quantitation was above the method detection limit but below the laboratory reporting limit.
- U Not detected; the analyte was not detected at the reported value.
- UJ The analyte was not detected, but the quantitation or detection limit may be inaccurate or imprecise.
- UR The nondetect result is considered qualitatively or quantitatively unreliable.

Several of the data qualifiers above appear in the chemical-results tables and figures in Section 4; all data qualifiers appear in Appendices B and C.

Table 3-1 Chemical Analyses of Surface Water Samples, 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland

Sampling location	Sample number	Distance from shore (feet)	Analytical parameters
June and September 2016–	-Dark Head Cove		
Outfall 005	SW5A1 SW5A2 SW5B	10 10 50	June Volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), field parameters September VOCs, field parameters
Outfall 006 and near the southeastern trichloroethene (TCE) area	SW6A SW6B	10 50	June VOCs, PCBs, field parameters September VOCs, field parameters
Outfall 007	SW7A SW7B	10 50	June VOCs, PCBs, field parameters September VOCs, field parameters
Outfall 008 and near the southeastern TCE area	SW8A SW8B	10 50	June VOCs, PCBs, field parameters September VOCs, field parameters
Outfall 009	SW9A SW9B	10 50	June VOCs, PCBs, field parameters September VOCs, field parameters
June and September 2016–	-Cow Pen Creek		
Cow Pen Creek near the southwestern TCE area	SW1A—Upstream SW2A—Downstream	Center of channel	June VOCs, 1,4-dioxane, field parameters September VOCs, field parameters
December 2016—Dark Hed	ad Cove		
Near elevated VOCs in southeastern TCE area south of Chesapeake Park Plaza and west of Outfall 008	SW10A-S SW11A-S SW10A-D SW11A-D SW10B-S SW12A-S SW10B-D SW12A-D SW11B-S SW12B-S SW11B-D SW12B-D	A = 10 B = 50	December VOCs, field parameters "S" = shallow sample one foot below water surface "D" = deep sample one foot above creek bottom

Section 4 Results

Validated data for chemical analytes detected in the 2016 surface-water samples were used to generate a statistical summary table (Table 4-1) and tables (Tables 4-2 through 4-4) listing positive detections (only) for June, September, and December. These tables are based on the full data listings in Appendix C. Tables 4-2 through 4-4 compare surface-water sampling results to several applicable screening criteria, including:

- United States Environmental Protection Agency (USEPA) Region 3 Biological Technical Advisory Group (BTAG) freshwater screening-benchmarks (USEPA, 2006)
- USEPA Region 5 ecological screening level for 1,4-dioxane in water (USEPA, 2003)
- USEPA national recommended water quality criteria (NRWQC) for acute and chronic aquatic-organism exposures and NRWQC for human health aquatic-organism consumption (USEPA, 2009)
- State of Maryland ambient water quality criteria (AWQC) for acute and chronic aquatic-organism-exposures, and AWQC for human health aquatic-organism-consumption (*Code of Maryland Regulations*, 2016)
- Massachusetts drinking water guideline for 1,4-dioxane (USEPA, 2014)
- Site-specific screening levels for swimming, developed by Lockheed Martin Corporation (Lockheed Martin) to assess primary volatile organic compounds (VOCs) at Frog Mortar Creek near Martin State Airport (Tetra Tech, Inc., [Tetra Tech], 2013a)

As noted above, results for the primary VOCs trichloroethene (TCE), *cis*-1,2-dichloroethene (*cis*-1,2-DCE), and vinyl chloride (VC) are compared to site-specific screening levels developed by Lockheed Martin. These values were developed at the request of the Maryland Department of the Environment (MDE) and are used to assess risks posed to recreational users of Dark Head Cove and Cow Pen Creek. These screening levels were developed to protect the health of swimmers and other recreational users of the cove and creek, assuming that they have long-term exposure to surface water (i.e., assumed swimming of four hours per day, 70 days per year, for

30 years). These screening levels are used because they are the most conservative (i.e., most protective) for assessing human health from exposures to surface water constituents.

USEPA and several states have established various health advisories, guidelines, notification levels, and cleanup standards for 1,4-dioxane. At present, Maryland does not have a guideline or standard for 1,4-dioxane. Although Dark Head Cove and Cow Pen Creek are not used for drinking water, recreational users might incidentally ingest surface water while swimming. Therefore, the Massachusetts drinking water guideline, a conservative (i.e., protective of human health and the environment) concentration of 0.3 micrograms per liter (µg/L) is used to screen 1,4-dioxane concentrations detected during the June 2016 sampling.

Appendix C contains tables summarizing analytical data, including nondetect results and detection limits. Since the data discussed herein share the "MRC" prefix, this prefix is dropped when referring to transects or samples (e.g., "SW12" refers to transect MRC-SW12), to improve readability. In addition, many of the lower VOC detections were estimated (i.e., *J*-qualified); these qualifiers (flags) are also dropped in the following discussion to improve readability. See Tables 4-2 through 4-4 for complete detected results, with qualifiers and comparison to screening criteria.

4.1 VOLATILE ORGANIC COMPOUNDS

TCE, *cis*-1,2-DCE, and VC are the three primary VOCs found in Middle Rive Complex (MRC) groundwater, and are therefore of the most concern in groundwater and surface water adjacent to the MRC. TCE has been commonly used as an industrial degreaser, and is the parent or "primary" compound in the subject groundwater. TCE released into the environment will weather or breakdown (i.e., "degrade") into "daughter" products with lower chlorine-containing compounds (i.e., dichloroethenes, VC, ethene, and ethane) if favorable conditions exist. TCE has degraded in MRC groundwater and has produced *cis*-1,2-DCE and VC concentrations above MDE standards in groundwater. These daughter products have further degraded to produce less toxic VOCs, such as ethene and ethane, in groundwater. All of these constituents are dissolved in groundwater at the MRC, and can be introduced to surface water by groundwater seepage through creek or cove sediments, or by groundwater infiltration into drains and outfalls that discharge to surface water. Therefore, Dark Head Cove and Cow Pen Creek were sampled to assess groundwater contaminant concentrations in adjacent receiving surface water bodies.

The June and September 2016 sampling results are shown in Figure 4-1, and the concentrations of TCE, *cis*-1,2-DCE and VC are compared to the site-specific swimming levels on Figures 4-2 and 4-3, respectively. The December 2016 sampling results are shown on Figure 4-4, and the concentrations of TCE, *cis*-1,2-DCE, and VC are compared to the site-specific screening levels on Figure 4-5. These swimming levels are the lowest comparison concentrations for these chemicals, and are therefore the most protective of human health and the environment. Note that surface water sampling results are dynamic in nature, and the distribution of the contaminants in Dark Head Cove and Cow Pen Creek can be affected by tidal fluxes and seasonal effects. Therefore concentrations are expected to vary among sampling events.

4.1.1 June and September Results

Figures 4-1 and 4-2 show that TCE was detected at low concentrations in June at four Dark Head Cove sampling locations near Outfalls 006 and 008 (i.e., inner green circles in Figure 4-2 at SW6A, SW6B, SW8A, and SW8B). TCE was not detected in Cow Pen Creek samples collected in June. In contrast, TCE was detected at a low concentration in one Cow Pen Creek location (SW1A), and at low concentrations in all but two Dark Head Cove locations in September 2016 (see Figures 4-1 and 4-3). Table 4-1 shows a similar range of TCE concentrations detected in June and September (0.25–0.49 micrograms per liter [µg/L] and 0.165–0.62 µg/L, respectively).

The maximum TCE concentrations detected in June and September 2016 (0.49 μg/L and 0.62 μg/L, respectively) are more than 30 times below its lowest (i.e., most conservative) screening level (21 μg/L), and more than 15 times below its site-specific screening-criterion (10 μg/L) for evaluating exposure risks to swimmers (see Tables 4-2 and 4-3, and Figures 4-1 through 4-3). Concentrations of all other VOCs detected in June and September (acetone, chloromethane, 2-butanone, and 2-hexanone) are below their respective ecological and human health screening levels (Tables 4-2 and 4-3). Figure 4-1 shows that the highest TCE concentrations detected in June and September were typically near Outfalls 006 and 008 (samples SW6A, SW6B, SW8A, and SW8B), and that September TCE concentrations at Outfall 009 (SW9A, SW9B) and Outfall 007 (SW7A, SW7B) were similar to, but slightly lower than, the maximum TCE concentrations near Outfalls 006 and 008. *cis*-1,2-DCE and VC were not detected in surface water samples collected in June and September 2016.

The maximum TCE concentrations collected in June and September 2016 (0.49 μ g/L and 0.62 μ g/L, respectively) are similar to the maximum detected TCE concentrations for 2015 (0.42 μ g/L) and 2014 (0.54 μ g/L at Outfall 008) (see Table C-1 in Appendix C). These maxima are approximately one-quarter to one-third that of the maximum TCE concentration detected in 2013 (1.9 μ g/L at Outfall 005). TCE has not been detected in samples collected at Outfalls 005E (location SW5A2) since the Outfall 005 storm drain was plugged with concrete beneath Chesapeake Park Plaza in August 2015 (TCE at SW5A1 [Outfall 005W] was last detected in 2013).

4.1.2 December Results

TCE was detected in both the shallow "S" samples (1.2–4.4 μg/L), and the deeper "D" samples (0.44–7.8 μg/L) collected above the cove bed (Figures 4-3 and 4-4; Table 4-4). *cis*-1,2-DCE, a degradation product of TCE, was not detected in the shallow "S" samples, but was detected in the four deeper samples collected from the center and western transects (0.45–5.5 μg/L at SW11A–B and SW12A–B). Other VOCs found in MRC groundwater, such as toluene, total xylenes, and 1,2,4-trimethylbenzene, were also detected in the December samples. However, December 2016 TCE and *cis*-1,2-DCE concentration are below their swimming levels (10 μg/L and 300 μg/L, respectively), and all other VOCs detected (acetone, toluene, total xylenes, and 1,2,4-trimethylbenzene) are likewise below their respective ecological and human health screening levels (Table 4-4 and Figures 4-4 and 4-5). VC was not detected in the December samples.

TCE concentrations in the shallower ("S") cove samples (4.1–4.4 μ g/L) were consistently higher than the deeper ("D") samples (0.7–2.7 μ g/L) at all near-shoreline ("A") locations (Figure 4-4). TCE concentrations at SW11B and SW12B (collected farther from the shoreline) were higher in the deeper ("D") samples than the shallow ("S") samples, indicating dilution or volatilization of TCE in the upper portion of the water column after groundwater seepage from the southeastern TCE plume in the Block F area. The exception was at eastern transect location SW10B, where the shallow sample TCE concentration (1.2 μ g/L) was higher than the deeper sample concentration (0.44 μ g/L).

TCE and *cis*-1,2-DCE results for samples collected farther from the shoreline show increasing concentrations from east to west (i.e., from SW10B to SW12B) (Figures 4-4 and 4-5). A slight, increasing, east-west concentration trend for TCE, *cis*-1,2-DCE, 1,2,4-trimethylbenzene, toluene,

and xylenes is noted for shallower samples collected farther from the shoreline (SW10B to SW12B), and for TCE and *cis*-1,2-DCE collected in deep samples near the shoreline (SW10A to SW12A). These trends indicate that transect SW12 may be nearer to the maximum VOC groundwater seepage area than are transects SW10 and SW11. These results also indicate that VOCs in Dark Head Cove from the southeastern TCE area groundwater seepage have not been fully delineated, and that additional surface water sampling is required to delineate the extent of TCE in Dark Head Cove west of Outfalls 006 and 008.

TCE was detected more frequently and at higher concentrations in December than it was in June and September. The December VOC concentrations for Dark Head Cove samples are expected to be higher because those samples were collected near the landward edge of the southeastern TCE area in Block F where elevated concentrations of TCE were found in groundwater, and not near MRC outfalls, as were the June and September samples. The higher VOC concentrations may also be due, in part, to sampling in cold weather months, a phenomenon found at other creek sampling sites that likely results from lower volatilization rates during cooler weather. Furthermore, the lower concentrations of TCE previously detected at areas east and west of the December 2016 sampling locations (e.g., Outfalls 005, 009, and 007) may be due, in part, to tidal mixing and transport of higher TCE concentrations from this groundwater seepage zone to these areas, and not to direct discharges of TCE from these outfalls.

4.2 1,4-DIOXANE

As shown in Figure 4-1, 1,4-dioxane was detected in the samples collected from SW1A (0.13 μ g/L) and SW2A (0.16 μ g/L). These concentrations are approximately one-half of the lowest 1,4-dioxane screening level (0.3 μ g/L), and more than five orders of magnitude (nearly 100,000 times) lower than the USEPA ecological screening level (22,000 μ g/L).

4.3 POLYCHLORINATED BIPHENYLS

Pentachlorobiphenyl was the only polychlorinated biphenyl (PCB) homolog detected in June 2016 Dark Head Cove surface water samples (Figure 4-1), and was detected in only one sample: SW6B, at $0.036\,\mu\text{g/L}$. This sample was collected 50 feet from Outfall 006, and exceeds three PCB screening levels: the chronic NRWQC ($0.014\,\mu\text{g/L}$), the BTAG concentration ($0.000074\,\mu\text{g/L}$), and the human health consumption-of-aquatic-organism criterion ($0.00064\,\mu\text{g/L}$). It is likely from PCBs in cove sediment or from sediment transported from Block E via storm drains.

The NRWQC and BTAG comparison concentrations are screening levels, and the reported concentrations below these levels indicate that no ecological impacts are expected. However, PCB concentrations exceeding these screening levels are not necessarily associated with detrimental human health or ecological risks. For example, the NRWQC human health consumption-of-aquatic-organism (0.00064 µg/L) level was developed to protect receptors exposed to surface water via two exposure pathways: through surface water used as a drinking water source and via consumption of fish caught in surface water. Thus, the NRWQC value is particularly low to protect humans using surface water as a drinking water source. Since Dark Head Cove is not used as a source of drinking water, the NRWQC value is overly protective (low) when used as a screening value in this instance. Multiple sources contribute PCBs to the upper Chesapeake Bay, so fish consumption advisories (due to PCB bioaccumulation) have been in effect for the entire MRC region. A human health risk assessment completed in 2014 to assess exposure to people swimming in Dark Head Cove adjacent to MRC (a more appropriate and applicable exposure scenario) indicated that PCB concentrations similar to those detected in June 2016 surface water samples would not result in cancer and noncancer risks above MDE risk benchmarks (Appendix D).

Similarly, the BTAG screening level is low to protect aquatic organisms, because PCBs bioaccumulate in the ecological food web. The sediment remediation in Dark Head Cove in 2016–2017 is intended to reduce sediment and surface water contaminant concentrations of PCBs. Note that after completing the sediment removal action near Outfall 005, PCBs were not detected in Dark Head Cove surface water samples collected in 2015. Surface water and sediment sampling for PCBs will follow the current and upcoming sediment removal actions to characterize any residual concentrations.

Statistical Summary of Surface Water Sampling Results-June, September, and December 2016

Cow Pen Creek and Dark Head Cove

Lockheed Martin Middle River Complex, Middle River, Maryland

Table 4-1

Page 1 of 2

Chemical	Frequ of Dete Number	•	Minimum Non-Detect Concentration	Maximum Non-detect Concentration	Minimum Detected Concentration	Maximum Detected Concentration	Location of Maximum Detected Sample	Mean of All Samples	Mean of Positive Detects	Standard Deviation
June 13, 2016										
Volatile organic compounds (µg/L)										
Trichloroethene	4/13	31	0.22 U	0.22 U	0.25 J	0.49 J	MRC-SW6B	0.203	0.41	0.155
Acetone	1/13	8	0.94 U	0.94 U	2.2 J	2.2 J	MRC-SW7B	0.603	2.2	0.480
Chloromethane	1/13	8	0.44 UJ	0.44 UJ	1.1	1.1	MRC-SW7B	0.288	1.1	0.244
Semivolatile organic compounds (µg/L)										
1,4-Dioxane	2/2	100			0.12 J	0.16 J	MRC-SW2A	0.135	0.135	0.007
Polychlorinated biphenyls (ug/L)										
Pentachlorobiphenyls	1/11	9	0.013 U	0.014 U	0.036 J	0.036 J	MRC-SW6B	0.009	0.036	0.009
September 27, 2016	September 27, 2016									
Volatile organic compounds (µg/L)										
Trichloroethene	10/13	77	0.22 U	0.22 U	0.165	0.62 J	MRC-SW6,8,9B	0.422	0.52	0.227
2-Butanone	2/13	15	0.53 U	0.53 U	0.92 J	5.1 J	MRC-SW1A	0.687	3.01	1.3
2-Hexanone	1/13	8	0.48 U	0.48 U	0.55 J	0.55 J	MRC-SW1A	0.264	0.55	0.086
Acetone	1/13	8	0.94 U	0.94 U	7.7 J	7.7 J	MRC-SW1A	1.026	7.70	2.0
December 13, 2016										
Volatile organic compounds (µg/L)										
Trichloroethene	12/12	100			0.44 J	7.8	MRC-SW12B-D	2.85	2.85	2.11
Acetone	6/12	50	1.8 U	1.8 U	2.0 J	2.9 J	MRC-SW10A-S	1.63	2.37	0.799
Toluene	6/12	50	0.23 U	0.23 U	0.29 J	0.79 J	MRC-SW12B-S	0.303	0.49	0.236
Xylenes, Total	6/12	50	0.24 U	0.24 U	0.28 J	0.90 J	MRC-SW12B-S	0.29	0.46	0.236
cis-1,2-Dichloroethene	4/12	33	0.3 U	0.3 U	0.45 J	5.5	MRC-SW12B-D	0.870	2.31	1.640
1,2,4-Trimethylbenzene	1/12	8	0.24 U	0.24 U	0.24 J	0.24 J	MRC-SW12B-S	0.130	0.24	0.035

Statistical Summary of Surface Water Sampling Results-June, September, and December 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 2 of 2

For non-detects, 1/2 sample quantitation limit was used as a proxy concentration to caluclate statistics.

 $\mu \, g/L$ - micrograms per liter

MRC - Middle River Complex

SW - surface water

U - not detected

UJ - nondetect result is estimated

-- Value is not available because analyte is detected in all samples.

Associated Samples:

Associated Samples:		
MRC-SW1A-061316	MRC-SW5B-061316	MRC-SW7B-061316
MRC-SW2A-061316	MRC-SW6A-061316	MRC-SW8A-061316
MRC-SW2A-061316-D	MRC-SW6A-061316-D	MRC-SW8B-061316
MRC-SW5A1-061316	MRC-SW6B-061316	MRC-SW9A-061316
MRC-SW5A2-061316	MRC-SW7A-061316	MRC-SW9B-061316
MRC-SW2A-092716	MRC-SW6A-092716	MRC-SW8B-092716
MRC-SW5A1-092716	MRC-SW6B-092716	MRC-SW9A-092716
MRC-SW5A2-092716	MRC-SW7A-092716	MRC-SW9B-092716
MRC-SW5B-092716	MRC-SW7B-092716	
MRC-SW5B-092716-D	MRC-SW8A-092716	
MRC-SW10A-S-121316	MRC-SW11A-S-121316	MRC-SW12A-S-121316
MRC-SW10A-D-121316	MRC-SW11A-D-121316	MRC-SW12A-D-121316
MRC-SW10B-S-121316	MRC-SW11B-S-121316	MRC-SW12B-S-121316
MRC-SW10B-D-121316	MRC-SW11B-D-121316	MRC-SW12B-D-121316

Detected Analytes and Screening Level Exceedance in Surface Water Samples-June 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 1 of 9

Location ID Sample ID	National Recommended Water Quality Criteria ⁽¹⁾ Freshwater Acute Chronic		Water Quality Criteria ⁽¹⁾ Freshwater Screening			Massachusetts Drinking Water Guideline		MRC-SW2A MRC-SW2A-061316
Sample Date			Level ⁽²⁾	Only ⁽¹⁾⁽³⁾	Levels	Guideinie	20160613	20160613
Volatile organic compounds (µg/L)								
ACETONE	NA	NA	1500	NA	NA	NA		
CHLOROMETHANE	NA	NA	NA	NA	NA	NA		
TRICHLOROETHENE	NA	NA	21	300 ⁽³⁾	10	NA		
Semivolatile organic compounds (µg/L)								
1,4-DIOXANE	NA	NA	22000	NA	NA	0.3	0.13 J	0.16 J
Polychlorinated biphenyls (µg/L)								
PENTACHLOROBIPHENYLS	NA	0.014	$0.000074^{(5)}$	$0.00064^{(3)}$	NA	NA	NA	NA

- 1 National Recommended Water Quality Criteria, http://water.epa.gov/scitech/swguidance/standards/current/index.cfm; and Maryland Numerical Criteria for Toxic Substances in Surface Waters, Code of Maryland Regulations (COMAR) 26.08.02.03, http://www.dsd.state.md.us./comar/comarhtml/26/26.08.02.03-2.htm
- 2 United State Environmental Protection Agency (USEPA) Region 3 Biological Technical Advisory Group (BTAG) Freshwater Screening Benchmarks. Value for 1,4-dioxane is the USEPA Region 5 ecological screening value (USEPA, 2003). Value for 1,4-dioxane is USEPA Region 5 screening value (USEPA, 2003)
- 3 For carcinogens, criterion is for incremental cancer risk of 1x10⁵
- 4 Site-specific swimming screening levels were developed for trichloroethene *cis* -1,2-dichloroethene, and vinyl chloride for Frog Mortar Creek, Martin State Airport. Lockheed Martin is developing site-specific criteria for Middle River Complex surface water contaminants of concern for Maryland Department of the Environment approval because the contaminants of concern are different than those for Frog Mortar Creek. Samples will be collected in April, June, and September 2017. The 2017 results will be screened against the newly-developed Middle River Complex criteria.
- 5 Value is for total polychlorinated biphenyls.

Gray shading indicates a result that exceeds a screening criterion.

- -- not detected
- J estimated result

µg/L - micrograms per liter

MRC - Middle River Complex

NA - not analyzed or not available

Detected Analytes and Screening Level Exceedance in Surface Water Samples-June 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 2 of 9

Location ID		National Recommended Water Quality Criteria ⁽¹⁾		Human Health Consumption of		Massachusetts Drinking Water - Guideline		MRC-SV	N2A	MRC-SW2A			
Sample ID	Freshwater Acute Chronic		Screening	Organism Only ⁽¹⁾⁽³⁾			MRC-SW2A-061316-AVG		MRC-SW2	\-061316-D			
Sample Date			Level ⁽²⁾				2010	60613	2016	0613			
Volatile organic compounds (µg/L)													
ACETONE	NA	NA	1500	NA	NA	NA			NA				
CHLOROMETHANE	NA	NA	NA	NA	NA	NA			NA				
TRICHLOROETHENE	NA	NA	21	300 ⁽³⁾	10	NA			NA				
Semivolatile organic compounds (µg/L)													
1,4-DIOXANE	NA	NA	22000	NA	NA	0.3	0.14		0.12	J			
Polychlorinated biphenyls (µg/L)													
PENTACHLOROBIPHENYLS	NA	0.014	0.000074 ⁽⁵⁾	0.00064 ⁽³⁾	NA	NA	NA		NA				

- 1 National Recommended Water Quality Criteria, http://water.epa.gov/scitech/swguidance/standards/current/index.cfm; and Maryland Numerical Criteria for Toxic Substances in Surface Waters, Code of Maryland Regulations (COMAR) 26.08.02.03, http://www.dsd.state.md.us./comar/comarhtml/26/26.08.02.03-2.htm
- 2 United State Environmental Protection Agency (USEPA) Region 3 Biological Technical Advisory Group (BTAG) Freshwater Screening Benchmarks. Value for 1,4-dioxane is the USEPA Region 5 ecological screening value (USEPA, 2003). Value for 1,4-dioxane is USEPA Region 5 screening value (USEPA, 2003)
- 3 For carcinogens, criterion is for incremental cancer risk of 1x10⁵
- 4 Site-specific swimming screening levels were developed for trichloroethene *cis* -1,2-dichloroethene, and vinyl chloride for Frog Mortar Creek, Martin State Airport. Lockheed Martin is developing site-specific criteria for Middle River Complex surface water contaminants of concern for Maryland Department of the Environment approval because the contaminants of concern are different than those for Frog Mortar Creek. Samples will be collected in April, June, and September 2017. The 2017 results will be screened against the newly-developed Middle River Complex criteria.
- 5 Value is for total polychlorinated biphenyls.

Gray shading indicates a result that exceeds a screening criterion.

- -- not detected
- J estimated result

µg/L - micrograms per liter

MRC - Middle River Complex

NA - not analyzed or not available

Detected Analytes and Screening Level Exceedance in Surface Water Samples-June 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 3 of 9

Location ID Sample ID	National Recommended Water Quality Criteria ⁽¹⁾ Freshwater Acute Chronic		Ecological Surface Water Screening	Human Health Consumption of Organism		Massachusetts Drinking Water Guideline	MRC-SW5A1 MRC-SW5A1-061316	MRC-SW5A2 MRC-SW5A2-061316
Sample Date			Level ⁽²⁾	Only ⁽¹⁾⁽³⁾			20160613	20160613
Volatile organic compounds (µg/L)	riodio	011101110					20100010	20100010
ACETONE	NA	NA	1500	NA	NA	NA		
CHLOROMETHANE	NA	NA	NA	NA	NA	NA		
TRICHLOROETHENE	NA	NA	21	300 ⁽³⁾	10	NA		
Semivolatile organic compounds (µg/L)								
1,4-DIOXANE	NA	NA	22000	NA	NA	0.3	NA	NA
Polychlorinated biphenyls (µg/L)								
PENTACHLOROBIPHENYLS	NA	0.014	$0.000074^{(5)}$	$0.00064^{(3)}$	NA	NA		

- 1 National Recommended Water Quality Criteria, http://water.epa.gov/scitech/swguidance/standards/current/index.cfm; and Maryland Numerical Criteria for Toxic Substances in Surface Waters, Code of Maryland Regulations (COMAR) 26.08.02.03, http://www.dsd.state.md.us./comar/comarhtml/26/26.08.02.03-2.htm
- 2 United State Environmental Protection Agency (USEPA) Region 3 Biological Technical Advisory Group (BTAG) Freshwater Screening Benchmarks. Value for 1,4-dioxane is the USEPA Region 5 ecological screening value (USEPA, 2003). Value for 1,4-dioxane is USEPA Region 5 screening value (USEPA, 2003)
- 3 For carcinogens, criterion is for incremental cancer risk of 1x10⁵
- 4 Site-specific swimming screening levels were developed for trichloroethene *cis* -1,2-dichloroethene, and vinyl chloride for Frog Mortar Creek, Martin State Airport. Lockheed Martin is developing site-specific criteria for Middle River Complex surface water contaminants of concern for Maryland Department of the Environment approval because the contaminants of concern are different than those for Frog Mortar Creek. Samples will be collected in April, June, and September 2017. The 2017 results will be screened against the newly-developed Middle River Complex criteria.
- 5 Value is for total polychlorinated biphenyls.

Gray shading indicates a result that exceeds a screening criterion.

- -- not detected
- J estimated result

µg/L - micrograms per liter

MRC - Middle River Complex

NA - not analyzed or not available

Detected Analytes and Screening Level Exceedance in Surface Water Samples-June 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 4 of 9

Location ID			Ecological Surface Water Screening	Organism		Massachusetts Drinking Water Guideline	MRC-SW5B	MRC-SW6A
Sample ID	Freshv	Freshwater					MRC-SW5B-061316	MRC-SW6A-061316
Sample Date	Acute	Chronic	Level ⁽²⁾	Only			20160613	20160613
Volatile organic compounds (µg/L)								
ACETONE	NA	NA	1500	NA	NA	NA		
CHLOROMETHANE	NA	NA	NA	NA	NA	NA		
TRICHLOROETHENE	NA	NA	21	300 ⁽³⁾	10	NA		0.26 J
Semivolatile organic compounds (µg/L)								
1,4-DIOXANE	NA	NA	22000	NA	NA	0.3	NA	NA
Polychlorinated biphenyls (µg/L)								
PENTACHLOROBIPHENYLS	NA	0.014	0.000074 ⁽⁵⁾	0.00064 ⁽³⁾	NA	NA		

- 1 National Recommended Water Quality Criteria, http://water.epa.gov/scitech/swguidance/standards/current/index.cfm; and Maryland Numerical Criteria for Toxic Substances in Surface Waters, Code of Maryland Regulations (COMAR) 26.08.02.03, http://www.dsd.state.md.us./comar/comarhtml/26/26.08.02.03-2.htm
- 2 United State Environmental Protection Agency (USEPA) Region 3 Biological Technical Advisory Group (BTAG) Freshwater Screening Benchmarks. Value for 1,4-dioxane is the USEPA Region 5 ecological screening value (USEPA, 2003). Value for 1,4-dioxane is USEPA Region 5 screening value (USEPA, 2003)
- 3 For carcinogens, criterion is for incremental cancer risk of 1x10⁵
- 4 Site-specific swimming screening levels were developed for trichloroethene *cis* -1,2-dichloroethene, and vinyl chloride for Frog Mortar Creek, Martin State Airport. Lockheed Martin is developing site-specific criteria for Middle River Complex surface water contaminants of concern for Maryland Department of the Environment approval because the contaminants of concern are different than those for Frog Mortar Creek. Samples will be collected in April, June, and September 2017. The 2017 results will be screened against the newly-developed Middle River Complex criteria.
- 5 Value is for total polychlorinated biphenyls.

Gray shading indicates a result that exceeds a screening criterion.

- -- not detected
- J estimated result

µg/L - micrograms per liter

MRC - Middle River Complex

...

NA - not analyzed or not available

Detected Analytes and Screening Level Exceedance in Surface Water Samples-June 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 5 of 9

Location ID		National Recommended Water Quality Criteria ⁽¹⁾		Organism		Massachusetts Drinking Water Guideline		RC-SW6A
Sample ID	Freshwater Acute Chronic		Screening				MRC-SW6A-061316-A	AVG MRC-SW6A-061316-D
Sample Date			Level ⁽²⁾				20160613	20160613
Volatile organic compounds (µg/L)								
ACETONE	NA	NA	1500	NA	NA	NA		
CHLOROMETHANE	NA	NA	NA	NA	NA	NA		
TRICHLOROETHENE	NA	NA	21	300 ⁽³⁾	10	NA	0.255	0.25 J
Semivolatile organic compounds (µg/L)								
1,4-DIOXANE	NA	NA	22000	NA	NA	0.3	NA	NA
Polychlorinated biphenyls (µg/L)								
PENTACHLOROBIPHENYLS	NA	0.014	0.000074 ⁽⁵⁾	0.00064 ⁽³⁾	NA	NA		

- 1 National Recommended Water Quality Criteria, http://water.epa.gov/scitech/swguidance/standards/current/index.cfm; and Maryland Numerical Criteria for Toxic Substances in Surface Waters, Code of Maryland Regulations (COMAR) 26.08.02.03, http://www.dsd.state.md.us./comar/comarhtml/26/26.08.02.03-2.htm
- 2 United State Environmental Protection Agency (USEPA) Region 3 Biological Technical Advisory Group (BTAG) Freshwater Screening Benchmarks. Value for 1,4-dioxane is the USEPA Region 5 ecological screening value (USEPA, 2003). Value for 1,4-dioxane is USEPA Region 5 screening value (USEPA, 2003)
- 3 For carcinogens, criterion is for incremental cancer risk of 1x10⁵
- 4 Site-specific swimming screening levels were developed for trichloroethene *cis* -1,2-dichloroethene, and vinyl chloride for Frog Mortar Creek, Martin State Airport. Lockheed Martin is developing site-specific criteria for Middle River Complex surface water contaminants of concern for Maryland Department of the Environment approval because the contaminants of concern are different than those for Frog Mortar Creek. Samples will be collected in April, June, and September 2017. The 2017 results will be screened against the newly-developed Middle River Complex criteria.
- 5 Value is for total polychlorinated biphenyls.

Gray shading indicates a result that exceeds a screening criterion.

- -- not detected
- J estimated result

μg/L - micrograms per liter

MRC - Middle River Complex

NA - not analyzed or not available

Detected Analytes and Screening Level Exceedance in Surface Water Samples-June 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 6 of 9

Location ID			Ecological Surface Water Screening	Organism		Massachusetts Drinking Water Guideline	MRC-SW6B	MRC-SW7A
Sample ID	Freshv	Freshwater					MRC-SW6B-061316	MRC-SW7A-061316
Sample Date	Acute	Chronic	Level ⁽²⁾	Only			20160613	20160613
Volatile organic compounds (µg/L)								
ACETONE	NA	NA	1500	NA	NA	NA		
CHLOROMETHANE	NA	NA	NA	NA	NA	NA		
TRICHLOROETHENE	NA	NA	21	300 ⁽³⁾	10	NA	0.49 J	
Semivolatile organic compounds (µg/L)								
1,4-DIOXANE	NA	NA	22000	NA	NA	0.3	NA	NA
Polychlorinated biphenyls (µg/L)								
PENTACHLOROBIPHENYLS	NA	0.014	0.000074 ⁽⁵⁾	0.00064 ⁽³⁾	NA	NA	0.036 J	

- 1 National Recommended Water Quality Criteria, http://water.epa.gov/scitech/swguidance/standards/current/index.cfm; and Maryland Numerical Criteria for Toxic Substances in Surface Waters, Code of Maryland Regulations (COMAR) 26.08.02.03, http://www.dsd.state.md.us./comar/comarhtml/26/26.08.02.03-2.htm
- 2 United State Environmental Protection Agency (USEPA) Region 3 Biological Technical Advisory Group (BTAG) Freshwater Screening Benchmarks. Value for 1,4-dioxane is the USEPA Region 5 ecological screening value (USEPA, 2003). Value for 1,4-dioxane is USEPA Region 5 screening value (USEPA, 2003)
- 3 For carcinogens, criterion is for incremental cancer risk of 1x10⁵
- 4 Site-specific swimming screening levels were developed for trichloroethene *cis* -1,2-dichloroethene, and vinyl chloride for Frog Mortar Creek, Martin State Airport. Lockheed Martin is developing site-specific criteria for Middle River Complex surface water contaminants of concern for Maryland Department of the Environment approval because the contaminants of concern are different than those for Frog Mortar Creek. Samples will be collected in April, June, and September 2017. The 2017 results will be screened against the newly-developed Middle River Complex criteria.
- 5 Value is for total polychlorinated biphenyls.

Gray shading indicates a result that exceeds a screening criterion.

- -- not detected
- J estimated result

µg/L - micrograms per liter

MRC - Middle River Complex

NA - not analyzed or not available

Detected Analytes and Screening Level Exceedance in Surface Water Samples-June 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 7 of 9

Location ID			Ecological Surface Water Screening	Organism		Massachusetts Drinking Water Guideline	MRC-SW7B	MRC-SW8A
Sample ID	Freshv	Freshwater					MRC-SW7B-061316	MRC-SW8A-061316
Sample Date	Acute	Chronic	Level ⁽²⁾	Only			20160613	20160613
Volatile organic compounds (µg/L)								
ACETONE	NA	NA	1500	NA	NA	NA	2.2 J	
CHLOROMETHANE	NA	NA	NA	NA	NA	NA	1.1	
TRICHLOROETHENE	NA	NA	21	300 ⁽³⁾	10	NA		0.48 J
Semivolatile organic compounds (µg/L)								
1,4-DIOXANE	NA	NA	22000	NA	NA	0.3	NA	NA
Polychlorinated biphenyls (µg/L)								
PENTACHLOROBIPHENYLS	NA	0.014	0.000074 ⁽⁵⁾	0.00064 ⁽³⁾	NA	NA		

- 1 National Recommended Water Quality Criteria, http://water.epa.gov/scitech/swguidance/standards/current/index.cfm; and Maryland Numerical Criteria for Toxic Substances in Surface Waters, Code of Maryland Regulations (COMAR) 26.08.02.03, http://www.dsd.state.md.us./comar/comarhtml/26/26.08.02.03-2.htm
- 2 United State Environmental Protection Agency (USEPA) Region 3 Biological Technical Advisory Group (BTAG) Freshwater Screening Benchmarks. Value for 1,4-dioxane is the USEPA Region 5 ecological screening value (USEPA, 2003). Value for 1,4-dioxane is USEPA Region 5 screening value (USEPA, 2003)
- 3 For carcinogens, criterion is for incremental cancer risk of 1x10⁵
- 4 Site-specific swimming screening levels were developed for trichloroethene *cis* -1,2-dichloroethene, and vinyl chloride for Frog Mortar Creek, Martin State Airport. Lockheed Martin is developing site-specific criteria for Middle River Complex surface water contaminants of concern for Maryland Department of the Environment approval because the contaminants of concern are different than those for Frog Mortar Creek. Samples will be collected in April, June, and September 2017. The 2017 results will be screened against the newly-developed Middle River Complex criteria.
- 5 Value is for total polychlorinated biphenyls.

Gray shading indicates a result that exceeds a screening criterion.

- -- not detected
- J estimated result

µg/L - micrograms per liter

MRC - Middle River Complex

NA - not analyzed or not available

14A - not analyzed of not avai

Detected Analytes and Screening Level Exceedance in Surface Water Samples-June 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 8 of 9

Location ID	National Recommended Water Quality Criteria ⁽¹⁾ Freshwater		Ecological Surface Water	Organism		Massachusetts Drinking Water Guideline	MRC-SW8B	MRC-SW9A
Sample ID			Screening Level ⁽²⁾	Organism Only ⁽¹⁾⁽³⁾			MRC-SW8B-061316	MRC-SW9A-061316
Sample Date	Acute	Chronic	Level	Only			20160613	20160613
Volatile organic compounds (µg/L)								
ACETONE	NA	NA	1500	NA	NA	NA		
CHLOROMETHANE	NA	NA	NA	NA	NA	NA		
TRICHLOROETHENE	NA	NA	21	300 ⁽³⁾	10	NA	0.42 J	
Semivolatile organic compounds (µg/L)								
1,4-DIOXANE	NA	NA	22000	NA	NA	0.3	NA	NA
Polychlorinated biphenyls (µg/L)								
PENTACHLOROBIPHENYLS	NA	0.014	0.000074 ⁽⁵⁾	0.00064 ⁽³⁾	NA	NA		

- 1 National Recommended Water Quality Criteria, http://water.epa.gov/scitech/swguidance/standards/current/index.cfm; and Maryland Numerical Criteria for Toxic Substances in Surface Waters, Code of Maryland Regulations (COMAR) 26.08.02.03, http://www.dsd.state.md.us./comar/comarhtml/26/26.08.02.03-2.htm
- 2 United State Environmental Protection Agency (USEPA) Region 3 Biological Technical Advisory Group (BTAG) Freshwater Screening Benchmarks. Value for 1,4-dioxane is the USEPA Region 5 ecological screening value (USEPA, 2003). Value for 1,4-dioxane is USEPA Region 5 screening value (USEPA, 2003)
- 3 For carcinogens, criterion is for incremental cancer risk of 1x10⁵
- 4 Site-specific swimming screening levels were developed for trichloroethene cis-1,2-dichloroethene, and vinyl chloride for Frog Mortar Creek, Martin State Airport. Lockheed Martin is developing site-specific criteria for Middle River Complex surface water contaminants of concern for Maryland Department of the Environment approval because the contaminants of concern are different than those for Frog Mortar Creek. Samples will be collected in April, June, and September 2017. The 2017 results will be screened against the newly-developed Middle River Complex criteria.
- 5 Value is for total polychlorinated biphenyls.

Gray shading indicates a result that exceeds a screening criterion.

- -- not detected
- J estimated result

µg/L - micrograms per liter

MRC - Middle River Complex

NA - not analyzed or not available

Detected Analytes and Screening Level Exceedance in Surface Water Samples-June 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 9 of 9

Location ID Sample ID	National Recommended Water Quality Criteria ⁽¹⁾ Freshwater Acute Chronic		Ecological Surface Water Screening	Human Health Consumption of Organism	Screening	Massachusetts Drinking Water	MRC-SW9B MRC-SW9B-061316	
Sample Date			Level ⁽²⁾	Only ⁽¹⁾⁽³⁾	Levels ⁽⁴⁾	Guideline	20160613	
Volatile organic compounds (µg/L)							20100010	
ACETONE	NA	NA	1500	NA	NA	NA		
CHLOROMETHANE	NA	NA	NA	NA	NA	NA		
TRICHLOROETHENE	NA	NA	21	300 ⁽³⁾	10	NA		
Semivolatile organic compounds (µg/L)								
1,4-DIOXANE	NA	NA	22000	NA	NA	0.3	NA	
Polychlorinated biphenyls (µg/L)								
PENTACHLOROBIPHENYLS	NA	0.014	$0.000074^{(5)}$	$0.00064^{(3)}$	NA	NA		

- 1 National Recommended Water Quality Criteria, http://water.epa.gov/scitech/swguidance/standards/current/index.cfm; and Maryland Numerical Criteria for Toxic Substances in Surface Waters, Code of Maryland Regulations (COMAR) 26.08.02.03, http://www.dsd.state.md.us./comar/comarhtml/26/26.08.02.03-2.htm
- 2 United State Environmental Protection Agency (USEPA) Region 3 Biological Technical Advisory Group (BTAG) Freshwater Screening Benchmarks. Value for 1,4-dioxane is the USEPA Region 5 ecological screening value (USEPA, 2003). Value for 1,4-dioxane is USEPA Region 5 screening value (USEPA, 2003)
- 3 For carcinogens, criterion is for incremental cancer risk of 1x10⁵
- 4 Site-specific swimming screening levels were developed for trichloroethene cis-1,2-dichloroethene, and vinyl chloride for Frog Mortar Creek, Martin State Airport. Lockheed Martin is developing site-specific criteria for Middle River Complex surface water contaminants of concern for Maryland Department of the Environment approval because the contaminants of concern are different than those for Frog Mortar Creek. Samples will be collected in April, June, and September 2017. The 2017 results will be screened against the newly-developed Middle River Complex criteria.
- 5 Value is for total polychlorinated biphenyls.

Gray shading indicates a result that exceeds a screening criterion.

- -- not detected
- J estimated result

μg/L - micrograms per liter

MRC - Middle River Complex

NA - not analyzed or not available

Detected Analytes and Screening Levels for Surface Water Samples-September 2016
Cow Pen Creek and Dark Head Cove
Lockheed Martin Middle River Complex, Middle River, Maryland
Page 1 of 4

Location ID Sample ID	Recom Water Crite	onal mended Quality eria ⁽¹⁾ water	Ecological Surface Water Screening Level ⁽²⁾	Human Health Consumption of Organism Only ⁽¹⁾⁽³⁾	Screening	MRC-SW1A	MRC-SW2A MRC-SW2A-092716	MRC-SW5A1 MRC-SW5A1-	MRC-SW5A2 MRC-SW5A2-
Sample Date	Acute	Chronic				20160927	20160927	092716 20160927	092716 20160927
Volatile organic compounds (ug/L)								
2-BUTANONE	NA	NA	NA	NA	NA	5.1 J	0.92 J		
2-HEXANONE	NA	NA	NA	NA	NA	0.55 J			
ACETONE	NA	NA	1500	NA	NA	7.7 J			
TRICHLOROETHENE	NA	NA	21	$300^{(3)}$	10	0.27 J			

Detected Analytes and Screening Levels for Surface Water Samples-September 2016
Cow Pen Creek and Dark Head Cove
Lockheed Martin Middle River Complex, Middle River, Maryland
Page 2 of 4

Location ID	Recom Water	onal mended Quality eria ⁽¹⁾	Ecological Surface Water Screening	of Organism	Swimming Screening		MRC-SW6A		
Sample ID	Fresh	water	Level ⁽²⁾	Only ⁽¹⁾⁽³⁾	Leveis	MRC-SW5B-092716	MRC-SW5B-092716- AVG	MRC-SW5B-092716- D	MRC-SW6A-092716
Sample Date	Acute	Chronic				20160927	20160927	20160927	20160927
Volatile organic compounds (μg/L)								
2-BUTANONE	NA	NA	NA	NA	NA				
2-HEXANONE	NA	NA	NA	NA	NA				
ACETONE	NA	NA	1500	NA	NA				
TRICHLOROETHENE	NA	NA	21	$300^{(3)}$	10	0.22 J	0.165		0.59 J

Detected Analytes and Screening Levels for Surface Water Samples-September 2016
Cow Pen Creek and Dark Head Cove
Lockheed Martin Middle River Complex, Middle River, Maryland
Page 3 of 4

Location ID Sample ID	National Recommended Water Quality Criteria (1)		Ecological Surface Water Screening Level ⁽²⁾	Human Health Consumption of Organism Only ⁽¹⁾⁽³⁾	Swimming Screening Levels ⁽⁴⁾	MRC-SW6B	MRC-SW7A MRC-SW7A-092716	MRC-SW7B MRC-SW7B-092716
Sample Date	Acute Chronic					20160927	20160927	20160927
Volatile organic compounds (μg/L)	•						
2-BUTANONE	NA	NA	NA	NA	NA			
2-HEXANONE	NA	NA	NA	NA	NA			
ACETONE	NA	NA	1500	NA	NA			
TRICHLOROETHENE	NA	NA	21	300 ⁽³⁾	10	0.62 J	0.56 J	0.58 J

Detected Analytes and Screening Levels for Surface Water Samples-September 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 4 of 4

Location ID Sample ID	Recom Water Crite	onal mended Quality eria ⁽¹⁾ water	Ecological Surface Water Screening Level ⁽²⁾	Human Health Consumption of Organism Only ⁽¹⁾⁽³⁾	Screening	MRC-SW8A	MRC-SW8B MRC-SW8B-092716	MRC-SW9A MRC-SW9A-092716	MRC-SW9B MRC-SW9B-092716
Sample Date	Acute	Chronic				20160927	20160927	20160927	20160927
Volatile organic compounds (μg/L)								
2-BUTANONE	NA	NA	NA	NA	NA				
2-HEXANONE	NA	NA	NA	NA	NA				
ACETONE	NA	NA	1500	NA	NA				
TRICHLOROETHENE	NA	NA	21	300 ⁽³⁾	10	0.61 J	0.62 J	0.52 J	0.62 J

- 1 National Recommended Water Quality Criteria, http://water.epa.gov/scitech/swguidance/standards/current/index.cfm; and Maryland Numerical Criteria for Toxic Substances in Surface Waters, Code of Maryland Regulations (COMAR) 26.08.02.03, http://www.dsd.state.md.us./comar/comar/tml/26/26.08.02.03-2.htm
- 2 United State Environmental Protection Agency (USEPA) Region 3 Biological Technical Advisory Group (BTAG) Freshwater Screening Benchmarks. Value for 1,4-dioxane is the USEPA Region 5 ecological screening value (USEPA, 2003). Value for 1,4-dioxane is USEPA Region 5 screening value (USEPA, 2003)
- 3 For carcinogens, criterion is for incremental cancer risk of 1x10
- 4 Site-specific swimming screening levels were developed for trichloroethene, is-1,2-dichloroethene, and vinyl chloride for Frog Mortar Creek, Martin State Airport. Lockheed Martin is developing site-specific criteria for Middle River Complex surface water contaminants of concern for Maryland Department of the Environment approval because the contaminants of concern are different than those for Frog Mortar Creek. Samples will be collected in April, June, and September 2017. The 2017 results will be screened against the newly-developed Middle River Complex criteria.
- 5 Value is for total polychlorinated biphenyls.

Gray shading indicates a result that exceeds a screening criterion.

- -- not detected
- J estimated result
- μg/L micrograms per liter
- MRC Middle River Complex
- NA not analyzed or not available
- SW surface water

Table 4-4

Detected Analytes and Screening Levels for Surface Water Samples-December 2016 Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 1 of 3

Location ID	National Recommended Water Quality Criteria ⁽¹⁾ Freshwater		Ecological Surface Water	Human Health Consumption of Organism	Swimming Screening		-10A	SW-10B		
Sample ID			Screening	Only ⁽¹⁾⁽³⁾	Levels ⁽⁴⁾	MRC-SW10A-D-121316	MRC-SW10A-S-121316	MRC-SW10B-D-121316	MRC-SW10B-S-121316	
Sample Date	Acute	Chronic	Level ⁽²⁾	J,		20161213	20161213	20161213	20161213	
Volatile organic compounds (μg/L)										
1,2,4-TRIMETHYLBENZENE	NA	NA	33	NA	NA					
ACETONE	NA	NA	1500	NA	NA	2.6 J	2.9 J	2.4 J		
CIS-1,2-DICHLOROETHENE	NA	NA	NA	NA	300					
TOLUENE	NA	NA	2	15000	NA	0.41 J			0.34 J	
TOTAL XYLENES	NA	NA	13	NA	NA	0.35 J			0.33 J	
TRICHLOROETHENE	NA	NA	21	300 ⁽³⁾	10	0.7 J 4.4 J		0.44 J	1.2 J	

Table 4-4

Detected Analytes and Screening Levels for Surface Water Samples-December 2016 Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 2 of 3

Location ID Sample ID	National Recommended Water Quality Criteria ⁽¹⁾ Freshwater Acute Chronic		Ecological Surface Water Screening	Human Health Consumption of Organism Only ⁽¹⁾⁽³⁾	Swimming Screening Levels ⁽⁴⁾	SW- MRC-SW11A-D-121316	-11A MRC-SW11A-S-121316	SW-11B MRC-SW11B-D-121316 MRC-SW11B-S-121316		
Sample Date			Level ⁽²⁾	Only		20161213	20161213	20161213	20161213	
Volatile organic compounds (µg/L)										
1,2,4-TRIMETHYLBENZENE	NA	NA	33	NA	NA					
ACETONE	NA	NA	1500	NA	NA	2 J	2.1 J			
CIS-1,2-DICHLOROETHENE	NA	NA	NA	NA	300	0.49 J		2.8		
TOLUENE	NA	NA	2	15000	NA		0.66 J		0.45 J	
TOTAL XYLENES	NA	NA	13	NA	NA	0.53 J			0.37 J	
TRICHLOROETHENE	NA NA 21		21	300 ⁽³⁾	10	2.7 J	4.1 J	3.7 J	1.2 J	

Table 4-4

Detected Analytes and Screening Levels for Surface Water Samples-December 2016 Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 3 of 3

Location ID	Quality Criteria'' Water		Surface Consumption Water of Organism		Screening	SW-1	12A	SW-12B		
Sample ID			_	Only ⁽¹⁾⁽³⁾	Levels ⁽⁴⁾	MRC-SW12A-D-121316	MRC-SW12A-S-121316	MRC-SW12B-D-121316	MRC-SW12B-S-121316	
Sample Date			Level(2)	evel ⁽²⁾		20161213	20161213	20161213	20161213	
Volatile organic compounds (µg/L)										
1,2,4-TRIMETHYLBENZENE	NA	NA	33	NA	NA				0.24 J	
ACETONE	NA	NA	1500	NA	NA		2.2 J			
CIS-1,2-DICHLOROETHENE	NA	NA	NA	NA	300	0.45 J		5.5		
TOLUENE	NA	NA	2	15000	NA		0.29 J		0.79 J	
TOTAL XYLENES	NA	NA	13	NA	NA		0.28 J		0.9 J	
TRICHLOROETHENE	NA	NA	21	300 ⁽³⁾	10	2.4 J	4.1 J	7.8 J	1.4 J	

- National Recommended Water Quality Criteria, http://water.epa.gov/scitech/swguidance/standards/current/index.cfm; and Maryland Numerical Criteria for Toxic Substances in Surface Waters, Code of Maryland Regulations (COMAR) 26.08.02.03, http://www.dsd.state.md.us./comar/comar/html/26/26.08.02.03-2.htm
- 2 United State Environmental Protection Agency (USEPA) Region 3 Biological Technical Advisory Group (BTAG) Freshwater Screening Benchmarks. Value for 1,4-dioxane is the USEPA Region 5 ecological screening value (USEPA, 2003). Value for 1,4-dioxane is USEPA Region 5 screening value (USEPA, 2003)
- 3 For carcinogens, criterion is for incremental cancer risk of 1x10⁻⁵
- 4 Site-specific swimming screening levels were developed for trichloroethene, cis -1,2-dichloroethene, and vinyl chloride for Frog Mortar Creek, Martin State Airport. Lockheed Martin is developing site-specific criteria for Middle River Complex surface water contaminants of concern for Maryland Department of the Environment approval because the contaminants of concern are different than those for Frog Mortar Creek. Samples will be collected in April, June, and September 2017. The 2017 results will be screened against the newly-developed Middle River Complex criteria.
- 5 Value is for total polychlorinated biphenyls.

Gray shading indicates a result that exceeds a screening criterion.

- -- not detected
- J estimated result

 μ g/L - micrograms per liter MRC - Middle River Complex

NA - not analyzed or not available

Section 5 Summary

Tetra Tech, Inc. (Tetra Tech) collected three rounds of surface water samples from Dark Head Cove and Cow Pen Creek in June, September, and December 2016 on behalf of Lockheed Martin Corporation (Lockheed Martin). June and September samples were collected along five transects in Dark Head Cove at Outfalls 005, 006, 007, 008, and 009, and at two locations in Cow Pen Creek. These locations are the same ones used in previous annual rounds. Surface water was sampled in June and September to determine if volatile organic compounds (VOCs), 1,4-dioxane, and polychlorinated biphenyls (PCBs) are in surface water, and if they originate from stormwater outfalls, sediments, or groundwater emanating from the Middle River Complex (MRC).

December samples were collected from two depths (one foot below the water surface and one foot above the cove bed) at six locations in Dark Head Cove in the southeastern portion of the Middle River Complex. These six locations were not the same as those sampled in June and September, which were collected near Middle River Complex storm-drain outfalls and in Cow Pen Creek. The December surface water samples were collected together along three transects west of Outfall 008 near the recently investigated landward edge of the southeastern trichloroethene (TCE) area in Tax Block (Block) F. In October 2016, probe groundwater-sampling in Tax Block F south of UST 2 (the trichloroethene source) and the Tax Block E groundwater remedy indicated field-analyzed trichloroethene concentrations of more than 60,000 micrograms per liter (µg/L) in groundwater south of Chesapeake Park Plaza and near the shoreline of Dark Head Cove. Therefore, the December surface water samples were collected to determine the extent to which volatile organic compounds were emanating from southeastern trichloroethene area groundwater in Tax Block F to Dark Head Cove.

The June samples were chemically analyzed for volatile organic compounds, 1,4-dioxane (for the two Cow Pen Creek sampling locations only), and polychlorinated biphenyls (for the Dark Head Cove samples only). September and December samples were analyzed for volatile organic compounds only. These results were validated in accordance with United States Environmental

Agency (USEPA) procedures and compared to ecological and human-health screening levels, including site-specific screening concentrations developed for Lockheed Martin's nearby Frog Mortar Creek sampling to evaluate risks to recreational swimmers from trichloroethene, *cis*-1,2-dichoroethene (*cis*-1,2-DCE), and vinyl chloride (VC) (three volatile organic compounds found at elevated concentrations in Middle River Complex groundwater plumes).

In June 2016, trichloroethene was detected at four of 11 Dark Head Cove samples near Outfalls 006 and 008, and was not detected in Cow Pen Creek samples. However, trichloroethene was detected more frequently in September at one of two Cow Pen Creek sampling locations, and in all but two Dark Head Cove samples. All trichloroethene detections were low; the maximum June and September concentrations are more than 15 times below its site-specific screening-level (10 μg/L) for evaluating exposure risks to swimmers. Trichloroethene was detected at similar concentrations during the June and September samplings (0.25–0.49 μg/L, and 0.165–0.62 μg/L, respectively). *cis*-1,2-Dichloroethene and vinyl chloride (common degradation compounds of trichloroethene and common compounds in Middle River Complex groundwater plumes) were not detected in the June and September surface water samples. Trichloroethene has not been detected in samples collected at Outfalls 005E (location SW5A2) since the Outfall 005 storm drain was plugged with concrete beneath Chesapeake Park Plaza in August 2015.

Trichloroethene was detected in the December shallow "S" samples (1.2–4.4 μg/L), and the deeper "D" samples (0.44–7.8 μg/L) collected above the cove bed. *cis*-1,2-Dichloroethene was detected in the four deeper samples collected from the center and western transects in Dark Head Cove. Vinyl chloride was not detected in these samples. All concentrations of trichloroethene and *cis*-1,2-dichloroethene were below their swimming criteria (10 μg/L and 300 μg/L, respectively). Other volatile organic compounds detected in the December Dark Head Cove samples (and found in Middle River Complex groundwater), such as acetone, toluene, total xylenes, and 1,2,4-trimethylbenzene, were also detected at concentrations below their respective ecological and human health screening levels.

For December, trichloroethene concentrations at SW11B and SW12B were higher in the deeper ("D") samples than in the shallower ("S") samples from the same locations, indicating increased dilution and volatilization in the upper portion of the water column as compared to seepage from the cove bed. The only exception was at eastern transect SW10B, where trichloroethene in the

shallower ("S") sample was higher than the concentration in the deeper sample. Trichloroethene and *cis*-1,2-dichloroethene (and to a lesser extent, the other volatile organic compounds) concentrations detected in samples collected farther from the shoreline show increasing concentrations trending from east to west (i.e., from SW10B to SW12B). These trends indicate that transect SW12 may be nearer to the seepage area (near the southeastern trichloroethene area than transects SW10 and SW11) that has the maximum volatile organic compound concentrations in groundwater. These results also indicate that volatile organic compounds in Dark Head Cove from the southeastern trichloroethene area groundwater seepage have not been fully delineated, and that additional surface water sampling will be required to delineate the extent of trichloroethene in Dark Head Cove west of Outfalls 006 and 008. Furthermore, low concentrations of trichloroethene previously detected at areas east and west of the December sampling locations (e.g., Outfalls 005, 009, and 007) may be due, in part, to tidal mixing and transport of higher concentrations of trichloroethene from this groundwater seepage zone to these areas, and not due to direct discharges of trichloroethene from these outfalls.

1,4-Dioxane was detected in two Cow Pen Creek surface water samples at concentrations of $0.13 \,\mu\text{g/L}$ and $0.16 \,\mu\text{g/L}$. These concentrations are approximately one-half the Massachusetts drinking water guideline ($0.3 \,\mu\text{g/L}$) used for comparison herein, and more than five orders of magnitude (nearly 100,000 times) lower than its United Stated Environmental Protection Agency ecological screening-level ($22,000 \,\mu\text{g/L}$). 1,4-Dioxane may be discharging to Cow Pen Creek from the southwestern trichloroethene (and 1,4-dioxane) groundwater plume.

One polychlorinated biphenyl homolog (pentachlorobiphenyl) was detected in one surface water sample (SW6B) collected in June, at a location 50 feet from Outfall 006 in Dark Head Cove. This concentration (0.036 μ g/L) exceeds the Biological Technical Advisory Group ecological screening level and the human health consumption-of-aquatic-organism screening level. However, this single detection of a polychlorinated biphenyl homolog indicates a reduction in the frequency and concentration of previous polychlorinated biphenyl concentrations detected in Dark Head Cove water samples collected in 2014. This concentration (and associated risk) reduction detected in the 2016 (and 2015) samples might be attributable to the removal of sediment with elevated levels of polychlorinated biphenyls, conducted adjacent to Outfall 005 in Dark Head Cove during the winter of 2014–2015.

Future sampling of Dark Head Cove and Cow Pen Creek is scheduled for April, June, and September 2017. In 2017, Lockheed Martin will propose risk-based swimming criteria specifically developed for Dark Head Cove and Cow Pen Creek for Maryland Department of the Environment approval, as the contaminants of concern in these two water bodies differ from the contaminants of concern in Frog Mortar Creek (i.e., the study area where the current swimming criteria used in this report were developed). To date, vinyl chloride, the primary risk driver in Frog Mortar Creek, has not been detected in either Dark Head Cove or Cow Pen Creek. Additional swimming criteria will be developed for 1,4-dioxane and total polychlorinated biphenyls, chemicals that have been found in Dark Head Cove and Cow Pen Creek, but which are not contaminants of concern in Frog Mortar Creek.

Section 6 References

- 1. Code of Maryland Regulations (COMAR), 2016. "Numerical Criteria for Toxic Substances in Surface Waters." COMAR Title 26, Subtitle 08, Chapter 02, Regulation 03: http://www.dsd.state.md.us/comar/comarhtml/26/26.08.02.03-2.htm.
- 2. Tetra Tech, Inc. (Tetra Tech), 2004. *Historical Research Report, Lockheed Martin Middle River Complex*. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. August.
- 3. Tetra Tech, Inc. (Tetra Tech), 2012. *Final Groundwater Response Action Plan, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland*. Prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. September.
- 4. Tetra Tech, Inc. (Tetra Tech), 2013. 2013 Surface Water Report, Martin State Airport, 701 Wilson Point Road, Middle River, Maryland. Prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. December.
- 5. Tetra Tech, Inc. (Tetra Tech), 2015a. 2015 Surface Water Sampling Report, Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. November.
- 6. Tetra Tech, Inc. (Tetra Tech), 2015b. 2016–2017 Groundwater and Surface Water Monitoring Work Plan, Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. December.
- 7. Tetra Tech, Inc. (Tetra Tech), 2016a. *Addendum to the 2016–2017 Groundwater and Surface Water Monitoring Work Plan, Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland*. Letter report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. June 20.
- 8. Tetra Tech, Inc. (Tetra Tech), 2016b. *Addendum No. 3 to the 2016–2017 Groundwater and Surface Water Monitoring Work Plan, Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland*. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. December 20.

- 9. United States Environmental Protection Agency (USEPA), Region 3, 1993. Region III Modifications to the Laboratory Data-Validation Functional Guidelines for Evaluating Inorganics Analyses. USEPA Region 3 Central Regional Laboratory Quality Assurance Branch. April.
- 10. United States Environmental Protection Agency (USEPA), Region 3, 1994. *Region III Modifications to the National Functional Guidelines for Organic-Data Review*. USEPA Region 3 Central Regional Laboratory Quality Assurance Branch. September.
- 11. United States Environmental Protection Agency (USEPA), 2003. Region 5 Ecological Screening Levels. August.
- 12. United States Environmental Protection Agency (USEPA), 2006. Region III Biological Technical Advisory Group Freshwater Screening Benchmarks. July.
- 13. United States Environmental Protection Agency (USEPA), 2009. *National Recommended Water Quality Criteria*. U.S. Environmental Protection Agency, Offices of Water and of Science and Technology:

 http://water.epa.gov/scitech/swguidance/standards/current/index.cfm
 or http://water.epa.gov/scitech/swguidance/standards/current/upload/nrwqc-2009.pdf.
- 14. United States Environmental Protection Agency (USEPA), 2014. *Technical Fact Sheet—1,4-Dioxane*, Office of Solid Waste and Emergency Response fact sheet. EPA 505-F-14-011. January.

Page___ of __

Project Site Project No.: [] Stream [] Spring [] Pond [] Lake [X] Other [] QA Sa	r: mple Type:	Dark Head C 112lC07776				Sample ID No.: MRC-SW5A1 -061316 Sample Location: MRC-SW5A1 Sampled By: J. Mullis C.O.C. No.: Type of Sample: [x] Low Concentration [] High Concentration			
Date:	6/13/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP
Time:	1313	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/L)	(ppt)	mV
Depth: Method:	1 ft below water Grab	clear	7.25	6.34	24.25	6.44	4.7	3.5	60
	LLECTION INF	ORMATIO	N·						
	Analysis	ORMANO	Preser	vative		Container Re	quirements		Collected
TCL VOCs	· iiiuiye.e			pH<2		3 - 40 mL	•	<u> </u>	Yes
PCBs (680)	No	ne		2 - 1L a			Yes		
OBSERVATI	IONS / NOTES:				MAP:				
Water depth Hardness Circle if App	840	meters mg/L CaCO3			WESTERN TERMINATION OF THE PLANE BOOK OF THE PLA	Signature	EAST-SEN TOT PLUME	CONTROL COVE	CHARMEN TOO, THAIL, CLAT ON ENTRE OF THE MEDIA CONTRE ENTRE OF T
MS/MSD	Duplicate ID No.:	•				Signature(s):			
WIS/WISD	Duplicate ID No	•					0	1	

Page___ of __

Project Site Project No.: [] Stream [] Spring [] Pond [] Lake [X] Other [] QA Sa	1	Dark Head C 112lC07776				Sample ID No.: Sample Location: Sampled By: C.O.C. No.: Type of Sample: [x] Low Concentration [] High Concentration			
SAMPLING I	DATA:					•			
Date:	6/13/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP
Time:	1318	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/L)	(%)	mV
Depth:	1 ft below water	clear	7.26	6.38	24.34	7.36	4.07	3.5	110
Method:	Grab								
SAMPLE CO	LLECTION INF	ORMATIO	N:						
	Analysis Preservative						quirements		Collected
TCL VOCs		pH<2		40 mL glass vi	als		Yes		
PCBs (680)		INC	one		2 - 1L ambers			Yes	
OBSERVATI	ONS / NOTES:				MAP:				
10/-1 d1b	0.0					E X			
Water depth Hardness	_	meters mg/L CaCO3			WESTERN TO FILMS DIRECTOR DIRECTOR		EASTAIN TOE PLUME OUTSTAND OUTSTAND OUTSTAND OUTSTAND	OMER HERO CORE	URE 3-4 S SURFACE WATER WITHING LOCATIONS SOID XXII S JOSE SOUTH SAME LOCATION XXII S JOSE SOUTH SAME LOCATION XXII S JOSE SOUTH SAME LOCATION ENTRY SOUTH SAME LOCATION AND SOUTH SAME LOCATION AND SAME
Circle if App	licable:					Signature(s):			
MS/MSD Duplicate ID No.:						Signature(s):			

Page___ of ___

Project Site Project No.:		Dark Head C		le River		-		Sample ID No.: MRC-SW5B Sample Location: MRC-SW5B		
7 10,000 110		. 121001110				Sample		J. Mullis		
[] Stream	n					C.O.C. I	-	<u> </u>		
[] Spring										
[] Pond						Type of	Sample:			
[] Lake							v Concenti	ration		
[X] Other	r:	Tidal creek -	freshwate	r:			Concentra			
	mple Type:					0				
						-				
SAMPLING I Date:	6/13/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP	
Time:	1322	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/L)	(%)	mV	
Depth:	1 ft below water	clear	7.34	6.37	24.32	6.22	4.53	3.5	123	
Method:	Grab	Olou.		0.0.	27.02	0	7.00	0.0	120	
	LLECTION INF	ORMATIO	N:			<u>, </u>		<u></u>		
Analysis Preservative						Container R			Collected	
				. pH<2		40 mL glass v			Yes	
PCBS (680)	5 (680)			one		2 - 1L ambers	;		yes	
									 	
									+	
			<u> </u>						+	
									+	
									<u> </u>	
			<u> </u>							
ODGEDVATI	ONG /NOTES:				MAD.					
ORSEKANII	IONS / NOTES:				MAP:	SWATE		16	Company Company	
Water depth	>4	meters			W I			THE STATE OF		
Hardness		mg/L CaCO3	š	1	The same	101	EASTERN. TOE PLUVE	GI THE		
				ľ	MI	J. And P			23000 W	
					N T		1	MINESTRATE MINESTREE	AV	
					WESTERN TOE FLUME	A Page	1			
				ŀ				conc. (com	GURE 3-1 I16 SURFACE WATER	
				ľ	OUTRALING BARK SOLTHALL	100			AMPLING LOCATIONS	
				ľ			OUTPLICE	/	EGEND C XXIII SURBICE (WEER SHIK PLE LOCATION	
				ŀ			W00050	6	STATE OF THE STATE	
						A PER	TENERO .	DARK HEIO COVE	EXTENT OF TOE IN GROUN DOWNER GREATER THIS (SUG), (SACHED WHERE IN PERRED)	
				ŀ	2	A COL		105 107 108	Economina Tera Toda (D. S. E - Echarcathana L - maragrams per tar	
						A STATE OF THE STA	,	1776	Lockheed Martin Middle River Complex Middle River, Maryland	
						URCS		1	0 50 300 Feet }	
				ľ		5/A	(- 1 to 1	A CONTROL BROOMS ARE	
				1			1	V.	TE TETRATECH	
Circle if App	"aabla,				No.	Cianotur	-/->:			
Circle if App						Signature	! (S):	Je ghi	1.	
MS/MSD	Duplicate ID No.:						,	gr ju		

Page___ of _

					-				
Project Site	Name:	Dark Head C	ove, Midd	lle River		Sample	ID No.:	MRC-SW6A	-061316
Project No.		112IC07776					Location:	MRC-SW6A	
						Sampled		J. Mullis	
[] Strear	n					C.O.C. N			
[] Spring	1								
[] Pond	,					Type of	Sample:		l
[] Lake							v Concent	ration	ļ
[X] Othe	er:	Tidal creek -	freshwate	er			Concentr		ļ
	ample Type:								l
SAMPLING	· · · · · · · · · · · · · · · · · · ·						,		
Date:	6/13/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP
Time:	1241	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/L)	(%)	mV
Depth:	1 ft below water	clear	7.24	6.32	24.6	4.3	4.15	3.4	140
Method:	Grab			'			ı	l	
	OLLECTION INF	ORMATIO	•						
	Analysis			rvative		Container Re	•	5	Collected
TCL VOCs				_ pH<2	3 -	Yes			
PCBS (680)			No	lone		yes			
			<u> </u>		<u> </u>				
			↓	!	├ ──				
			 	'	 				<u> </u>
			 		 				-
									
			 		 				+
			 		 				
OBSERVAT	IONS / NOTES:				MAP:				
						EXIL			
Water depth	_	3 meters		7	1	1	FACTOR	CLITAL	
Hardness	840	mg/L CaCO3	i	F	- In	100	EASTERN TOE PLL VE	6 7 7	(1962) (1962)
				Ī	17.0		-	олико	
					XXX		3	INCOMES PROPERTY AND ADDRESS OF TAXABLE PARTY.	
İ					WESTERN TOE PLUME	A Page	27	OTEL VO	TURE 3-1
İ				1				100 miles (100 miles (15 SURFACE WATER
				7	SUTPLICATE BLOCKS.	100		SAM	MPLING LOCATIONS
							OUTPLEOUS NEW CORRES		GEND XXX SURSICE OVER SWENE LOCATION
İ				ř		-	WC3NSC	A :	STATE OFFICE
İ				7		THE PARTY OF	(2562)	Distribution	EXTENT OF THEM GROWN DON'TER ORESTER THAN GUIDA (SASHES WHERE IN PERRED)
İ				1	2	A CONTRACTOR OF THE PARTY OF TH		TCFC	cartous has "era Tuch (22 S) - 1 charcathase - margains per bir
İ				у			,	Total Control	Lockheed Martin Middle River Complex Middle River, Maryland
				ľ		NE 935	33		0 100 300 Feet
				1	XX	22	(E-FEY	A CONTROL OF CONTROL
				1		Contract of the Contract of th	3.		TE TETRATECH
	**				84	I C' ave atune	(-X:		
Circle if App						Signature	:(S):	get ghe	f
MS/MSD	Duplicate ID No. MRC-SWDUP2-06		CBS AND				ge you	1	

Page___ of __

Project Site Project No.:	roject Site Name: Dark Head Cove, Middle River 112IC07776						Sample ID No.: MRC-SW6B -061316 Sample Location: MRC-SW6B				
•						Sampled		J. Mullis	_		
[] Stream	1					C.O.C. N	No.:				
[] Spring									_		
[] Pond						Type of	-				
[] Lake							v Concentr				
[X] Other		Tidal creek -	freshwate	r		[] High	Concentra	ation			
[] QA Sa	mple Type:					i					
SAMPLING I	DATA:										
Date:	6/13/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP		
Time:	1252	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/L)	(%)	mV		
Depth:	1 ft below water	clear	7.33	6.31	24.7	4.9	5.64	3.4	138		
Method:	Grab	ODMATIO	NI.								
	LLECTION INF	ORMATIO									
TCL VOCs	Analysis		Preser			Container Re			Collected		
PCBS (680)				pH<2 one		40 mL glass vi 2 - 1L ambers	ais		Yes Yes		
FCB3 (000)			INC	nie –		Z - IL allibels			162		
ODCEDVATI	ONG /NOTES				MAD						
OBSERVALI	ONS / NOTES:				MAP:	100		Commence of			
Water depth	3	meters			Will a						
Hardness		mg/L CaCO3			The state of the s		EASTERN TOE PLL VIE	CLTFEL			
naiuliess	000	mg/L Cacos				J. Araf			CEDICED (WINESE		
							31	DESTRUCTION DESCRIPTION OF THE PERSONS ASSESSMENT ASSESSMENT OF THE PERSONS ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT AS			
					WESTERN. TCE PLUME				12		
						PAR			URE 3-1		
					SUTRALLING BLOCKS				IS SURFACE WATER MPLING LOCATIONS		
					879LE 0.1194L1		OUTRACECOE	/.	GEND		
							Care Care		2016 SUPERIOR OVER SHIK PLE DOCKTION STORMANDER OUTERALL DOCKTION STAFF GALOGE		
						2016	(B) (B) (B) (B) (B) (B) (B) (B) (B) (B)	DARK MEJO COVE	EXTENT OF TOE IN GROWN DON'TER GREATER THHIS CUGAL (SASH SC WHERE IN PERREE)		
					WW .			TC TC	cartours from "ero Tich (2): 5: - It characteries - macgains per for		
								177.6	Lackheed Martin Middle River Complex		
						The state of the s	MB '		Middle River, Maryland 1 100 300 Fee:		
						912	1	A Maria			
					X				TE TETRATECH		
					A Section	V6540	0 0		TE TOTAL SERVICE		
Circle if App	licable:					Signature(s):					
MS/MSD	Duplicate ID No.:							al gh	h-		
								1			

Page___ of __

Project Site Project No.:		e River		Sample ID No.: MRC-SW7A -061316 Sample Location: MRC-SW7A						
Project No		112IC07776				Sample				
[] Stream	,					C.O.C. N	-	J. Mullis		
[] Stream	1					0.0.0.1	NO			
						Turno of	Comple:			
[] Pond [] Lake						Type of		otion		
[X] Other	··	Tidal creek -	frachwata			[x] Low Concentration [] High Concentration				
	mple Type:	riuai creek -	nesnwater	l		. [] riigii	Concentra	ation		
						•				
SAMPLING I						-		•		
Date:	6/13/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP	
Time:	1218	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/L)	(%)	mV	
Depth: Method:	1 ft below water Grab	clear	6.9	6.24	24.5	2.41	5.9	3.4	135	
	LLECTION INF	ORMATIO	N:							
	Analysis		Preser	vative		Container Re	auirements		Collected	
TCL VOCs	y			pH<2	3 -	40 mL glass v			Yes	
PCBS (680)			No	ne		2 - 1L ambers			Yes	
OBSERVATI	ONS / NOTES:				MAP:					
Water depth	13	meters				**				
					The state of the s		EASTERN. TOE PLL WE	CLTFL.		
Hardness	820	mg/L CaCO3				J. Santi	L E		CEROCES .	
								DESERTED PROMISE	A	
					WESTERN TOE PLUME	The last		008100		
						PAIL			URE 3-1	
					SUTFILING BLOCKS BYALE OLTHALL				5 SURFACE WATER MPLING LOCATIONS	
							OUTPALLONS	LE .	SEND XIII SURBICE OVERS SWE'RE JOCKTON	
							The state of the s		MORROD LIPSTLO STANDARDS	
							123623	DARK HEVO COVE	EXTENT OF TOERS GROWN DON'TER GRESTER THINK (USAL (GACHED WHERE IN PERRED)	
						NA A		103 103 103	carteus has "era Tuck-(2) 5; - It charcefusse - morganis per la-	
								~	Lockheed Martin Middle River Complex Middle River, Maryland	
						The state of the s	77B		150 300 Feet }	
						A.	(Edit Colon	900 RED 1902/15 (RE-10-0): JEE	
						Chile .	\$. \	N.	TE TETRATECH	
<u> </u>						O.	<u> </u>			
Circle if App						Signature(s):				
MS/MSD	Duplicate ID No.:	:						ge go	1114	
								0		

Page___ of _

Project Site	Name:	Dark Head Cove, Middle River				Sample ID No.:		MRC-SW7B -061316		
Project No.:		112IC07776				Sample Location: Sampled By:		MRC-SW7B		
1121001110								J. Mullis		
[] Stream						C.O.C. No.:		o. mano	· Wallo	
[] Spring				0.0.0.1	10	-				
[] Spring						Type of	Sample:			
				Type of Sample: [x] Low Concentration						
[] Lake			frachwatar			[X] Low Concentration [] High Concentration				
[X] Other: Tidal creek - [] QA Sample Type:			Tresriwater			. [] mign	Concenti	alion		
						-				
SAMPLING Date:	OATA: 6/13/2016	Color	LI	8.0	Temp	Truckidite	DO	Colinity	OPP	
Time:	1224	(Visual)	pH (S.U.)	S.C. (mS/cm)	Temp. (°C)	Turbidity (NTU)	DO (mg/L)	Salinity	ORP mV	
Depth:	1 ft below water	clear	7.1	6.28	24.32	5.86	3.9	(%) 3.4	128	
Method:	Grab	Gleai	,	0.20	24.32	3.00	3.3	3.4	120	
	LLECTION INF	ORMATIO	N:							
Analysis			Preservative			Container Requirements			Collected	
TCL VOCs			HCL pH<2		3 - 40 mL glass vials			Yes		
PCBS (680)			None		2 - 1L ambers				Yes	
OBSERVATION	ONS / NOTES:		<u> </u>		MAP:					
ODOLKVAIII	ONO / NO TEO.				1866	2 3 4 10			San Day D	
Water depth 2.2 meters					N L	1		100000		
Hardness 840 mg/L CaCO3										
Traininess 640 Hig/L 0a003										
CONTRACTOR PROPERTY AND ADMINISTRACTOR AND ADMINISTRACTOR AND ADMINISTRACTOR AND ADMINISTRACTOR AND ADMINISTRACTOR AND ADMINISTRACTOR ADMINISTRACTOR AND ADMINISTRACTOR ADM										
					WESTERN TOE PLIME	A North		OLUM TOWN	12	
TOTAL THE PARTY OF										
					OUTRALING BLOCKS	1			SURFACE WATER IPLING LOCATIONS	
					BYALE OLITALL		OUTFALL DIE		BEND	
								XM SURRICE OWER SWENE, DOUT ON STORWAY US OUT THAT, LOCATION		
						160	, 155623	DARK HEAD COVE	EINTFORCE EXTENT OF TOEIN GROWN DON'ER ORECITER THAN 6 USA (SACHEZ WHERE INFERRED)	
								TCE	cartours from Term Tools (22 S-	
							M.	nic.	i derceben norgani pri tr ackheed Martin Middle River Complex	
						NEC STA	7. T-B	CAN CO	Allodie River, Maryland	
							,	THE S	150 300 Feet À	
							((10 mg (10 mg) (10 mg) (10 mg) (10 mg) (10 mg)	
							V-)		TE TETRATECH	
Circle if Ann	licable:					Signature	(s)·		-	
Circle if Applicable: MS/MSD Duplicate ID No.:						Jigilatalo	(5).	Je Mh	h-	
IVIO/IVIOD	Duplicate ID 140.	•						de la		

Page___ of ___

Project Site Name: Project No.: Dark Head 0 112IC07489 [] Stream [] Spring [] Pond [] Lake [X] Other: [] QA Sample Type: SAMPLING DATA:						Sampled C.O.C. N Type of S [x] Low	Location: d By: No.:			
[] QA S	Sample Type:	Ildal creek -	fresnware	<u>r</u>			Concenti			
	3 DATA:									
Date:	6/13/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP	
Time:	1257	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/L)	(%)	mV	
Depth: Method:	1 ft below water	clear	7.4	6.32	24.71	4.77	5.47	3.4	143	
	Grab COLLECTION INF	FORMATIC	NI.							
SAMILLE		TURINATIO		rvative	T	Container Re	iroment	_	Collected	
TCL VOCs	Analysis		_	pH<2	3-	· 40 mL glass vi		<u>; </u>	Yes	
PCBs (680)			1	lone		2 - 1L ambers			Yes	
1 020 (422,	- (CCC)			<u> </u>		2 12 0			1.55	
			<u> </u>		<u> </u>				<u> </u>	
						-				
									<u> </u>	
			<u> </u>		<u> </u>					
		!	 		<u> </u>					
-50EB//A	TICKS/NOTES	<u> </u>	<u> </u>		<u> </u>	***************************************				
OBSERVA	TIONS / NOTES:	<u>:</u>			MAP:			W. Committee		
Water depth Hardness		2 meters 0 mg/L CaCO3	1		WASTERN TOTAL NO.		ENSTEIN TOE PLI VIE		CESCOOL CESCOOL FOURE 3-4 2015 SURFACE WATER SAMPLING LOCATIONS	
							CONTROL CONTRO	2000 45 02 2000 F	LEGENO 2. 2016, 1900 ENTER SAN THE LOCATION 2. 2016, 1900 ENTER SAN THE LOCATION 5. ENTERFORCE 6. ENTERFORC	
Circle if Ap	-					Signature(s):				
MS/MSD	Duplicate ID No.	.:			•			gr 1	pro-	

MRC-SWDUP-11242015

Project Site Project No.:		Dark Head C		le River		Sample	ID No.: Location:	MRC-SW8B	SW8B -061316		
Project No	•	1121007776									
[] Ctroom	•					Sampled C.O.C. N	-	J. Mullis			
[] Stream						C.O.C. 1	NO.:				
[] Spring						_ ,					
[] Pond						Type of	-	_			
[] Lake						[x] Lov					
[X] Othe		Tidal creek -	freshwater			[] High Concentration					
[] QA Sa	ımple Type:					<u></u>					
SAMPLING	DATA:										
Date:	6/13/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP		
Time:	1304	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/L)	(%)	mV		
Depth:	1 ft below water	clear	7.40	6.31	24.72	4.67	6.18	3.4	142		
Method:	Grab										
SAMPLE CC	DLLECTION INF	ORMATIO			1						
	Analysis		Preser			Container Re	•	<u> </u>	Collected		
TCL VOCs				. pH<2		40 mL glass v			Yes		
PCBs (680)			INC	one		2 - 1L ambers			Yes		
			 								
			 								
OBSERVAT	IONS / NOTES:				MAP:			-			
Motor donth	2.0	motoro				- > 1					
	_		,		M. A. The		EASTERN TOE PLLVE	CLTF4			
naruness	800	mg/L Cacos	•		100	100	TCE PLL VE		GENERAL STREET		
	ter depth 2.9 meters				1	-		OME TO			
					местары	A PARTIES	الماسية الماسية	Total Trans			
					TCE PLAME		X		GURE 3-1		
									115 SURFACE WATER		
					OUTRALENCE BROKE OUTFALL	A. C. S.			AMPLING LOCATIONS EGEND		
							OUTFALLOW COMPOSITION OF THE PERSON OF THE P	^	X NESU RESCENSION SHARE JOSSON		
				l			WC 3/15-0		STATE OFFICE IN GROUNDONES.		
							1 1200	DARK HEJO COVE	GREATER THAN 6 USAL (SACHED WHERE INFERRED)		
					A CONTE	1000	i i	TO TO	Economistan Tera Toch (22: 5) E + 1 charcestone L + macagners per ter		
							, ,		Lockheed Martin Middle River Complex Middle River, Maryland		
						_ nees	III 1	1	0 150 300 Feet		
						A.	(- A	EVICTED 8972915 (FE-TO-FE)		
				ľ			100		TE TETRATECH		
Circle if App	olicable:				NOV.	Signature	e(s):				
MS/MSD	Duplicate ID No.	:				1	` '	JL 91	Ma		
		-						1			

Project No.: [] Stream [] Spring [] Pond [] Lake [X] Other: [] QA Sample Type: SAMPLING DATA: Date: 6/13/2016 Color Time: 1229 (Visual)			freshwater			Sample Sample Sample C.O.C. N Type of [x] Lov [] High	-061316		
		Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP
			(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/L)	(%)	mV
Depth:			7.10	6.33	24.52	4.88	4.4	3.4	136
Method:	Grab								
SAMPLE CO	LLECTION INF	ORMATIO	N:						
	Analysis		Preser			Container Re	•		Collected
TCL VOCs				pH<2		40 mL glass v			Yes
PCBs (680)			No	one	2 - 1L ambers				Yes
OBSERVATI	ONS / NOTES:				MAP.				
Water depth Hardness	860	meters mg/L CaCO3			MAP: WESTERN TO PALSE WESTER		GASTIGNA TOE PLL ME OUTSLESS - CONSTRUCTION WING COMMITTEE CONSTRUCTION WING COMMITTEE	DARK MEND COVE	USE 54 15 SURFACE WATER WITHOUT LOCATIONS SIGNO 208 SURFACE WATER WITHOUT LOCATIONS 208 SURFACE WATER SURFACE WATER SURFACE WATER SURFACE WATER SURFACE WATER SURFACE WATER SURFACE WATER SURFACE WATER SURFACE WATER SURFACE WATER SURFACE SURFAC
Circle if App MS/MSD	Duplicate ID No.:					Signature	:(s).	get gh	the .
INIO/INIOD	Duplicate ID No.:				de le				

	: :: mple Type:	d Cove, Middle River 76 k - freshwater			Sample Sample Sample C.O.C. N Type of [x] Lov [] High	-061316						
SAMPLING I		Color	ьU	s C	Toma	Turkiditu	DO	Calinity	OBB			
Date: Time:	6/13/2016 1234	Color (Visual)	pH (S.U.)	S.C. (mS/cm)	Temp. (°C)	Turbidity (NTU)	DO (mg/L)	Salinity (%)	ORP mV			
Depth:	1 ft below water	clear	7.20	6.3	24.63	6.58	4.4	3.4	139			
Method:	Grab											
SAMPLE CO	LLECTION INF	ORMATIO	N:									
		Preser			Container Re			Collected				
TCL VOCs				pH<2		40 mL glass v			Yes			
PCBs (680)			INC	ne		2 - 1L ambers			Yes			
OBSERVATI	ONS / NOTES:				MAP:							
Water depth Hardness Circle if App	2.4 800	meters mg/L CaCO3			MAP: Wasters UE-1-ME Dance	Signature	0070.150 TERLINE 176.0050	OMERY MERCA CONS.	URE 2-1 SURFACE WATER PLAC DOCATIONS SURFACE WATER PLAC DOCATIONS SHALL			
MS/MSD	Duplicate ID No.:					Signature(s):						
	MS/MSD Duplicate ID No.:											

Project Site Project No.: [] Stream [] Spring [] Pond [] Lake [X] Other [] QA Sal	n :: mple Type:	Tidal creek - freshwa De: Color pH						Sample ID No.: MRC-SW1A -061 Sample Location: MRC-SW1A Sampled By: J. Mullis C.O.C. No.: Type of Sample: [x] Low Concentration [] High Concentration			
Date:	6/13/2016	Color	nΗ	S.C.	Temp.	Turbidity	DO	Salinity	ORP		
Time:	1151			(mS/cm)	(°C)	(NTU)	(mg/L)	(%)	mV		
Depth:	1 ft below water	clear	6.30	5.44	24.2	5.40	6.35	3	136		
Method:	Grab										
SAMPLE CO	LLECTION INF	ORMATIO	N:								
	Analysis		Preser			Container Re			Collected		
TCL VOCs	2)			pH<2		40 mL glass v			Yes		
1,4 Dioxane (522	2)		HCL	pH<2	2 -	250 mL ambe	ers		Yes		
OBSERVATI	ONS / NOTES:				MAP:						
Water depth Hardness Circle if App	0.4 700	meters mg/L CaCO3			WASTERS OF THE PLANE	Signature	EASTERN TOUR PLUME TOU	200 (12 to 1	URE 1-1 S SURFACE WATER WITHOUT LOCATIONS SHED SHE 19/12 OVER 1		
						Signature(s):					
	MS/MSD Duplicate ID No.:					graph of the state					

Page___ of ___

Project Site Name:	Dark Head Cove, Middle River	Sample ID No.:	MRC-SW2A -061316
Project No.:	112IC07776	Sample Location:	MRC-SW2A
		Sampled By:	J. Mullis
[] Stream		C.O.C. No.:	
[] Spring			
[] Pond		Type of Sample:	
[] Lake		[x] Low Concent	ration
[X] Other:	Tidal creek - freshwater	[] High Concentr	ation
[] QA Sample Type:			

Date:	6/13/2016	Color	pН	S.C.	Temp.	Turbidity	DO	Salinity	ORP
Time:	1158	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/L)	(%)	mV
Depth:	1 ft below water	clear	6.7	6.02	24.54	6.22	5.47	3.3	149
Method:	Grab								

SAMPLE COLLECTION INFORMATION:

Analysis	Preservative	Container Requirements	Collected		
TCL VOCs	HCL pH<2	3 - 40 mL glass vials	Yes		
1,4 Dioxane	HCL pH<2	2 - 250 mL ambers	Yes		

OBSERVATIONS / NOTES:

Water depth 0.45 meters
Hardness 720 mg/L CaCO3

Circle if Ap	plicable:	Signature(s):
MS/MSD	Dunlicate ID No :	

MRC-SWDUP1-061316 FOR 1,4-DIOXANE ONLY

Jet Jahr

Water Quality Field Parameters-September 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland

Sample ID-Date (month/day/year)	Date month/ day/year	Time 24-hour units	pH Standard unit (S.U.)	Specific conductance (S.C.) MilliSiemens per centimeter (mS/cm)	Temperature (Temp.) Degrees Celsius (°C)	Turbidity Nephelometric turbidity unit (NTU)	Dissolved oxygen (DO) Milligrams per liter (mg/L)	Salinity Parts per thousand (ppt)	Oxidation- reduction potential (ORP) MilliVolts (mV)	Water Depth Meters (m)	Hardness Milligrams per liter (mg/L CaCO ₃)
MRC-SW5A1 -092716	9/27/2016	1100	7.02	9.53	23.21	4.05	3.50	5.3	187	>4	1520
MRC-SW5A2 -092716	9/27/2016	1105	6.99	9.66	23.21	3.28	2.87	5.4	180	3.2	1500
MRC-SW5B -092716	9/27/2016	1055	7.10	9.73	23.16	4.60	4.17	5.4	190	>4	1580
MRC-SW6A -092716	9/27/2016	1038	7.06	9.48	23.15	4.83	4.02	5.3	177	2.3	1580
MRC-SW6B -092716	9/27/2016	1041	7.09	9.49	23.17	3.90	4.20	5.3	182	3.0	1480
MRC-SW7A -092716	9/27/2016	1021	6.98	9.41	23.07	3.77	3.14	5.3	177	1.3	1540
MRC-SW7B -092716	9/27/2016	1027	6.96	9.55	23.27	3.93	3.19	5.3	171	2.20	1560
MRC-SW8A -092716	9/27/2016	1047	7.07	9.46	23.15	10.07	3.70	5.3	183	2.2	1540
MRC-SW8B -092716	9/27/2016	1050	7.10	9.51	23.20	5.16	4.47	5.3	186	2.9	1570
MRC-SW9A -092716	9/27/2016	1031	7.02	9.43	23.08	5.00	3.53	5.3	173	1.7	1550
MRC-SW9B -092716	9/27/2016	1035	7.01	9.49	23.19	4.86	3.54	5.3	169	2.4	1580
MRC-SW1A -092716	9/27/2016	1100	6.53	9.37	23.21	5.98	3.27	5.3	241	0.4	960
MRC-SW2A -092716	9/27/2016	1105	7.04	10.30	23.21	5.64	2.87	5.4	195	0.5	1440
	_	Average:	7.00	9.57	23.18	5.01	3.57	5.32	185		1492

CaCO₃ - calcium carbonate

MS/MSD

Duplicate ID No.:

SURFACE WATER SAMPLE LOG SHEET

Page_ of Project Site Name: Sample ID No.: Dark Head Cove, Middle River, Maryland MRC-SW5A1 -092716 Project No.: 112IC07776 Sample Location: MRC-SW5A1 Sampled By: J. Mullis C.O.C. No.: [] Stream [] Spring [] Pond Type of Sample: [] Lake [x] Low Concentration [X] Other: Tidal creek - freshwater [] High Concentration [] QA Sample Type: SAMPLING DATA: Date: 9/27/2016 Color S.C. Temp. **Turbidity** DO Salinity ORP pН Time: (^{0}C) 1100 (NTU) (Visual) (S.U.) (mS/cm) (mg/L) mV(ppt) Depth: 1 ft below water 9.53 23.21 4.05 187 clear 7.02 3.5 5.3 Method: Grab **SAMPLE COLLECTION INFORMATION:** Analysis Preservative **Container Requirements** Collected HCL pH<2 TCL VOCs 3 - 40 mL glass vials Yes **OBSERVATIONS / NOTES:** MAP: Water depth >4 meters Hardness 1520 mg/L CaCO3 SAMPLING LOCATIONS STORWWATER OUTFALL LOCATION TE TETRATECH Signature(s): Circle if Applicable: It Julia

Project Site Project No.: [] Strean [] Spring [] Pond [] Lake [X] Othe [] QA Sa	Dark Head C 112IC07776			aryland	Sample ID No.: MRC-SW5A Sample Location: MRC-SW5A Sampled By: J. Mullis C.O.C. No.: Type of Sample: [x] Low Concentration [] High Concentration				
SAMPLING	DATA:								
Date:	9/27/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP
Time:	1105	(Visual)	(S.U.)	(mS/cm)	(⁰ C)	(NTU)	(mg/L)	(ppt)	mV
Depth:	1 ft below water	clear	6.99	9.66	23.21	3.28	2.87	5.4	180
Method:	Grab								
SAMPLE CO	LLECTION INF	ORMATIO					-		
TCL VOC-	Analysis		Preser		2	Container R		1	Collected
TCL VOCs			HCL	pH<2	3-	40 mL glass v	lais		Yes
OBSERVAT	IONS / NOTES:				MAP:				
ODOLKOAN	iono, no izo.					204			
Water depth Hardness Circle if App	1500	meters mg/L CaCO3			CENTERS TO THE STORY OF THE STO	Signature	EASTER TEEPLINE WE CONST	DATE HELD COVE	USE 3-4 SURFACE WATER PUNC LOCATIONS SHADOWS ON THE JOST ON STORMWAS ON STORMWAS ON THE JOST
MS/MSD	Duplicate ID No.					o.g.iatai		as for	
IVIO/IVIOD	Dubilcate in MO.	•						Che you	

								Page_	of	_
Project Sit Project No		Dark Head C	•	le River, Ma	aryland	Sample Sample Sample	Location:	MRC-SW5B -092716 MRC-SW5B J. Mullis		
[] Strea	ım					C.O.C. No.:				-
[] Spring [] Pond [] Lake [X] Other: [] QA Sample Type:		Tidal creek -	freshwate	r		[x] Lov	Sample: v Concentr			_
SAMPLING	DATA:									
Date:	9/27/2016	Color	pН	S.C.	Temp.	Turbidity	DO	Salinity	ORP	
Time:	1055	(Visual)	(S.U.)	(mS/cm)	(⁰ C)	(NTU)	(mg/L)	(ppt)	mV	
Depth:	1 ft below water	clear	7.1	9.73	23.16	4.6	4.17	5.4	190	_
Method:	Grab	1								

_	888			_	888		_	_				-		.,		811		83	-	_	u			•	-		_	•	•
	47 A	W١	л	u	100	-	C	(68)	8 88	8 88	-		60 B	"	80 X	N	88 B L	м	-	689		a۱	w	Δ	933 BI	-	689	ı	
	/ m	NΝ	"		100		·	v	8 80	9 800		u	28 8	I١	-		88 8 8	N		v	4 B.	41	VI.	688	78 8		u	8.0	•

SAMPLE COLLECTION INFOI Analysis	Preservative	Container Requirements	Collected
TCL VOCs	HCL pH<2	3 - 40 mL glass vials	Yes

OBSERVATIONS / NOTES: MAP:

Water depth >4 meters Hardness 1580 mg/L CaCO3

Circle if App	olicable:	Signature(s):	
MS/MSD	Duplicate ID No.: MRC-SWDUP-092716 COLLECTED FOR VOCS		Jet Julia

Project Site Project No.: [] Stream [] Spring [] Pond [] Lake [X] Other [] QA Sa	Dark Head Co			aryland	Sample Sample Sample C.O.C. I Type of [x] Lov [] High	-092716			
SAMPLING I	DATA:								
Date:	9/27/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP
Time:	1038	(Visual)	(S.U.)	(mS/cm)	(⁰ C)	(NTU)	(mg/L)	(ppt)	mV
Depth:	1 ft below water	clear	7.06	9.48	23.15	4.83	4.02	5.3	177
Method:	Grab	ODMATIO	NT-						
	LLECTION INF	ORMATIO	Preser	votivo		Container Ro	auiromonto		Collected
TCL VOCs	Analysis			pH<2	3 -	40 mL glass v	_		Yes
			_			. o g.acc .			. 55
OBSERVATI	ONS / NOTES:				MAP:				The second secon
Water depth Hardness Circle if App	1580	meters mg/L CaCO3			WESTERN TCE PLIME OUTNUT WO BROKE OUTNUT WAS A COUNTY OF THE PROPERTY OF THE	Signature	BASTERN IVE PL. ME WE PL. ME TAKES	CONTROL OF THE PROPERTY OF THE	URE 3-1 SIMPACE WATER BELING LOCATIONS SEND WISSON WATER BELING LOCATIONS SEND WATER BELING LOCATIONS SEND WATER BELING LOCATIONS SEND WATER SIMPLE WATER SEND WAT
MS/MSD	Duplicate ID No.					Signature	:(S):	get flor	h
IVI 3/IVI 3D	Duplicate ID NO.	•						de les	1355

	r: mple Type:	Dark Head C 112IC07776			MRC-SW6B MRC-SW6B J. Mullis ration	-092716			
SAMPLING Date:	9/27/2016	Color	pП	S.C.	Temp.	Turbidity	DO	Salinity	ORP
Time:	1041	(Visual)	pH (S.U.)	(mS/cm)	(°C)	(NTU)	(mg/L)	(ppt)	mV
Depth:	1 ft below water	clear	7.09	9.49	23.17	3.9	4.2	5.3	182
Method:	Grab								
SAMPLE CO	LLECTION INF	ORMATIO							1
TOL 1/00	Analysis		Preserv			Container Re			Collected
TCL VOCs			HCL	pH<2	3 -	40 mL glass v	iais		Yes
OBSERVAT	IONS / NOTES:				MAP:				
OBOLITAI	IONO/ NOTEO.				100 St. 201	Na Tr			and by W
Water depth	3	meters			Will B				
Hardness Circle if App		mg/L CaCO3			WESTERN TCE PLUME COURSE AVE. 8.00 CG. SWAE D. TITALE	Signatura	DESTRICT THE PLANE WE SHEET WE SHEET	OARK HEAD COVE	URE 3-1 S SURFACE WATER PUNC LOCATIONS SEND 21 60 19942 PPC 54 WATE JOSHOM 51 00 19942 PPC 54 WATE JOSHOM 51 00 19942 PPC 54 WATE JOSHOM 51 00 19942 PPC 54 WATE JOSHOM 51 00 19942 PPC 54 WATE JOSHOM 51 00 19942 PPC 54 WATE JOSHOM 64 00 1994 PPC 54 WATE JOSHOM 64 00 1994 PPC 64 WATE JOSHOM 64 00 1994 PPC 64 WATE JOSHOM 65 00 1994 PPC 64 WATE JOSHOM 65 00 1994 PPC 64 WATE JOSHOM 65 00 1994 PPC 64 WATE JOSHOM 66 00 199
MS/MSD	Duplicate ID No.	-				Signature	(S).	Jet Mr.	h
INIO/INIOD	Duplicate ID No.	•					,	gr jou	

Project No.:			freshwater			Sampled C.O.C. I Type of [x] Low [] High	Location: d By: No.: Sample: v Concentra	ation	
		Color	pН	S.C.	Temp.	Turbidity	DO	Salinity	ORP
		(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/L)	(ppt)	mV
Depth: Method:	1 ft below water Grab	clear	6.98	9.41	23.07	3.77	3.14	5.3	177
	LLECTION INF	ORMATIO	N:					I	
	Analysis		Preserv	vative		Container Re	equirements		Collected
TCL VOCs			HCL	pH<2	3 -	40 mL glass v	_		Yes
OBSERVATI	ONS / NOTES:				MAP:				
Water depth	1.3	meters				2	0	QTHI C	
Hardness		mg/L CaCO3			WASSTERN TO PLANE OUTRALINATION STORY OF THE		CUPACIONAL CENTRAL CONTRAL CONTRAC CON	CASK HEAD COVE	SURFACE WATER PUNG LOCATIONS BIO SIDE SHAPE ON THE SAMPLE LOCATION BIO SIDE SHAPE ON THE SAMPLE LOCATION BIO SIDE SHAPE ON THE SAMPLE LOCATION BIOLOGICAL SHAPE LOCATION BIOLOGICAL SHAPE LOCATION SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE TETRATECH
Circle if App						Signature	e(s):	1 . 1.	d
MS/MSD							<u> </u>	Jet In	ha

	r: mple Type:	Dark Head Control of the Control of			aryland	Sample Sample Sample C.O.C. N Type of [x] Lov [] High		-092716	
SAMPLING I		0-1	11	0.0	T	To cold in the	D0	0-11-11-	ODD
Date: Time:	9/27/2016	Color (Visual)	pH (S.U.)	S.C. (mS/cm)	Temp.	Turbidity (NTU)	DO (mg/L)	Salinity	ORP mV
Depth:	1 ft below water	clear	6.96	9.55	23.27	3.93	3.19	(ppt) 5.3	171
Method:	Grab	0.00.1	0.50	7.00	20,27		0.13		2/1
SAMPLE CO	LLECTION INF	ORMATIO	N:						
	Analysis		Preser			Container Re	equirements		Collected
TCL VOCs			HCL	pH<2	3 -	40 mL glass v	ials		Yes
OPSERVATI	ONS / NOTES:				MAP:				
OBSERVATI	ONS/NOTES.				WAF.		A 200		
Water depth	2.2	meters				10 X			
Hardness	1560	mg/L CaCO3			WEST-SIN TOE PLANE SOCKET SOCK	Signature	SATISM TOE PLINE	CHERT	EXH BURNOLE WATER SAMPLE, DOLD ON TOTAL WATER OUT THE CONTROL OF T
Circle if App		_				Signature	e(S):	Je gh	h_
MS/MSD	Duplicate ID No.:						2	get you	

Page___ of

								raye.	UI
Project Site Name: Project No.:		Dark Head Co		le River, Ma	aryland	_ Sample	ID No.: Location:	MRC-SW8A	-092716
1 10,000 140.	••	1121007403				Sampled		J. Mullis	
[] Strear	m					C.O.C. N		J. IVIUIIIS	
[] Spring						0.0.0.1	10		
[] Pond	d					Type of \$	Sample:		
[] Lake							v Concentra	ration	
[X] Othe	or:	Tidal creek -	frankwata				Concentra		
	ample Type:	Huai creek -	nesnwater	<u> </u>		_ [] Filgii	Concentra	ווטווג	
						-			
SAMPLING Data:		Color	- LJ	T 6.0		Tbidity	DO	Calinity	ODD
Date: Time:	9/27/2016 1047	Color	pH	S.C.	Temp.	Turbidity	DO (mg/L)	Salinity	ORP mV
Depth:	1047 1 ft below water	(Visual)	(S.U.) 7.07	(mS/cm) 9.46	23.15	(NTU) 10.07	(mg/L) 3.7	(ppt) 5.3	mV 183
Method:	Grab	clear	7.07	9.40	43.15	10.07	3.1	5.3	185
	OLLECTION INF	ORMATIO	Al-						
OAMI LE C		ORMATIO	Preser	rotivo		Container Re	quiromente		Collected
TCL VOCs	Analysis			pH<2	3 -	40 mL glass vi			Yes
TOL VOUS			1.02	pi i~z	J -	40 IIIL ylass vi	als		1 62
			<u> </u>						
			<u> </u>						
OBSERVAT	TIONS / NOTES:				MAP:				
Water depth	2.2	2 meters				1 1 1 E			
Hardness		meters mg/L CaCO3	,		A TOP		EASTERN	CLTFAL	UT MP CONCA
Панинезэ	IU n u	my/L Cacos			1	100	TCE PLL VE		NESS/ID
					A PARTY OF	-	1	OWNED	The second second
					WESTERN	Mary Control	The second	MESSAGE MESSAGE	
Ĭ					TCE PLUME		No.	OUTFOLLOOS NEC STAFF	URE 3-1
Ĭ									5 SURFACE WATER MPLING LOCATIONS
					SUBJECT SAME OF LEATER	Ma F			GEND
					mesure 1	210	COTTALL DE VERSIONES	5	DIAGO SURFACE PAPER SAN PLE LOCATION NOTACOL LIJARTLO RETARMANOS
					A TON	LA CO	MECSINSS NERSONS	(s	STATE GALIGE
						-AAV		TOE O	GREATER THAN 4 UGA. (DACH ED WHERE IN FERRED) contains from Tech (2015)
						Jacob M			= h chiorcethese = micrograms per ita-
							,		Lockheed Martin Middle River Complex Middle River, Maryland
						*	, in the second	17	150 300 Feet À
							(EATEV	90078E 09/22/15 CREATED BY: JEE
							\ \ \ \ \ \		TE TETRATECH
Circle if Ap	plicable:					Signature	(s):		
MS/MSD	Duplicate ID No.:	:				1	. ,	as In	his

MRC-SWDUP-11242015

Project No. [] Strean [] Spring [] Pond [] Lake [X] Othe	Project No.: [] Stream [] Spring [] Pond [] Lake [X] Other: [] QA Sample Type:			e River, Ma	aryland	Sample Sample Sample C.O.C. I Type of [x] Lov [] High	-092716		
SAMPLING	DATA:								
Date:		Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP
Time:	1050	(Visual)	(S.U.)	(mS/cm)	(⁰ C)	(NTU)	(mg/L)	(ppt)	mV
Depth:	1 ft below water	clear	7.10	9.51	23.2	5.16	4.47	5.3	186
Method:	Grab								
SAMPLE CO	DLLECTION INF	ORMATIO							
	Analysis		Preserv			Container Re			Collected
TCL VOCs			HCL	pH<2	3 -	40 mL glass v	ials		Yes
ODSEDVAT	IONS / NOTES				MAD.				
OBSERVAI	IONS / NOTES:				MAP:				The second second
Water depth Hardness	1570	meters mg/L CaCO3			OUTSELVA SOCIO POME OUTSEL		CECCED	COUNTRY OF THE PROPERTY OF THE	URE 3-1 S SURFACE WATER PUNC LOCATIONS BNO SHO SHO SHO SHO SHO SHO SHO S
Circle if App						Signature	e(S):	JL 91	
MS/MSD	Duplicate ID No.:							gh gl	was

Project Site Name: Project No.: [] Stream [] Spring [] Pond [] Lake [X] Other: [] QA Sample Type:	Dark Head C 112IC07776			aryland	Sample ID No.: Sample Location: Sampled By: C.O.C. No.: Type of Sample: [x] Low Concentration [] High Concentration					
Date: 9/27/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP		
Time: 1031	(Visual)	(S.U.)	(mS/cm)	(⁰ C)	(NTU)	(mg/L)	(ppt)	mV		
Depth: 1 ft below water	clear	7.02	9.43	23.08	5.00	3.53	5.3	173		
Method: Grab										
SAMPLE COLLECTION IN	FORMATIO	N:								
Analysis		Preserv			Container Re			Collected		
TCL VOCs		HCL	pH<2	3 -	40 mL glass vi	als		Yes		
OBSERVATIONS / NOTES				MAP:						
					· NATO					
•	7 meters 0 mg/L CaCO3			WESTERN TOP TALL SECTION OF THE SECT		EASTERN TOE PLUME OUTPALICE OUT	ONNA HEAD COVE	URE 3-1 SUBFACE WATER PUNCLOCATIONS SEND X16 SUBFACE WATER PUNCLOCATIONS SEND X16 SUBFACE WATER SPUNCTOR SEND SUBFACE WATER SPUNCH LOCATION SEND SUBFACE WATER SEND SUBFACE WATER SEND SUBFACE SEND SUBFACE WATER SEND SUBFACE SUBFACE WATER SEND SUBFACE SUBFACE WATER SEND SUBFACE SU		
Circle if Applicable: MS/MSD Duplicate ID No	.:				Signature	(s):	Je Jh.	h		

Project Site Name: Project No.: [] Stream [] Spring [] Pond [] Lake [X] Other: [] QA Sample Type:	Dark Head C			aryland	MRC-SW9B MRC-SW9B J. Mullis ation	-092716		
SAMPLING DATA:					ı		ı	ı
Date: 9/27/2016		рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP
Time: 1035 Depth: 1 ft below wa	(Visual)	(S.U.) 7.01	(mS/cm) 9.49	(°C) 23.19	(NTU) 4.86	(mg/L) 3.54	(ppt) 5.3	mV 169
Method: Grab	elear elear	7.01	2.42	23.17	4.00	3.54	3.3	107
SAMPLE COLLECTION	INFORMATIO	N:						
Analysis		Preserv			Container Re			Collected
TCL VOCs		HCL	pH<2	3 -	40 mL glass v	ials		Yes
OBSERVATIONS / NOT	ES:			MAP:				
Water depth	2.4 meters 1580 mg/L CaCO3			COURSE VALUE OF STATE	Signature	EASTER TOE PLUE	OURLES DE SE SE SE SE SE SE SE SE SE SE SE SE SE	UNRE S-1 15 SURFACE WATER MPLINE LOCATIONS SIDEN 25 SURFACE WATER MPLINE LOCATIONS 25 SURFACE WATER MPLINE LOCATIONS 25 SURFACE WATER MPLINE SURFACE WATER MPLINE SURFACE MPLINE SURFACE MPLINE SURFACE MPLINE SURFACE MPLINE SURFACE MPLINE SURFACE MPLINE SURFACE MPLINE SURFACE MPLINE SURFACE MPLINE SURFACE MPLINE SURFACE MPLINE
MS/MSD Duplicate ID	No.:				2.3	, - /-	JA Jh	h.

Project Site N Project No.: [] Stream [] Spring [] Pond [] Lake [X] Other: [] QA Sam		Cow Pen Cre 112IC07776			aryland	MRC-SW1A MRC-SW1A J. Mullis ration	-092716		
SAMPLING D	ATA:								
Date:	9/27/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP
Time:	1100	(Visual)	(S.U.)	(mS/cm)	(⁰ C)	(NTU)	(mg/L)	(ppt)	mV
Depth:	1 ft below water	clear	6.53	9.37	23.21	5.98	3.27	5.3	241
Method: SAMPLE COL	Grab	ODMATIO	VI-						
	nalysis	ORMATIO	N: Preserv	votivo		Container Re	auiromonto		Collected
TCL VOCs	uiaiysis			pH<2		40 mL glass v			Yes
OBSERVATION Water depth Hardness	0.4	meters mg/L CaCO3			MAP: WESTERA TCE PLAME CURRENCE SECTOR MARTINES SECTOR CURRENCE SECTOR MARTINES SECTOR CURRENCE SECT		CUTALICS COCCUES VICEOUS VICEOUS	001711/03 / 1010/033 1025/03	URE 8-1 URE 8-
Circle if Appli	i cable: Duplicate ID No.:	:				Signature	e(s):	To To To To To To To To To To To To To T	Content for Tax Tab (20 %) - I than colonie -

Project Site Project No.: [] Stream [] Spring [] Pond [] Lake [X] Other [] QA Sa	า	Cow Pen Cre 112IC07776 Tidal creek -			aryland	Sample Sample Sample C.O.C. I Type of [x] Lov		-092716	
SAMPLING I	DATA:								
Date:	9/27/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP
Time: Depth:	1105 1 ft below water	(Visual)	(S.U.) 7.04	(mS/cm) 10.30	(°C) 23.21	(NTU) 5.64	(mg/L) 2.87	(ppt) 5.4	mV 195
Method:	Grab	clear	7.04	10.30	23.21	5.04	2.87	5.4	195
	LLECTION INF	ORMATIO	N:						
	Analysis		Preser			Container R	equirements		Collected
TCL VOCs			HCL	pH<2	3 -	Yes			
OBSERVATI	ONS / NOTES:				MAP:				
Water depth Hardness	0.45 1440	meters mg/L CaCO3			WESTERN TOE PLIME OUTBLERG SEC 0 SEC		EASTERN TOE PLL VIE	OURS SEA COVE	URE 3-4 S SURFACE WATER MIPLING LOCATIONS SEND SURFACE WATER MIPLING LOCATIONS SEND SURFACE PATER SOM FALL DOCATION STON MANUFACE OUT FALL DOCATION STON MANUFACE OUT FALL DOCATION STON MANUFACE OUT FALL DOCATION STON MANUFACE OUT FALL DOCATION STON MANUFACE OUT FALL DOCATION STON MANUFACE OUT FALL DOCATION STON MANUFACE OUT FALL DOCATION STON MANUFACE OUT FALL DOCATION STON MANUFACE OUT FALL DOCATION AND STON MANUFACE OUT FALL DOCATION MANUFACE OUT FALL DOCATION AND STON MANUFACE OUT FALL DOCATION MANUFACE OUT FALL DOCATION STON MANUFACE OUT FALL DOCATION STON MANUFACE OUT FALL DOCATION AND STON MANUFACE OUT FALL DOCATION AND STON MANUFACE OUT FALL DOCATION STON M
Circle if App						Signature	e(s):	Jet Mh	1
MS/MSD	Duplicate ID No.							gh yn	m-

Water Quality Field Parameters-December 2016 Dark Head Cove

Lockheed Martin Middle River Complex, Middle River, Maryland

Sample ID-Date (month/day/year)	Date month/ day/year	Time 24-hour units	pH Standard unit (S.U.)	Specific conductance (S.C.) MilliSiemens per centimeter (mS/cm)	Temperature (Temp.) Degrees Celsius (°C)	Turbidity Nephelometric turbidity unit (NTU)	Dissolved oxygen (DO) Milligrams per liter (mg/L)	Salinity Parts per thousand (ppt)	Oxidation- reduction potential (ORP) MilliVolts (mV)	Water Depth Meters (m)	Hardness Milligrams per liter (mg/L CaCO ₃)
MRC-SW10-A-S -121316	12/13/2016	917	9.18	29.60	5.91	9.63	12.58	17.6		2.0	
MRC-SW10-A-D -121316	12/13/2016	916	9.30	28.90	5.60	9.63	14.68	17.1		2.3	
MRC-SW10-B-S -121316	12/13/2016	945	9.16	29.80	5.04	7.56	15.13	17.6		2.3	
MRC-SW10-B-D -121316	12/13/2016	941	9.11	30.40	5.29	12.68	14.01	18.0		2.3	
MRC-SW11-A-S -121316	12/13/2016	956	9.11	29.80	5.18	7.82	12.84	17.6		2.0	
MRC-SW11-A-D -121316	12/13/2016	953	9.08	30.10	5.25	10.31	13.50	17.8		2.0	
MRC-SW11-B-S -121316	12/13/2016	1003	9.10	29.80	5.09	3.52	14.27	17.7		2.8	
MRC-SW11-B-D -121316	12/13/2016	1003	9.03	30.20	5.27	11.60	12.71	17.9		2.8	
MRC-SW12-A-S -121316	12/13/2016	1018	9.09	29.40	5.10	7.29	14.51	17.4		2.1	
MRC-SW12-A-D -121316	12/13/2016	1013	9.05	29.40	5.28	11.40	11.75	17.4		2.1	
MRC-SW12-B-S -121316	12/13/2016	1030	9.12	22.70	4.68	6.15	14.38	14.0		2.6	
MRC-SW12-B-D -121316	12/13/2016	1024	9.04	30.30	5.20	12.60	12.64	18.0		2.6	
		Average:	9.11	29.20	5.24	9.18	13.58	17.34		2.3	

CaCO₃ - calcium carbonate

-- not collected/measured

Project Site Name:	Site Name: Dark Head Cove, Middle River, Mar					ID No.: N	/IRC-SW10A-S	-121316
Project No.:	112IC07776				Sample	Location:	MRC-SW10A	
					Sample	d By:	W. Pryor	
[] Stream					C.O.C. 1			
[] Spring								
[] Pond					Type of	Sample:		
[] Lake						v Concentr	ation	
[X] Other:	Tidal creek -	freshwatei	r			Concentra		
[] QA Sample Type:	1100101001							
SAMPLING DATA:								
Date: 12/13/2016	Color	pН	S.C.	Temp.	Turbidity	DO	Salinity	ORP
Time: 917	(Visual)	(S.U.)	(mS/cm)	(⁰ C)	(NTU)	(mg/L)	(ppt)	mV
Depth: 1 ft below water		9.18	29.6	5.91	9.63	12.58	17.6	
Method: Grab								
SAMPLE COLLECTION INI	FORMATIO	N:						
Analysis		Preser	vative		Container Re	equirements		Collected
TCL VOCs		HCL	pH<2		3 - 40 mL	glass vials		Yes
OBSERVATIONS / NOTES:	: :			MAP:				
Water depth 2.0) meters				2	ICE AREA	• 00035000 V	
	- mg/L CaCO3				1	CUTTAILOSO MICCISTATTON (MICCISTAILOSO	FIGURE 3-1	
Tardriess	mg/L Oaooo				9	CHOSKS	2018 SURFACE W	ATER
					CUTTATE		SAMPLING LOCAT	nons
					CUTTALI/O		SURFACE WATER	R SAMPLE LOCATION.
					MIC-SWIGS MIC-SWIIS MIC-SWIIS	· CERTIFIC	UNE AND SEPT SURFACE WATER DOCATION, DECI	SAMPLING
				OUTTALL COS		Constanta Bennea		UTFALL LOCATION
				MRCGWS			EXTENT OF TCE GREATER THAN	IN GROUNDWATER 5 UG/L
						AD COVE	(OASHED WHERE TOE • trichbroethere up1 • micrograms per tile	
							TCE contours from Tetra October 2016 probe prour	Fech (2016) and
							2014 serial photograph p	ovided by U.S. Geological Survey.
				A PERSON	/			n Middle River Complex River, Maryland
				6000E			0.00	300 Feet N
						1	DATE MODERO:	OREATED RY
					136	11		UI/IUI// JEE
						7 7	TE	TETRATECH
Circle if Applicable:				Signature	e(s):			
MS/MSD Duplicate ID No.	:							

Project Site	Name:	Dark Head C	ove, Middl	e River, Ma	aryland	Sample ID No.: MRC-SW10A-D -121316				
Project No.:		112IC07776				Sample	Location:	MRC-SW10A		
						Sample	d By:	W. Pryor		
[] Stream	1					C.O.C. N	No.:			
[] Spring										
[] Pond						Type of	Sample:			
[] Lake							v Concent	ration		
[X] Other	·:	Tidal creek -	freshwater				Concentr			
	mple Type:									
SAMPLING I	DATA:									
Date:	12/13/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP	
Time:	916	(Visual)	(S.U.)	(mS/cm)	(⁰ C)	(NTU)	(mg/L)	(ppt)	mV	
Depth:	1 ft above bottom		9.3	28.9	5.60	9.63	14.68	17.1		
Method:	Grab									
SAMPLE CO	LLECTION INF	ORMATIO	N:							
	Analysis		Preserv	vative		Container Re	equirements	1	Collected	
TCL VOCs			HCL	pH<2	3 - 4	40 mL glass v	ials		Yes	
OBSERVATI	ONS / NOTES:				MAP:					
	0.10 / 1.0 1 20.						TCE AREA	• OXIG:SWO		
Water depth	2.3	meters			1 May 1		OUTTALLOS	FIGURE 3-1		
Hardness		mg/L CaCO3				19	MRC-STATION OF MICE	2018 SURFACE W.		
								SAMPLING LOCAT		
						OUTFALL O		LEGEND		
					CF E	MICC-SWIGS MICC-SWITS	omessin Coessin	TUREACE WATE	R SAMPLE LOCATION, EMBER 2016	
							CORRECTION AND ADDRESS OF THE PARTY OF THE P	⇒ LOCATION, DECI	IMBER 2016 UTFALL LOCATION	
					OUTTALL COB	• Coccoons		STAFF GAUGE EXTENT OF TOE	IN GROUNDWATER	
					CHECK		1	GREATER THAN (DASHED WHER TOE • trichbroshere		
						DARK HE	EAD COVE	μgl. • micrograms par like	Tech (2015) and	
								October 2016 probe grou 2014 serial photograph p	rdwater eampling. ovided by U.S. Geological Survey.	
							-		n Middle River Complex	
					STATE OF		10. 强 10		River, Maryland	
							- ALT.		300 Feet Â	
						100	19	DATE MODIFIED.	01/10/17 CREATED RY JEE	
					a Maran	1	1	Tt-	TETRATECH	
						7181/00				
Circle if App	licable:					Signature	e(s):			
MS/MSD	Duplicate ID No.:						. ,			
	•									

Project Site Project No.: [] Stream [] Spring [] Pond [] Lake [X] Other [] QA Sa SAMPLING I	n r: mple Type:	Dark Head C 112IC07776			aryland	Sample ID No.: MRC-SW10B-S -121316 Sample Location: MRC-SW10B Sampled By: W. Pryor C.O.C. No.: Type of Sample: [x] Low Concentration [] High Concentration				
Date:	12/13/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP	
Time:	945	(Visual)	(S.U.)	(mS/cm)	(⁰ C)	(NTU)	(mg/L)	(ppt)	mV	
Depth:	1 ft below water		9.16	29.8	5.04	7.56	15.13	17.6		
Method:	Grab									
	LLECTION INF	ORMATIO								
TCL VOCs	Analysis		Preserv HCL		2	40 mL glass v			Collected Yes	
TOL VOCS			HOL	prisz	3-	40 IIIL glass v	iais		163	
OBSERVATI	ONS / NOTES:				MAP:					
							ICE AREA	• (XII)95(WD)	1 2 400	
Water depth Hardness Circle if App		meters mg/L CaCO3			CUTTALL COS COS COS COSTAGO COS	• Care Care	COVE	FIGURE 3-1 2018 SURFACE WAS SAMPLING LOCAT LEGEND SURFACE WATER SURFACE WATER SURFACE WATER SURFACE WATER COSTRION DECE STORMANTER OF STAPF GAUGE EXTENT OF TOE. GOSTION SPEED TOE. ORDINATE POR THE TOE. CORDER OF T	I SAMPLE LOCATION, MEER 2016 IS SAMPLING MEER 2016 IS SAMPLING MEER 2016 INTERNED INTERNED INTERNED	
MS/MSD	Duplicate ID No.	:				2.3.1	\~ <i>J</i> -			

Project Site	Name:	Dark Head C	ove, Middl	e River, Ma	ver, Maryland Sample ID No.: MRC-SW10B-D -121316				-121316	
Project No.:		112IC07776				Sample	Location:	MRC-SW10B	RC-SW10B	
,						. Sampled		W. Pryor		
[] Stream	1					C.O.C. 1			-	
[] Spring										
[] Pond						Type of	Sample:			
[] Lake							v Concent	ration		
[X] Other	r:	Tidal creek -	freshwater				Concentr			
	mple Type:									
						-				
SAMPLING I				0.0	-	T 1 ' 1'	5.0	0 11 14	000	
Date: Time:	12/13/2016 941	Color	pH	S.C.	Temp.	Turbidity	DO (mg/L)	Salinity	ORP mV	
Depth:	1 ft above bottom	(Visual)	(S.U.) 9.11	(mS/cm) 30.4	5.29	(NTU) 12.68	(mg/L) 14.01	(ppt) 18	mV	
Method:	Grab		7.11	30.4	3.29	12.00	14.01	10		
	LLECTION INF	ORMATIO	N:							
	Analysis		Preser	vative		Container Re	eauirements		Collected	
TCL VOCs				pH<2	3 -	40 mL glass v			Yes	
OBSERVATI	ONS / NOTES:				MAP:					
OBSERVAII	UNS/NUTES:				WAF.					
Water depth	2.3	meters			W. W.	2	TUE AHEA	• CMG-5000		
Hardness		mg/L CaCO3			%施		OUTTALLO	FIGURE 3-1		
		3			No.	4	MRC-STATUTE OF	2018 SURFACE W	ATER	
								SAMPLING LOCA	500000000000000000000000000000000000000	
						COTTALL		LEGEND		
					CF F	MRC-SWIDS MRC-SWITS	o Constanting	SURFACE WATE	ER SAMPLE LOCATION, TEMBER 2016 ER SAMPLING	
					OUTTALL COS		OTENNIA TRENIEA	5 STORMWATER	10.10.10.10.10.10.00.00.00.00.00.00.00.0	
						THE SHARE		STAFF GAUGE EXTENT OF TO GREATER THAP	E IN GROUNDWATER	
					CHE ST		EAD COVE	(DASHED WHE) TOE • trichlorethere	NE INFERRED)	
							LAD GOVE	ugil. • micrograms par li TOE contours from Tetri October 2016 probe gro	Tech (2016) and	
									provided by U.S. Geological Survey.	
						1			tin Middle River Complex River, Maryland	
					STATE			0 150	300 Feet 1	
						1	一种	DATE MODIFIED	A COSCATOR OF	
						134		-	1	
							230	Te	TETRATECH	
Circle if App	licable:					Signature	e(s):			
MS/MSD	Duplicate ID No.:					2.3	\ - /-			

Project Site	Name:	e River, Ma	aryland	d Sample ID No.: MRC-SW11A-S -121316						
Project No.		112IC07776				Sample	Location:	MRC-SW11A	-SW11A	
,						Sample		W. Pryor	_	
[] Strear	m					C.O.C. 1	•		_	
[] Spring								-	-	
[] Pond	,					Type of	Sample:			
[] Lake							v Concenti	ration		
[X] Othe	2r ·	Tidal creek -	frachwatai				Concentr			
	ample Type:	Tiuai creek -	nesnwater			_ [] Filigh	Concenti	ation		
[] QA Sa	аттріе туре.					-				
SAMPLING		1				1		1		
Date:	12/13/2016	Color	pН	S.C.	Temp.	Turbidity	DO	Salinity	ORP	
Time:	956	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/L)	(ppt)	mV	
Depth:	1 ft below water	4	9.11	29.8	5.18	7.82	12.84	17.6		
Method:	Grab OLLECTION INF	EODMATIO	NI-							
SAMPLE		TORIMATIO	Preser	votivo		Container Be	.auiromonto		Collected	
TCL VOCs	Analysis			pH<2	2	40 mL glass v		•	Yes	
TOL VOCS			TIOL	prinz	3-	40 IIIL glass v	iais		165	
OBSERVAT	IONS / NOTES:				MAP:					
Water depth	2.0) meters			Mark Comment	8	ICE ANEA	• CITES SAVE	1 10 1.	
						1	CUTTALLOS		THE RESERVE	
Hardness		- mg/L CaCO3			West of the second	7	MRC-STATION IN MICE	2016 SURFACE W	ATER	
						CUTTA		SAMPLING LOCA	5000 0000	
						COTTALIO		LEGEND		
					CF E	MRC-SWITES AND	omeans	JUNEAND SEP	ER SAMPLING	
							Constanta Descripta		DEMBER 2016 OUTFALL LOCATION	
					OUTTALL (CE)	MICSMAN		STAFF GAUGE EXTENT OF TO GREATER THAN	E IN GROUNOWATER	
					CIRCLE		- ((DASHED WHE)		
						DARKH	EAD COVE	µg/L = micrograms par II		
								October 2016 probe gro 2014 serial photograph	undwater sampling. provided by U.S. Geological Survey.	
							- 400	Lockheed Man	tin Middle River Complex	
					STATE	A	THE PARTY OF	100	River, Maryland	
						100	0 1990	0 150	300 Feet Â	
						(0	14	DATE MODIFIED:	01/10/17 CREATED RY JEE	
					13000		JY	Tt.	TETRATECH	
C:!:*						Ciamatan		Charles 16		
Circle if App	1					Signature	e(S):			
MS/MSD	Duplicate ID No.	.:								
	1					I				

Project Site Project No.: [] Stream [] Spring [] Pond [] Lake [X] Other [] QA Sa	n	Dark Head Control of the Lorentz Language Control of the Loren			aryland	Sample ID No.: MRC-SW11A-D -121316 Sample Location: MRC-SW11A Sampled By: W. Pryor C.O.C. No.: Type of Sample: [x] Low Concentration [] High Concentration					
SAMPLING I	DΔΤΔ·										
Date:	12/13/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP		
Time:	953	(Visual)	(S.U.)	(mS/cm)	(⁰ C)	(NTU)	(mg/L)	(ppt)	mV		
Depth:	1 ft above bottom		9.08	30.1	5.25	10.31	13.5	17.8			
Method:	Grab										
SAMPLE CO	LLECTION INF	ORMATIO									
	Analysis		Preser			Container Re			Collected		
TCL VOCs			HCL	pH<2	3 -	40 mL glass v	ials		Yes		
OBSERVATI	ONS / NOTES:				MAP:		IGENEA .	• WIREWOOD			
Water depth	2.0	meters					OUTANO	- Casesand			
Hardness		mg/L CaCO3			MRC-SWE	DARK HE	CONTENTION OF THE PROPERTY OF	Super And Serging Super And Se	READER LOCATION, MEETE 2016 SAMPLE LOCATION, MEETE 2016 SAMPLE SA		
Circle if App	licable:					Signature	e(s):				
MS/MSD	Duplicate ID No.:	:									

SAMPLING I	r: mple Type: DATA:	Dark Head Control of the Indian Control of the Indian Control of the Indian Control of the Indian Control of the Indian Control of the Indian Control of the Indian Control of the Indian Control of the Indian Control of	freshwater			Sample ID No.: MRC-SW11B-S -121316 Sample Location: MRC-SW11B Sampled By: W. Pryor C.O.C. No.: Type of Sample: [x] Low Concentration [] High Concentration Turbidity DO Salinity ORP				
Date:	12/13/2016	Color	рН	S.C.	Temp. (⁰ C)	-		-		
Time: Depth:	1003 1 ft below water	(Visual)	(S.U.) 9.10	(mS/cm) 29.8	5.09	(NTU) 3.52	(mg/L) 14.27	(ppt) 17.7	mV	
Method:	Grab	1	9.10	29.8	5.09	3.52	14.27	17.7		
	LLECTION INF	ORMATIO	N:							
	Analysis		Preser	vative		Container Re	equirements		Collected	
TCL VOCs				pH<2	3 -	40 mL glass v			Yes	
OBSERVATI	ONS / NOTES:				MAP:					
Water depth	2.8	meters				*		• casesano /		
Hardness		mg/L CaCO3			OUTTALL COS OUTTALL COS OUTTALL COS OUTTALL COS	DARK HI	CONTROLLER CONTROLLER	JANK AND SEP! BURNACH WATE LOCATION, IDC STAFF GALICE STAFF GALICE EXTRATO FIRST STAFF GALICE CHARLES THAN (CASHED Well TOZ. Inhibitoralburn IQL - mixtogramp set TOZ. Inhibitoralburn IQL - mixtogramp set TOZ. Inhibitoralburn IQL - mixtogramp set TOZ. Inhibitoralburn IQL - mixtogramp set TOZ. Inhibitoralburn IQL - mixtogramp set TOZ. Inhibitoralburn IQL - mixtogramp set TOZ. Inhibitoralburn IQL - mixtogramp set TOZ. Inhibitoralburn IQL - mixtogramp set TOZ. Inhibitoralburn IQL - mixtogramp set TOZ. Inhibitoralburn IQL - mixtogramp set TOZ. Inhibitoralburn IQL - mixtogramp set IQL - mixt	R SAMPLE LOCATION, READER SIDE R SAMPLE LOCATION, R SAMPLE DOCATION R SAMPLE SIDE R SAMPLE	
Circle if App						Signature	e(s):			
MS/MSD	Duplicate ID No.	:								

Circle if Applicable:

Duplicate ID No.:

MS/MSD

SURFACE WATER SAMPLE LOG SHEET

Page_ of Project Site Name: Sample ID No.: MRC-SW11B-D -121316 Dark Head Cove, Middle River, Maryland Project No.: 112IC07489 Sample Location: MRC-SW11B Sampled By: W. Pryor C.O.C. No.: [] Stream [] Spring [] Pond Type of Sample: [] Lake [x] Low Concentration [X] Other: Tidal creek - freshwater [] High Concentration [] QA Sample Type: SAMPLING DATA: Date: 12/13/2016 Color рΗ S.C. **Turbidity** DO Salinity ORP Temp. (^{0}C) Time: 1003 (NTU) (Visual) (S.U.) (mS/cm) mV(mg/L) (ppt) Depth: 1 ft above bottom 30.2 5.27 9.03 11.6 12.71 17.9 Method: Grab **SAMPLE COLLECTION INFORMATION:** Analysis Preservative **Container Requirements** Collected HCL pH<2 TCL VOCs 3 - 40 mL glass vials Yes **OBSERVATIONS / NOTES:** MAP: Water depth 2.8 meters FIGURE 3-1 Hardness -- mg/L CaCO3 2018 SURFACE WATER SAMPLING LOCATIONS ⊕ SURFACE WATER SAMPLING LOCATION, DECEMBER 2016 STORMWATER OUTFALL LOCATION STAFF GAUGE 014 serial photograph provided by U.S. Geologica TETRATECH

Signature(s):

Page___ of

				•			•		
Project Site		Dark Head Co	ove, Middl	e River, Ma	aryland	Sample		MRC-SW12A-S	-121316
Project No.:		112IC07776				_	Location:	MRC-SW12A	
Ci Ciroow	_					Sampled		W. Pryor	
[] Stream						C.O.C. N	NO.:		
[] Spring [] Pond						Type of	Sample:		
[] Lake							v Concentra	ation	
[X] Other	r·	Tidal creek - f	freshwater	r			Concentra		
	mple Type:	Tiuai cieck	116911Water			_ u'''9	Concentio	ווטוו	
						-			
SAMPLING Date:		2-1		1 22		=t.talia	50	2-11-14-1	200
Date: Time:	12/13/2016 1018	Color (Visual)	pH (S.II.)	S.C. (mS/cm)	Temp.	Turbidity	DO (mg/L)	Salinity	ORP mV
Depth:	1 ft below water	(Visual)	(S.U.) 9.09	(mS/cm) 29.4	5.10	(NTU) 7.29	(mg/L) 14.51	(ppt) 17.4	mV
Method:	Grab	1).0,	۵٫۰۰	J.10	1,447	14.01	17	
	LLECTION INF	ORMATIO	N:						
	Analysis	200000000000000000000000000000000000000	Preserv			Container Re	equirements		Collected
TCL VOCs			HCL	pH<2	3 -	40 mL glass v	ials		Yes
									
			 						
									
ORSERVATI	IONS / NOTES:				MAP:				
ODGENTA	ONG/ NO LG.				IVAL.		TCE AREA	• CODE CAND	
Water depth	2.1	meters				C A	CUTTATION		200
Hardness		mg/L CaCO3		ľ		10	OTTO CONTRACTOR	FIGURE 3-1	
ľ						EX	CORRECT CORREC	2018 SURFACE WA SAMPLING LOCATI	22.2000
l					and the same	CUTTATA		LEGEND	
l					age E	THE NAME OF THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER,	o consensor Any o consensor	JUNEAND SEPTE	R SAMPLE LOCATION, EMBER 2016
ľ						Mic-swight -	ANNESEES	SURFACE WATER LOCATION, DECER STORMWATER OF	R SAMPLING IMBER 2016 UTFALL LOCATION
l					OUTFALL 008	- Crossians	IBSWED	STAFF GAUGE EXTENT OF TOE I	IN GROUNOWATER
				ļ	MRC-EVA		6	GREATER THAN 5 (DASHED WHERE TOE • trichbroshere	5 DO/L
]				ľ		DARK HE	EAD COVE	µg/L • micrograms per tier TCE confours from Tetra 7:	Fech (2016) and
				ľ				October 2016 probe ground	ovided by U.S. Geological Survey.
						1	~		n Middle River Complex River, Maryland
					500C		-		300 Feet A
						66	No. of Street,	DATE MODERD:	01/10/17 CREATED BY JEE
l					Aliah I		JY		TETRATECH
Circle if App				Signature	e(s):				
MS/MSD	Duplicate ID No.:	•				_	•		

Project Site	Name:	Dark Head C	ove, Middl	e River, Ma	aryland	nd Sample ID No.: MRC-SW12A-D -121316			
Project No.:		112IC07776				Sample		MRC-SW12A	
						Sample	d By:	W. Pryor	
[] Stream	1					C.O.C. 1	No.:		
[] Spring									
[] Pond						Type of	Sample:		
[] Lake							v Concentr	ration	
[X] Other	••	Tidal creek -	freshwater				Concentra		
	mple Type:	Tidal Grook					Concontin		
[] 4,704						•			
SAMPLING D	DATA:								
Date:	12/13/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP
Time:	1013	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/L)	(ppt)	mV
Depth:	1 ft above bottom		9.05	29.4	5.28	11.40	11.75	17.4	
Method:	Grab		•						
	LLECTION INF	ORMATIO		-		Container Re			
	Analysis		Preserv			Collected			
TCL VOCs			HCL	pH<2	3 -	40 mL glass v	ials		Yes
OBSERVATI	ONS / NOTES:				MAP:				
					West of the second	8	ICE ANEA	• Mile SWAD	1 643
Water depth		meters					CUTTALLOS	FIGURE 3-1	
Hardness		mg/L CaCO3				10	MRC STATION OF MICE	50023	
							Line ava	2018 SURFACE WA SAMPLING LOCATI	\$2.00 U.S.
					B.	CUTTALLO		LEGEND	
					rs &	MIC-SWIGS		JUNEAND SEPTE	
						MRC-SW125	CHESTON	SURFACE WATER LOCATION, DECEM-	MBER 2016
					OUTTALL COS	CINC-SWANS (VII	BETTED	STAFF GAUGE EXTENT OF TOE 6	
					CERCEUS	20	1	GREATER THAN 5 (DASHED WHERE	UG/L
						DARK HE	AD COVE	TOE • trichloroethene µg1 • micrograms per liter	
								TCII. confours from Tetra Ti October 2016 probe ground	twater eampling.
								100	vided by U.S. Geological Survey.
					-STATUS	A			Middle River Complex liver, Maryland
							7.24	0 150 3	00 Feet A
						(0		DATE MODIFIED:	01/10/17 CREATED RY JEE
							JY	TE	TETRATECH
,,,	<u></u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,			· W.Z	A THE STATE OF		
Circle if App						Signature	e(s):		
MS/MSD									

Project Site	Project Site Name: Dark Head Cove, Middle River, Maryland					laryland Sample ID No.: MRC-SW12B-S -121316					
Project No.:		112IC07776				Sample	Location:	MRC-SW12B	_		
-						Sampled	d By:	W. Pryor	_		
[] Stream	1					C.O.C. 1	-		_		
[] Spring									•		
[] Pond						Type of	Sample:				
[] Lake							v Concentr	ation			
[X] Other	r:	Tidal creek -	freshwater				Concentra				
	mple Type:										
SAMPLING I	DATA:										
Date:	12/13/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP		
Time:	1030	(Visual)	(S.U.)	(mS/cm)	(⁰ C)	(NTU)	(mg/L)	(ppt)	mV		
Depth:	1 ft below water		9.12	22.7	4.68	6.15	14.38	14.0			
Method:	Grab										
SAMPLE CO	LLECTION INF	ORMATIO	N:								
	Analysis		Preser			Container Re	equirements		Collected		
TCL VOCs			HCL	pH<2	3 -	40 mL glass v	ials		Yes		
OBSERVATI	ONS / NOTES:				MAP:						
\\/atau danda	0.0				Mary Control	8	ICE AREA	• mesmo //	10		
Water depth		meters			W.M.	1	CUTTON	FIGURE 3-1			
Hardness		mg/L CaCO3			West of the second	9	MICE STATION OF CHICAGO	2018 SURFACE WA	ATER		
						очтан		SAMPLING LOCAT	TO COLO		
						OUTFALIO	WIND-STREET	LEGEND			
					CS. E.	MICESWIDE MICESWITE	o Correction O Correction	JUNE AND SEPTE	SAMPLING		
						MINC-SWIZE W	CONSTRUCTION OF THE CONTROL OF THE C	LOCATION, DECE STORMMATER O			
						•		STAFF GAUGE EXTENT OF TOE GREATER THAN	IN GROUNDWATER		
					MRC-SWE		((DASHED WHERE	(INFERRED)		
						DARK HE	AD COVE	upil. • micrograms per the TCE confours from Tetra 1 October 2016 probe groun			
									dwater eampling. ovided by U.S. Geological Survey.		
									n Middle River Complex		
					entre		延長 時	100	River, Maryland		
							* (#J		300 Feet		
						100	19	DATE MODIFIED:	01/10/17 OREATED RY JEE		
					Talking I	λ	1	TŁ	TETRATECH		
Circle if App	licable:					Signature	(c)·				
		-				Signature	(S).				
MS/MSD	Duplicate ID No.:	•									

Project Site Name:		Dark Head Cove, Middle River, Maryland				Sample ID No.: MRC-SW12B-D -121316				
Project No.:		112IC07776				Sample Location: M		MRC-SW12B	MRC-SW12B	
						Sample	d By:	W. Pryor		
[] Stream						C.O.C. 1	No.:			
[] Spring										
[] Pond						Type of	Sample:			
[] Lake						[x] Low Concentration				
[X] Other:		Tidal creek -	freshwater	•		[] High	Concentr	ation		
[] QA Sam	nple Type:					·				
SAMPLING D	ATA:									
Date:	12/13/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP	
Time:	1024	(Visual)	(S.U.)	(mS/cm)	(⁰ C)	(NTU)	(mg/L)	(ppt)	mV	
	1 ft above bottom		9.04	30.3	5.20	12.60	12.64	18.0		
Method:	Grab	ODMATIO								
	LECTION INF	ORMATIO		-					Collected	
	Analysis		Preservative			Container Requirements				
TCL VOCs			HCL pH<2		3 -	3 - 40 mL glass vials				
OBSERVATIO	NS / NOTES:				MAP:		ICE AREA	• DIRECTORD		
Water depth	2.6	meters						Y \		
Hardness		mg/L CaCO3				OUTVALLOSS FIGURE 3-1				
						2 10 4	CIRCUIT CIRCUIT	2018 SURFACE W. SAMPLING LOCAT	22.7007	
					and the same	COUTAL	io com	LEGEND	IONS	
						VIIC	MA CHESTA	THE RESERVE OF THE PARTY OF THE	R SAMPLE LOCATION,	
						MRC-SWI 28	OTERNIA CURRINA	SURFACE WATE LOCATION, DECI	R SAMPLING EMBER 2016	
					OUTFALL DOS	MICSWAS / C	IBEWED	STORMMATER O	OUTFALL LOCATION	
					(MRC-SWE	20		EXTENT OF TCE GREATER THAN (DASHED WHER	IN GROUNDWATER 5 UG/L E INFERREDI	
					· CE	DARK H	EAD COVE	TOE - trichlorsethers up1 - micrograms per tie	•	
								TOIL confours from Tetra October 2016 probe grou	Tech (2016) and nowater sampling.	
								2014 serial photograph p	rovided by U.S. Geological Survey.	
						1			n Middle River Complex River, Maryland	
					STORE		- 5	0 150	300 Feet N	
						66	A STATE OF THE STA	DATE MODIFIED:	01/10/17 CREATED BY JEE	
							JY	Tt.	TETRATECH	
							100	The second		
Circle if Applicable: Signature(s):										
MS/MSD	Duplicate ID No.:									

APPENDIX B—DATA-VALIDATION REPORTS (ON CD)

INTERNAL CORRESPONDENCE

TO: M. MARTIN DATE: JULY 25, 2016

FROM: L. GANSER COPIES: DV FILE

SUBJECT: DATA VALIDATION - VOC, 1,4-DIOXANE, AND PCB HOMOLOGS

LOCKHEED MARTIN CORPORATION (LMC) - MIDDLE RIVER COMPLEX (MRC)

SDG 240-65994-1

SAMPLES: 17/Aqueous/

MRC-SW1A-061316	MRC-SW2A-061316	MRC-SW5A1-061316
MRC-SW5A2-061316	MRC-SW5B-061316	MRC-SW6A-061316
MRC-SW6B-061316	MRC-SW7A-061316	MRC-SW7B-061316
MRC-SW8A-061316	MRC-SW8B-061316	MRC-SW9A-061316
MRC-SW9B-061316	MRC-SWDUP1-061316	MRC-SWDUP2-061316

MRC-SWFB-061316 TB-061316

Overview

The sample set for LMC-MRC, SDG 240-65994-1 consisted of fifteen (15) aqueous environmental samples, one (1) field blank, and one (1) trip blank. All samples, except MRC-SWDUP1-061316 were analyzed for volatile organic compounds (VOC). Samples MRC-SW1A-061316, MRC-SW2A-061316, and MRC-SWDUP1-061316 were analyzed for 1,4-dioxane. Polychlorinated biphenyl (PCB) homologs were analyzed in all samples, except MRC-SW1A-061316, MRC-SW2A-061316, and MRC-SWDUP1-061316. The trip blank (TB-061316) was only analyzed for VOC. The field blank (MRC-SWFB-061316) was analyzed for VOC, 1,4-dioxane, and PCB homologs. Two field duplicate sample pairs were included in this SDG: MRC-SWDUP1-061316 / MRC-SW2A-061316 and MRC-SWDUP2-061316 / MRC-SW6A-061316.

The samples were collected by Tetra Tech, Inc. on June 13, 2016 and analyzed by TestAmerica, Inc. All analyses were conducted in accordance with SW-846 Methods 8260C for VOC and EPA methods 522 for 1,4-dioxane and 680 for PCB homologs analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters: data completeness, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method/preparation blanks, surrogate spike recoveries, laboratory control sample/laboratory control sample duplicate results, chromatographic resolution, field duplicate precision, analyte identification, analyte quantitation, detection limits, and field duplicate precision. Areas of concern are listed below.

Major

No major issues were noted.

Minor

- Continuing calibration percent difference (%D) greater than 20 percent was noted for dichlorodifluoromethane, chloromethane, bromomethane, trichlorofluoromethane, and 1,2-dibromo-3-chloropropane on 6/20/2016 at 9:34 on instrument A3UX11 affecting all samples except MRC-SW1A-061316, MRC-SW2A-061316, MRC-SWDUP2-061316, the trip blank, and the field blank. The chloromethane result in sample MRC-SW7B-061316 was not affected as this parameter was reanalyzed. The nondetected results for these parameters in the affected samples were qualified as estimated (UJ).
- Continuing calibration %D greater than 20 percent was noted for dichlorodifluoromethane,

TO: M. MARTIN PAGE 2 SDG: 240-65994-1

chloromethane, dichlorofluoromethane, trichlorofluoromethane, and 1,2-dibromo-3-chloropropane on 6/20/2016 at 12:47 on instrument A3UX16 affecting samples MRC-SW1A-061316, MRC-SW2A-061316, MRC-SWDUP2-061316, the trip blank, and the field blank. The nondetected results for these parameters in the affected samples were qualified as estimated (UJ).

 Detected results reported below the Reporting Limit (RL) limit but above the Method Detection Limit (MDL) were qualified as estimated, (J).

Notes

VOC LCS %R was greater than QC limits for methylene chloride affecting samples in analysis batch 235154. No action was taken as methylene chloride results was in any sample.

The laboratory noted that there was insufficient sample volume to perform a VOC matrix spike/matrix spike duplicate associated with sample MRC-SW7B-061316.

Non-detected results were reported to the MDL.

Executive Summary

Laboratory Performance: Calibration noncompliance was noted for select VOCs.

Other Factors Affecting Data Quality: None.

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Organic Review" (August 2014). The text of this report has been formulated to address only those areas affecting data quality.

Tetra Tech, Inc. Leanne Ganser

Environmental Scientist/Data Validator

canne M. Ja

Tetra Tech, Inc.
Joseph A. Samchuck
Data Validation Manager

Attachments:

Appendix A - Qualified Analytical Results

Appendix B – Results as Reported by the Laboratory

Appendix C – Support Documentation

Appendix A

Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = ICP PDS Recovery Noncompliance; MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 standard deviations is greater than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

Z2 = Tentatively Identified Compound column bleed

Z3 = Tentatively Identified Compound aldol condensate

Z4 = Sample activity is less than the at uncertainty at 3 standard deviations and greater than the MDC

Z5 = Sample activity is less than the at uncertainty at 3 standard deviations and less than the MDC

PROJ_NO: 07776	NSAMPLE	MRC-SW1A-0	61316		MRC-SW2A-0	51316		MRC-SW5A1-	061316		MRC-SW5A2-	061316	
SDG: 240-65994-1	LAB_ID	240-65996-2			240-65996-3			240-65994-1			240-65994-2		
FRACTION: OV	SAMP_DATE	6/13/2016			6/13/2016			6/13/2016			6/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1-TRICHLOROETHAN	IE	0.44	U		0.44	U		0.44	U		0.44	U	
1,1,2,2-TETRACHLOROE	THANE	0.22	U		0.22	U		0.22	U		0.22	U	
1,1,2-TRICHLOROETHAN	IE	0.24	U		0.24	U		0.24	U		0.24	U	
1,1,2-TRICHLOROTRIFLU	JOROETHANE	0.45	U		0.45	U		0.45	U		0.45	U	
1,1-DICHLOROETHANE		0.3	U		0.3	U		0.3	U		0.3	U	
1,1-DICHLOROETHENE		0.45	U		0.45	U		0.45	U		0.45	U	
1,2,4-TRICHLOROBENZE	NE	0.32			0.32	U		0.32			0.32	U	
1,2-DIBROMO-3-CHLORO	PROPANE	0.82	UJ	С	0.82	UJ	С	0.82	UJ	С	0.82	UJ	С
1,2-DIBROMOETHANE		0.32	U		0.32	U		0.32	U		0.32	U	
1,2-DICHLOROBENZENE		0.25	U		0.25	U		0.25	U		0.25	U	
1,2-DICHLOROETHANE		0.23	U		0.23	U		0.23	U		0.23	U	
1,2-DICHLOROPROPANE		0.25	U		0.25	U		0.25	U		0.25	U	
1,3-DICHLOROBENZENE		0.19	U		0.19	U		0.19	U		0.19	U	
1,4-DICHLOROBENZENE		0.27	U		0.27	U		0.27	U		0.27	U	
2-BUTANONE		0.53	U		0.53	U		0.53	U		0.53	U	
2-HEXANONE		0.48	U		0.48	U		0.48	U		0.48	U	
4-METHYL-2-PENTANON	E	0.99	U		0.99	U		0.99	U		0.99	U	
ACETONE		0.94	U		0.94	U		0.94	U		0.94	U	
BENZENE		0.35	U		0.35	U		0.35	U		0.35	U	
BROMODICHLOROMETH	IANE	0.29	U		0.29	U		0.29	U		0.29	U	
BROMOFORM		0.56	U		0.56	U		0.56	U		0.56	U	
BROMOMETHANE		0.44	U		0.44	U		0.44	UJ	С	0.44	UJ	С
CARBON DISULFIDE		0.38	U		0.38	U		0.38	U		0.38	U	
CARBON TETRACHLORI	DE	0.43	U		0.43	U		0.43	U		0.43	U	
CHLOROBENZENE		0.25	U		0.25	U		0.25	U		0.25	U	
CHLORODIBROMOMETH	IANE	0.43	U		0.43	U		0.43	U		0.43	U	
CHLOROETHANE		0.32	U		0.32			0.32	U		0.32	U	
CHLOROFORM		0.25			0.25	U		0.25	U		0.25	U	
CHLOROMETHANE		0.44		С	0.44		С	0.44		С	0.44		С
CIS-1,2-DICHLOROETHE	NE	0.26			0.26			0.26			0.26		
CIS-1,3-DICHLOROPROP	PENE	0.46	U		0.46			0.46	U		0.46		
CYCLOHEXANE		0.45			0.45	U		0.45	U		0.45	U	
DICHLORODIFLUOROME	THANE	0.32	UJ	С	0.32		С	0.32	UJ	С	0.32		С
ETHYLBENZENE		0.25	U		0.25			0.25	U		0.25		
ISOPROPYLBENZENE		0.35	U		0.35	U		0.35	U		0.35	U	

PROJ_NO: 07776	NSAMPLE	MRC-SW5B-0	61316		MRC-SW6A-0	61316		MRC-SW6B-0	61316		MRC-SW7A-0	61316	
SDG: 240-65994-1	LAB_ID	240-65994-3			240-65994-4			240-65994-5			240-65994-6		
FRACTION: OV	SAMP_DATE	6/13/2016			6/13/2016			6/13/2016			6/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1-TRICHLOROETHAN	E	0.44	U										
1,1,2,2-TETRACHLOROE	THANE	0.22	U										
1,1,2-TRICHLOROETHAN	E	0.24	U										
1,1,2-TRICHLOROTRIFLU	OROETHANE	0.45	U		0.45	U		0.45	U		0.45	U	
1,1-DICHLOROETHANE		0.3	U		0.3	U		0.3	U		0.3	U	
1,1-DICHLOROETHENE		0.45	U		0.45	U		0.45	U		0.45	U	
1,2,4-TRICHLOROBENZE	NE	0.32	U										
1,2-DIBROMO-3-CHLORC	PROPANE	0.82	UJ	С	0.82	UJ	С	0.82	UJ	С	0.82	UJ	С
1,2-DIBROMOETHANE		0.32	U		0.32	U		0.32	U		0.32	U	
1,2-DICHLOROBENZENE		0.25	U		0.25	U		0.25	U		0.25	U	
1,2-DICHLOROETHANE		0.23	U		0.23	U		0.23	U		0.23	U	
1,2-DICHLOROPROPANE		0.25	U		0.25	U		0.25	U		0.25	U	
1,3-DICHLOROBENZENE		0.19	U		0.19	U		0.19	U		0.19	U	
1,4-DICHLOROBENZENE		0.27	U		0.27	U		0.27	U		0.27	U	
2-BUTANONE		0.53	U		0.53	U		0.53	U		0.53	U	
2-HEXANONE		0.48	U		0.48	U		0.48	U		0.48	U	
4-METHYL-2-PENTANON	E	0.99	U										
ACETONE		0.94	U		0.94	U		0.94	U		0.94	U	
BENZENE		0.35	U		0.35	U		0.35	U		0.35	U	
BROMODICHLOROMETH	ANE	0.29	U										
BROMOFORM		0.56	U		0.56	U		0.56	U		0.56	U	
BROMOMETHANE		0.44	UJ	С	0.44	UJ	С	0.44	UJ	С	0.44	UJ	С
CARBON DISULFIDE		0.38	U		0.38	U		0.38	U		0.38	U	
CARBON TETRACHLORII	DE	0.43	U										
CHLOROBENZENE		0.25	U		0.25	U		0.25	U		0.25	U	
CHLORODIBROMOMETH	ANE	0.43	U										
CHLOROETHANE		0.32	U		0.32	U		0.32	U		0.32	U	
CHLOROFORM		0.25	U		0.25	U		0.25	U		0.25	U	
CHLOROMETHANE		0.44		С	0.44		С	0.44		С	0.44		С
CIS-1,2-DICHLOROETHE	NE	0.26	U										
CIS-1,3-DICHLOROPROP	ENE	0.46	U										
CYCLOHEXANE		0.45	U		0.45	U		0.45	U		0.45	U	
DICHLORODIFLUOROME	THANE	0.32	UJ	С	0.32	UJ	С	0.32	UJ	С	0.32		С
ETHYLBENZENE		0.25			0.25			0.25			0.25		
ISOPROPYLBENZENE		0.35	U		0.35	U		0.35	U		0.35	U	

PROJ_NO: 07776	NSAMPLE	MRC-SW7B-06	51316		MRC-SW8A-0	61316		MRC-SW8B-0	61316		MRC-SW9A-0	61316	
SDG: 240-65994-1	LAB_ID	240-65994-7			240-65994-8			240-65994-9			240-65994-10		
FRACTION: OV	SAMP_DATE	6/13/2016			6/13/2016			6/13/2016			6/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1-TRICHLOROETHANI	E	0.44	U		0.44	U		0.44	U		0.44	U	
1,1,2,2-TETRACHLOROET	HANE	0.22	U		0.22	U		0.22	U		0.22	U	
1,1,2-TRICHLOROETHANI	E	0.24	U		0.24	U		0.24	U		0.24	U	
1,1,2-TRICHLOROTRIFLU	OROETHANE	0.45	U		0.45			0.45			0.45		
1,1-DICHLOROETHANE		0.3	U		0.3	U		0.3	U		0.3	U	
1,1-DICHLOROETHENE		0.45	U		0.45	U		0.45	U		0.45		
1,2,4-TRICHLOROBENZE	NE	0.32	U		0.32	U		0.32	U		0.32	U	
1,2-DIBROMO-3-CHLORO	PROPANE	0.82		С	0.82	UJ	С	0.82	UJ	С	0.82		С
1,2-DIBROMOETHANE		0.32	U		0.32	U		0.32	U		0.32	U	
1,2-DICHLOROBENZENE		0.25	U		0.25	U		0.25			0.25		
1,2-DICHLOROETHANE		0.23	U		0.23	_		0.23	U		0.23		
1,2-DICHLOROPROPANE		0.25	U		0.25			0.25	U		0.25	U	
1,3-DICHLOROBENZENE		0.19	U		0.19	U		0.19	U		0.19		
1,4-DICHLOROBENZENE		0.27	U		0.27	U		0.27	U		0.27	U	
2-BUTANONE		0.53	U		0.53			0.53			0.53	U	
2-HEXANONE		0.48	U		0.48			0.48	U		0.48	U	
4-METHYL-2-PENTANONE		0.99	U		0.99	U		0.99	U		0.99		
ACETONE		2.2		Р	0.94			0.94			0.94		
BENZENE		0.35	U		0.35	U		0.35	U		0.35		
BROMODICHLOROMETH.	ANE	0.29	U		0.29			0.29			0.29		
BROMOFORM		0.56			0.56			0.56			0.56		
BROMOMETHANE		0.44		С	0.44		С	0.44		С	0.44		С
CARBON DISULFIDE		0.38			0.38			0.38			0.38	_	
CARBON TETRACHLORIE	DE	0.43			0.43			0.43	_		0.43	_	
CHLOROBENZENE		0.25			0.25			0.25			0.25		
CHLORODIBROMOMETH.	ANE	0.43			0.43			0.43	_		0.43		
CHLOROETHANE		0.32			0.32			0.32			0.32		
CHLOROFORM		0.25	U		0.25			0.25			0.25		
CHLOROMETHANE		1.1			0.44		С	0.44		С	0.44		С
CIS-1,2-DICHLOROETHEN		0.26			0.26			0.26			0.26		
CIS-1,3-DICHLOROPROPI	ENE	0.46			0.46			0.46	_	ļ	0.46		
CYCLOHEXANE		0.45			0.45			0.45		ļ	0.45		
DICHLORODIFLUOROME	THANE	0.32		С	0.32		С	0.32		С	0.32		С
ETHYLBENZENE		0.25			0.25			0.25		ļ	0.25		
ISOPROPYLBENZENE		0.35	U		0.35	U		0.35	U		0.35	U	

PROJ_NO: 07776	NSAMPLE	MRC-SW9B-0	51316		MRC-SWDUP	2-06131	6	MRC-SWFB-0	61316		TB-061316		
SDG: 240-65994-1	LAB_ID	240-65994-11			240-65996-5			240-65996-1			240-65996-4		
FRACTION: OV	SAMP_DATE	6/13/2016			6/13/2016			6/13/2016			6/13/2016		
MEDIA: WATER	QC_TYPE	NM			FD			NM			ТВ		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF				MRC-SW6A-0	51316							
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1-TRICHLOROETHANI	E	0.44	U		0.44	U		0.44	U		0.44	U	
1,1,2,2-TETRACHLOROET	HANE	0.22	U		0.22	U		0.22	U		0.22	U	
1,1,2-TRICHLOROETHANI	E	0.24	U		0.24	U		0.24	U		0.24	U	
1,1,2-TRICHLOROTRIFLU	OROETHANE	0.45	U		0.45			0.45			0.45		
1,1-DICHLOROETHANE		0.3	U		0.3	U		0.3	U		0.3	U	
1,1-DICHLOROETHENE		0.45	U		0.45	U		0.45	U		0.45		
1,2,4-TRICHLOROBENZE	NE	0.32	U		0.32	U		0.32	U		0.32	U	
1,2-DIBROMO-3-CHLORO	PROPANE	0.82	UJ	С	0.82	UJ	С	0.82	UJ	С	0.82		С
1,2-DIBROMOETHANE		0.32	U		0.32	U		0.32	U		0.32	U	
1,2-DICHLOROBENZENE		0.25	U		0.25	U		0.25			0.25		
1,2-DICHLOROETHANE		0.23	U		0.23			0.23	U		0.23		
1,2-DICHLOROPROPANE		0.25	U		0.25			0.25	U		0.25	U	
1,3-DICHLOROBENZENE		0.19	U		0.19	U		0.19	U		0.19		
1,4-DICHLOROBENZENE		0.27	U		0.27	U		0.27	U		0.27		
2-BUTANONE		0.53	U		0.53			0.53	U		0.53	U	
2-HEXANONE		0.48	U		0.48			0.48	U		0.48	U	
4-METHYL-2-PENTANONE		0.99	U		0.99	U		0.99	U		0.99	U	
ACETONE		0.94			0.94			1.2		Р	1.6		Р
BENZENE		0.35	U		0.35	U		0.35	U		0.35	U	
BROMODICHLOROMETH.	ANE	0.29	U		0.29			0.46	J	Р	0.46	_	Р
BROMOFORM		0.56			0.56			0.56			0.56	U	
BROMOMETHANE		0.44		С	0.44			0.44			0.44		
CARBON DISULFIDE		0.38			0.38			0.38			0.38	_	
CARBON TETRACHLORIE	DE	0.43			0.43			0.43			0.43	_	
CHLOROBENZENE		0.25			0.25			0.25			0.25	_	
CHLORODIBROMOMETH.	ANE	0.43			0.43			0.43	_		0.43		
CHLOROETHANE		0.32			0.32			0.32			0.32		
CHLOROFORM		0.25			0.25			3.9			3.7		
CHLOROMETHANE		0.44		С	0.44		С	0.44		С	0.44		С
CIS-1,2-DICHLOROETHEN		0.26			0.26			0.26			0.26		
CIS-1,3-DICHLOROPROPI	ENE	0.46			0.46			0.46			0.46		
CYCLOHEXANE		0.45			0.45			0.45			0.45		
DICHLORODIFLUOROME	THANE	0.32		С	0.32		С	0.32		С	0.32		С
ETHYLBENZENE		0.25			0.25			0.25			0.25		
ISOPROPYLBENZENE		0.35	U		0.35	U		0.35	U	<u> </u>	0.35	U	

PROJ_NO: 07776	NSAMPLE	MRC-SW1A-0	61316		MRC-SW2A-0	61316		MRC-SW5A1-	061316	3	MRC-SW5A2-	061316	3
SDG: 240-65994-1	LAB_ID	240-65996-2			240-65996-3			240-65994-1			240-65994-2		
FRACTION: OV	SAMP_DATE	6/13/2016			6/13/2016			6/13/2016			6/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
METHYL ACETATE		2.3	U		2.3	U		2.3	U		2.3	U	
METHYL CYCLOHEXA	NE	0.43	U		0.43	U		0.43	U		0.43	U	
METHYL TERT-BUTYL	ETHER	0.2	U		0.2	U		0.2	U		0.2	U	
METHYLENE CHLORIC	DE	0.33	U		0.33	U		0.33	U		0.33	U	
STYRENE		0.45	U		0.45	U		0.45	U		0.45	U	
TETRACHLOROETHEN	NE .	0.31	U		0.31	U		0.31	U		0.31	U	
TOLUENE		0.23	U		0.23	U		0.23	U		0.23	U	
TOTAL XYLENES		0.52	U		0.52	U		0.52	U		0.52	U	
TRANS-1,2-DICHLORO	ETHENE	0.3	U		0.3	U		0.3	U		0.3	U	
TRANS-1,3-DICHLORO	PROPENE	0.56	U		0.56	U		0.56	U		0.56	U	
TRICHLOROETHENE		0.22	U		0.22	U		0.22	U		0.22	U	
TRICHLOROFLUOROM	1ETHANE	0.49	UJ	С	0.49	UJ	С	0.49	UJ	С	0.49	UJ	С
VINYL CHLORIDE	·	0.29	U		0.29	U		0.29	U		0.29	U	

PROJ_NO: 07776	NSAMPLE	MRC-SW5B-0	61316		MRC-SW6A-0	61316		MRC-SW6B-0	61316		MRC-SW7A-0	61316	
SDG: 240-65994-1	LAB_ID	240-65994-3			240-65994-4			240-65994-5			240-65994-6		
FRACTION: OV	SAMP_DATE	6/13/2016			6/13/2016			6/13/2016			6/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
METHYL ACETATE		2.3	U		2.3	U		2.3	U		2.3	U	
METHYL CYCLOHEXAN	NE .	0.43	U										
METHYL TERT-BUTYL	ETHER	0.2	U										
METHYLENE CHLORID	E	0.33	U										
STYRENE		0.45	U		0.45	U		0.45	U		0.45	U	
TETRACHLOROETHEN	E	0.31	U										
TOLUENE		0.23	U		0.23	U		0.23	U		0.23	U	
TOTAL XYLENES		0.52	U		0.52	U		0.52	U		0.52	U	
TRANS-1,2-DICHLORO	ETHENE	0.3	U		0.3	U		0.3	U		0.3	U	
TRANS-1,3-DICHLORO	PROPENE	0.56	U		0.56	U		0.56	U		0.56	U	
TRICHLOROETHENE		0.22	U		0.26	J	Р	0.49	J	Р	0.22	U	
TRICHLOROFLUOROM	ETHANE	0.49	UJ	С	0.49	UJ	С	0.49	UJ	С	0.49	UJ	С
VINYL CHLORIDE	·	0.29	U										

PROJ_NO: 07776	NSAMPLE	MRC-SW7B-0	61316		MRC-SW8A-0	61316		MRC-SW8B-0	61316		MRC-SW9A-0	61316	
SDG: 240-65994-1	LAB_ID	240-65994-7			240-65994-8			240-65994-9			240-65994-10		
FRACTION: OV	SAMP_DATE	6/13/2016			6/13/2016			6/13/2016			6/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
METHYL ACETATE		2.3	U		2.3	U		2.3	U		2.3	U	
METHYL CYCLOHEXAN	NE .	0.43	U		0.43	U		0.43	U		0.43	U	
METHYL TERT-BUTYL	ETHER	0.2	U		0.2	U		0.2	U		0.2	U	
METHYLENE CHLORID	E	0.33	U		0.33	U		0.33	U		0.33	U	
STYRENE		0.45	U		0.45	U		0.45	U		0.45	U	
TETRACHLOROETHEN	E	0.31	U		0.31	U		0.31	U		0.31	U	
TOLUENE		0.23	U		0.23	U		0.23	U		0.23	U	
TOTAL XYLENES		0.52	U		0.52	U		0.52	U		0.52	U	
TRANS-1,2-DICHLORO	ETHENE	0.3	U		0.3	U		0.3	U		0.3	U	
TRANS-1,3-DICHLORO	PROPENE	0.56	U		0.56	U		0.56	U		0.56	U	
TRICHLOROETHENE		0.22	U		0.48	J	Р	0.42	J	Р	0.22	U	
TRICHLOROFLUOROM	ETHANE	0.49	UJ	С	0.49	UJ	С	0.49	UJ	С	0.49	UJ	С
VINYL CHLORIDE		0.29	U		0.29	U		0.29	U		0.29	U	

PROJ_NO: 07776	NSAMPLE	MRC-SW9B-0	61316		MRC-SWDUP	2-06131	16	MRC-SWFB-0	61316		TB-061316		
SDG: 240-65994-1	LAB_ID	240-65994-11			240-65996-5			240-65996-1			240-65996-4		
FRACTION: OV	SAMP_DATE	6/13/2016			6/13/2016			6/13/2016			6/13/2016		
MEDIA: WATER	QC_TYPE	NM			FD			NM			ТВ		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF				MRC-SW6A-0	61316							
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
METHYL ACETATE		2.3	U		2.3	U		2.3	U		2.3	U	
METHYL CYCLOHEXAN	E	0.43	U		0.43	U		0.43	U		0.43	U	
METHYL TERT-BUTYL E	THER	0.2	U		0.2	U		0.2	U		0.2	U	
METHYLENE CHLORIDE		0.33	U		0.33	U		0.33	U		0.33	U	
STYRENE		0.45	U		0.45	U		0.45	U		0.45	U	
TETRACHLOROETHENE	Ī	0.31	U		0.31	U		0.31	U		0.31	U	
TOLUENE		0.23	U		0.23	U		1.8			1.6		
TOTAL XYLENES		0.52	U		0.52	U		1.1	J	Р	0.78	J	Р
TRANS-1,2-DICHLOROE	THENE	0.3	U		0.3	U		0.3	U		0.3	U	
TRANS-1,3-DICHLOROP	ROPENE	0.56	U		0.56	U		0.56	U		0.56	U	
TRICHLOROETHENE		0.22	U		0.25	J	Р	0.22	U		0.22	U	
TRICHLOROFLUOROME	THANE	0.49	UJ	С	0.49	UJ	С	0.49	UJ	С	0.49	UJ	С
VINYL CHLORIDE	•	0.29	U		0.29	U		0.29	U		0.29	U	

PROJ_NO: 07776	NSAMPLE	MRC-SW1A-0	61316		MRC-SW2A-0	61316		MRC-SWDUP	1-06131	6	MRC-SWFB-0	61316	
SDG: 240-65994-1	LAB_ID	240-65996-2			240-65996-3			240-65994-12			240-65996-1		
FRACTION: OS	SAMP_DATE	6/13/2016			6/13/2016			6/13/2016			6/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF							MRC-SW2A-0	61316				
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,4-DIOXANE	·	0.13	J	Р	0.16	J	Р	0.12	J	Р	0.057	U	

1 of 1 7/29/2016

PROJ_NO: 07776	NSAMPLE	MRC-SW5A1-0	061316		MRC-SW5A2-	061316		MRC-SW5B-0	61316		MRC-SW6A-0	61316	
SDG: 240-65994-1	LAB_ID	240-65994-1			240-65994-2			240-65994-3			240-65994-4		
FRACTION: PCB	SAMP_DATE	6/13/2016			6/13/2016			6/13/2016			6/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0 RESULT VQI 0.067 U		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
DECACHLOROBIPHENYL		0.069	U		0.069	U		0.067	U		0.067	U	
DICHLOROBIPHENYLS		0.0054	U		0.0053	U		0.0052	U		0.0052	U	
HEPTACHLOROBIPHENYL	_S	0.03	U		0.029	U		0.029	U		0.029	U	
HEXACHLOROBIPHENYLS	6	0.015	U		0.015	U		0.014	U		0.014	U	
MONOCHLOROBIPHENYL	S	0.0056	U		0.0055	U		0.0054	U		0.0054	U	
NONACHLOROBIPHENYL	S	0.049	U		0.048	U		0.047	U		0.047	U	
OCTACHLOROBIPHENYL	3	0.038	U		0.037	U		0.037	U		0.037	U	
PENTACHLOROBIPHENYL	_S	0.014	U		0.014	U		0.013	U		0.013	U	
TETRACHLOROBIPHENYL	S	0.013	U		0.013	U		0.013	U		0.013	U	
TRICHLOROBIPHENYLS	<u> </u>	0.0064	U		0.0064	U		0.0063	U		0.0063	U	

PROJ_NO: 07776	NSAMPLE	MRC-SW6B-0	61316		MRC-SW7A-0	61316		MRC-SW7B-0	61316		MRC-SW8A-0	61316	
SDG: 240-65994-1	LAB_ID	240-65994-5			240-65994-6			240-65994-7			240-65994-8		
FRACTION: PCB	SAMP_DATE	6/13/2016			6/13/2016			6/13/2016			6/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
DECACHLOROBIPHENYL		0.067	U		0.07	U		0.069	U		0.067	U	
DICHLOROBIPHENYLS		0.0052	U		0.0054	U		0.0053	U		0.0052	U	
HEPTACHLOROBIPHENYL	.S	0.029	U		0.03	U		0.03	U		0.029	U	
HEXACHLOROBIPHENYLS	3	0.014	U		0.015	U		0.015	U		0.014	U	
MONOCHLOROBIPHENYL	S	0.0054	U		0.0056	U		0.0055	U		0.0054	U	
NONACHLOROBIPHENYL	S	0.047	U		0.049	U		0.048	U		0.047	U	
OCTACHLOROBIPHENYLS	3	0.036	U		0.038	U		0.038	U		0.037	U	
PENTACHLOROBIPHENYL	S	0.036	J	Р	0.014	U		0.014	U		0.013	U	
TETRACHLOROBIPHENYL	.S	0.012	U		0.013	U		0.013	U		0.013	U	
TRICHLOROBIPHENYLS		0.0062	U		0.0065	U		0.0064	U		0.0063	U	

PROJ_NO: 07776	NSAMPLE	MRC-SW8B-06	61316		MRC-SW9A-0	61316		MRC-SW9B-0	61316		MRC-SWDUP	2-06131	6
SDG: 240-65994-1	LAB_ID	240-65994-9			240-65994-10			240-65994-11			240-65996-5		
FRACTION: PCB	SAMP_DATE	6/13/2016			6/13/2016			6/13/2016			6/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			FD		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF										MRC-SW6A-0	61316	
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
DECACHLOROBIPHENYL		0.069	U		0.067	U		0.067	U		0.068	U	
DICHLOROBIPHENYLS		0.0054	U		0.0052	U		0.0052	U		0.0052	U	
HEPTACHLOROBIPHENYL	.S	0.03	U		0.029	U		0.029	U		0.029	U	
HEXACHLOROBIPHENYLS	3	0.015	U		0.014	U		0.014	U		0.014	U	
MONOCHLOROBIPHENYL	S	0.0056	U		0.0054	U		0.0054	U		0.0054	U	
NONACHLOROBIPHENYLS	3	0.049	U		0.047	U		0.047	U		0.047	U	
OCTACHLOROBIPHENYLS	3	0.038	U		0.037	U		0.037	U		0.037	U	
PENTACHLOROBIPHENYL	S	0.014	U		0.013	U		0.013	U		0.014	U	
TETRACHLOROBIPHENYL	.S	0.013	U		0.013	U		0.013	U		0.013	U	
TRICHLOROBIPHENYLS		0.0064	U		0.0063	U		0.0063	U		0.0063	U	

PROJ_NO: 07776	NSAMPLE	MRC-SWFB-0	61316		
SDG: 240-65994-1	LAB_ID	240-65996-1			
FRACTION: PCB	SAMP_DATE	6/13/2016			
MEDIA: WATER	QC_TYPE	NM			
	UNITS	UG/L			
	PCT_SOLIDS	0.0			
	DUP_OF				
PARAMETER		RESULT VQL		QLCD	
DECACHLOROBIPHENYL		0.069	U		
DICHLOROBIPHENYLS		0.0053	U		
HEPTACHLOROBIPHENYL	S	0.03	U		
HEXACHLOROBIPHENYLS		0.015	U		
MONOCHLOROBIPHENYL	S	0.0055	U		
NONACHLOROBIPHENYLS	3	0.048	U		
OCTACHLOROBIPHENYLS	3	0.038	U		
PENTACHLOROBIPHENYLS		0.014	U		
TETRACHLOROBIPHENYLS		0.013	U		
TRICHLOROBIPHENYLS		0.0064	U		

Appendix B

Results as Reported by the Laboratory

Lab Name: TestAmerica Canton	_ Job No.: 240-65994-1
SDG No.:	
Client Sample ID: MRC-SW5A1-061316	Lab Sample ID: 240-65994-1
Matrix: Water	Lab File ID: UXJ5610.D
Analysis Method: 8260C	Date Collected: 06/13/2016 13:13
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 13:13
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 235154	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	1.0	U	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

SDG No.:		
Client Sample ID: MRC-SW5A1-061316	Lab Sample ID: 240-65994	4-1
Matrix: Water	Lab File ID: UXJ5610.D	
Analysis Method: 8260C	Date Collected: 06/13/20	016 13:13
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/20	16 13:13
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18(mm)

% Moisture: _____ Level: (low/med) <u>Low</u>

Lab Name: TestAmerica Canton Job No.: 240-65994-1

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	90		80-120
1868-53-7	Dibromofluoromethane (Surr)	92		79-120
460-00-4	4-Bromofluorobenzene (Surr)	86		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96		78-125

Lab Name: TestAmerica Canton	Job No.: 240-65994-1	
SDG No.:		
Client Sample ID: MRC-SW5A2-061316	Lab Sample ID: 240-6599	4-2
Matrix: Water	Lab File ID: UXJ5611.D	
Analysis Method: 8260C	Date Collected: 06/13/2016 13:18	
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 13:35	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18 (mm)
% Moisture:	Level: (low/med) Low	
Analysis Batch No • 22515/	IInitat na/I	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.0	Ū	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

 SDG No.:
 Client Sample ID: MRC-SW5A2-061316
 Lab Sample ID: 240-65994-2

 Matrix: Water
 Lab File ID: UXJ5611.D

 Analysis Method: 8260C
 Date Collected: 06/13/2016 13:18

Sample wt/vol: 5(mL) Date Analyzed: 06/20/2016 13:35

Soil Aliquot Vol: Dilution Factor: 1

Lab Name: TestAmerica Canton Job No.: 240-65994-1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u>

% Moisture: _____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	94		80-120
1868-53-7	Dibromofluoromethane (Surr)	93		79-120
460-00-4	4-Bromofluorobenzene (Surr)	89		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		78-125

Lab Name: TestAmerica Canton	_ Job No.: 240-65994-1
SDG No.:	
Client Sample ID: MRC-SW5B-061316	Lab Sample ID: 240-65994-3
Matrix: Water	Lab File ID: UXJ5612.D
Analysis Method: 8260C	Date Collected: 06/13/2016 13:22
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 13:57
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 235154	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	1.0	U	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

 SDG No.:

 Client Sample ID: MRC-SW5B-061316
 Lab Sample ID: 240-65994-3

 Matrix: Water
 Lab File ID: UXJ5612.D

 Analysis Method: 8260C
 Date Collected: 06/13/2016 13:22

 Sample wt/vol: 5(mL)
 Date Analyzed: 06/20/2016 13:57

Soil Aliquot Vol: _____ Dilution Factor: 1_____

Lab Name: TestAmerica Canton Job No.: 240-65994-1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u>

% Moisture: _____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	Π *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	90		80-120
1868-53-7	Dibromofluoromethane (Surr)	93		79-120
460-00-4	4-Bromofluorobenzene (Surr)	85		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	95		78-125

Lab Name: TestAmerica Canton	_ Job No.: <u>240-65994-1</u>
SDG No.:	
Client Sample ID: MRC-SW6A-061316	Lab Sample ID: 240-65994-4
Matrix: Water	Lab File ID: UXJ5613.D
Analysis Method: 8260C	Date Collected: 06/13/2016 12:41
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 14:20
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 235154	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.0	Ū	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

 SDG No.:
 Client Sample ID: MRC-SW6A-061316
 Lab Sample ID: 240-65994-4

 Matrix: Water
 Lab File ID: UXJ5613.D

 Analysis Method: 8260C
 Date Collected: 06/13/2016 12:41

Sample wt/vol: 5(mL)

Date Analyzed: 06/20/2016 14:20

Soil Aliquot Vol: Dilution Factor: 1

Lab Name: TestAmerica Canton Job No.: 240-65994-1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u>

% Moisture: _____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	Π *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	0.26	J	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	91		80-120
1868-53-7	Dibromofluoromethane (Surr)	93		79-120
460-00-4	4-Bromofluorobenzene (Surr)	86		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96		78-125

Lab Name: TestAmerica Canton	Job No.: 240-65994-1
SDG No.:	
Client Sample ID: MRC-SW6B-061316	Lab Sample ID: 240-65994-5
Matrix: Water	Lab File ID: UXJ5614.D
Analysis Method: 8260C	Date Collected: 06/13/2016 12:52
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 14:43
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 235154	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.0	Ū	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

 SDG No.:

 Client Sample ID: MRC-SW6B-061316
 Lab Sample ID: 240-65994-5

 Matrix: Water
 Lab File ID: UXJ5614.D

 Analysis Method: 8260C
 Date Collected: 06/13/2016 12:52

 Sample wt/vol: 5(mL)
 Date Analyzed: 06/20/2016 14:43

Soil Aliquot Vol: _____ Dilution Factor: 1_____

Lab Name: TestAmerica Canton Job No.: 240-65994-1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18 (mm)</u>

% Moisture: _____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	0.49	J	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	110		80-120
1868-53-7	Dibromofluoromethane (Surr)	113		79-120
460-00-4	4-Bromofluorobenzene (Surr)	104		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	115		78-125

Lab Name: TestAmerica Canton	Job No.: 240-65994-1	
SDG No.:		
Client Sample ID: MRC-SW7A-061316	Lab Sample ID: 240-65994-6	
Matrix: Water	Lab File ID: UXJ5615.D	
Analysis Method: 8260C	Date Collected: 06/13/2016 12:18	
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 15:05	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18 (mm)	
% Moisture:	Level: (low/med) Low	
Analysis Batch No.: 235154	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.0	Ū	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

SDG No.: Client Sample ID: MRC-SW7A-061316 Lab Sample ID: 240-65994-6 Matrix: Water Lab File ID: UXJ5615.D Analysis Method: 8260C Date Collected: 06/13/2016 12:18

Date Analyzed: 06/20/2016 15:05 Sample wt/vol: 5(mL)

Dilution Factor: 1 Soil Aliquot Vol:

Lab Name: TestAmerica Canton Job No.: 240-65994-1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u>

% Moisture: _____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	89		80-120
1868-53-7	Dibromofluoromethane (Surr)	91		79-120
460-00-4	4-Bromofluorobenzene (Surr)	83		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96		78-125

Lab Name: TestAmerica Canton	Job No.: <u>240-65994-1</u>
SDG No.:	
Client Sample ID: MRC-SW7B-061316	Lab Sample ID: 240-65994-7
Matrix: Water	Lab File ID: UXJ5616.D
Analysis Method: 8260C	Date Collected: 06/13/2016 12:24
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 15:27
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 235154	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.0	U	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	2.2	J	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35
79-20-9	Methyl acetate	10	IJ	10	2.3

 SDG No.:
 Client Sample ID: MRC-SW7B-061316
 Lab Sample ID: 240-65994-7

 Matrix: Water
 Lab File ID: UXJ5616.D

 Analysis Method: 8260C
 Date Collected: 06/13/2016 12:24

 Sample wt/vol: 5 (mL)
 Date Analyzed: 06/20/2016 15:27

 Soil Aliquot Vol:
 Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: DB-624
 ID: 0.18 (mm)

 % Moisture:
 Level: (low/med) Low

Lab Name: TestAmerica Canton Job No.: 240-65994-1

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	89		80-120
1868-53-7	Dibromofluoromethane (Surr)	91		79-120
460-00-4	4-Bromofluorobenzene (Surr)	84		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	93		78-125

Lab Name: TestAmerica Canton Job No.: 240-65994-1 SDG No.: Client Sample ID: MRC-SW7B-061316 Lab Sample ID: 240-65994-7 Matrix: Water Lab File ID: UXJ5670.D Date Collected: 06/13/2016 12:24 Analysis Method: 8260C Sample wt/vol: 5(mL) Date Analyzed: 06/21/2016 13:59 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u> Level: (low/med) Low % Moisture: _____ Analysis Batch No.: 235310 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	1.1		1.0	0.44

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	95		80-120
1868-53-7	Dibromofluoromethane (Surr)	97		79-120
460-00-4	4-Bromofluorobenzene (Surr)	89		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	100		78-125

Lab Name: TestAmerica Canton	Job No.: 240-65994-1			
SDG No.:				
Client Sample ID: MRC-SW8A-061316	Lab Sample ID: 240-65994-8			
Matrix: Water	Lab File ID: UXJ5617.D			
Analysis Method: 8260C	Date Collected: 06/13/2016 12:57			
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 15:49			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 235154	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	1.0	Ū	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	Ū	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	IJ	1.0	0.35

 SDG No.:
 Client Sample ID: MRC-SW8A-061316
 Lab Sample ID: 240-65994-8

 Matrix: Water
 Lab File ID: UXJ5617.D

 Analysis Method: 8260C
 Date Collected: 06/13/2016 12:57

 Sample wt/vol: 5(mL)
 Date Analyzed: 06/20/2016 15:49

Soil Aliquot Vol: _____ Dilution Factor: 1_____

Lab Name: TestAmerica Canton Job No.: 240-65994-1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18 (mm)</u>

% Moisture: _____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	Ū	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	Π *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	0.48	J	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	94		80-120
1868-53-7	Dibromofluoromethane (Surr)	96		79-120
460-00-4	4-Bromofluorobenzene (Surr)	89		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		78-125

Lab Name: TestAmerica Canton	Job No.: 240-65994-1			
SDG No.:				
Client Sample ID: MRC-SW8B-061316	Lab Sample ID: 240-65994-9			
Matrix: Water	Lab File ID: UXJ5618.D			
Analysis Method: 8260C	Date Collected: 06/13/2016 13:04			
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 16:12			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 235154	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.0	Ū	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

 SDG No.:
 Client Sample ID: MRC-SW8B-061316
 Lab Sample ID: 240-65994-9

 Matrix: Water
 Lab File ID: UXJ5618.D

 Analysis Method: 8260C
 Date Collected: 06/13/2016 13:04

 Sample wt/vol: 5 (mL)
 Date Analyzed: 06/20/2016 16:12

 Soil Aliquot Vol:
 Dilution Factor: 1

Lab Name: TestAmerica Canton Job No.: 240-65994-1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u>

% Moisture: _____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	0.42	J	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	91		80-120
1868-53-7	Dibromofluoromethane (Surr)	91		79-120
460-00-4	4-Bromofluorobenzene (Surr)	84		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	95		78-125

Lab Name: TestAmerica Canton	Job No.: 240-65994-1
SDG No.:	
Client Sample ID: MRC-SW9A-061316	Lab Sample ID: 240-65994-10
Matrix: Water	Lab File ID: UXJ5619.D
Analysis Method: 8260C	Date Collected: 06/13/2016 12:29
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 16:34
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 235154	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.0	Ū	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

Lab	Name:	TestAmerica Canton	Job No.:	240-65994-1
SDG	No.:			

Client Sample ID: MRC-SW9A-061316 Lab Sample ID: 240-65994-10

Matrix: Water Lab File ID: UXJ5619.D

Analysis Method: 8260C Date Collected: 06/13/2016 12:29

Sample wt/vol: 5 (mL) Date Analyzed: 06/20/2016 16:34

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u>

% Moisture: _____ Level: (low/med) <u>Low</u>

Analysis Batch No.: 235154 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	94		80-120
1868-53-7	Dibromofluoromethane (Surr)	94		79-120
460-00-4	4-Bromofluorobenzene (Surr)	87		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		78-125

Lab Name: TestAmerica Canton	Job No.: <u>240-65994-1</u>				
SDG No.:					
Client Sample ID: MRC-SW9B-061316	Lab Sample ID: 240-65994-11				
Matrix: Water	Lab File ID: UXJ5620.D				
Analysis Method: 8260C	Date Collected: 06/13/2016 12:34				
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 16:57				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 235154	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.0	Ū	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

Lab Name: TestAmerica Canton	Job No.: 240-65994-1				
SDG No.:					
Client Sample ID: MRC-SW9B-061316	Lab Sample ID: 240-65994-11				
Matrix: Water	Lab File ID: UXJ5620.D				
Analysis Method: 8260C	Date Collected: 06/13/2016 12:34				
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 16:57				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				

Units: ug/L

Analysis Batch No.: 235154

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	91		80-120
1868-53-7	Dibromofluoromethane (Surr)	93		79-120
460-00-4	4-Bromofluorobenzene (Surr)	86		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		78-125

Lab Name: TestAmerica Canton	_ Job No.: 240-65994-1
SDG No.:	
Client Sample ID: MRC-SWFB-061316	Lab Sample ID: 240-65996-1
Matrix: Water	Lab File ID: UXM6074.D
Analysis Method: 8260C	Date Collected: 06/13/2016 00:00
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 18:04
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 235221	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	1.0	U	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	1.2	J	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	0.46	J	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	3.9		1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

Lab Name: TestAmerica Canton	JOD NO.: 240-65994-1
SDG No.:	
Client Sample ID: MRC-SWFB-061316	Lab Sample ID: 240-65996-1
Matrix: Water	Lab File ID: UXM6074.D
Analysis Method: 8260C	Date Collected: 06/13/2016 00:00
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 18:04
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low

Analysis Batch No.: 235221 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.8		1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	1.1	J	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	104		80-120
1868-53-7	Dibromofluoromethane (Surr)	99		79-120
460-00-4	4-Bromofluorobenzene (Surr)	99		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	95		78-125

Lab Name: TestAmerica Canton	JOD NO.: <u>240-65994-1</u>			
SDG No.:				
Client Sample ID: MRC-SW1A-061316	Lab Sample ID: 240-65996-2			
Matrix: Water	Lab File ID: UXM6075.D			
Analysis Method: 8260C	Date Collected: 06/13/2016 11:51			
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 18:27			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)			
% Moisture: Level: (low/med) Low				
Analysis Batch No · 235221	IInits· 11a/I.			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	1.0	U	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

Lab Name: TestAmerica Canton

SDG No.:

Client Sample ID: MRC-SW1A-061316

Lab Sample ID: 240-65996-2

Matrix: Water

Lab File ID: UXM6075.D

Analysis Method: 8260C

Date Collected: 06/13/2016 11:51

Sample wt/vol: 5(mL)

Date Analyzed: 06/20/2016 18:27

Soil Aliquot Vol:

Soil Extract Vol.:

GC Column: DB-624

ID: 0.18 (mm)

Analysis Batch No.: 235221 Units: ug/L

% Moisture: _____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	104		80-120
1868-53-7	Dibromofluoromethane (Surr)	94		79-120
460-00-4	4-Bromofluorobenzene (Surr)	99		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96		78-125

Lab Name: TestAmerica Canton	Job No.: <u>240-65994-1</u>			
SDG No.:				
Client Sample ID: MRC-SW2A-061316	Lab Sample ID: 240-6599	96-3		
Matrix: Water	Lab File ID: UXM6076.D			
Analysis Method: 8260C	Date Collected: 06/13/2016 11:58			
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 18:50			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Patch No · 225221	IInita. ug/I			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.0	Ū	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

Lab Name: TestAmerica Canton

SDG No.:

Client Sample ID: MRC-SW2A-061316

Matrix: Water

Lab File ID: UXM6076.D

Analysis Method: 8260C

Date Collected: 06/13/2016 11:58

Sample wt/vol: 5(mL)

Date Analyzed: 06/20/2016 18:50

Soil Aliquot Vol:

Soil Extract Vol.:

GC Column: DB-624

ID: 0.18 (mm)

Analysis Batch No.: 235221 Units: ug/L

% Moisture: _____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	102		80-120
1868-53-7	Dibromofluoromethane (Surr)	91		79-120
460-00-4	4-Bromofluorobenzene (Surr)	97		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	93		78-125

Lab Name: <u>TestAmerica Canton</u>	Job No.: <u>240-65994-1</u>			
SDG No.:				
Client Sample ID: TB-061316	Lab Sample ID: 240-65996-4			
Matrix: Water	Lab File ID: UXM6077.D			
Analysis Method: 8260C	Date Collected: 06/13/2016 00:00			
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 19:12			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18	(mm)		
% Moisture:	Level: (low/med) Low			
Analysis Ratch No · 235221	IInits: ua/I.			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.0	Ū	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	1.6	J	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	0.46	J	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	3.7		1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

Lab Name: TestAmerica Canton	Job No.: 240-65994-1	
SDG No.:		
Client Sample ID: TB-061316	Lab Sample ID: 240-65996-4	
Matrix: Water	Lab File ID: UXM6077.D	
Analysis Method: 8260C Date Collected: 06/13/2016 00:		
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 19:12	
Soil Aliquot Vol: Dilution Factor: 1		
Soil Extract Vol.: GC Column: DB-624 ID: C		
% Moisture:	Level: (low/med) Low	

Analysis Batch No.: 235221 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.6		1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	0.78	J	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	104		80-120
1868-53-7	Dibromofluoromethane (Surr)	97		79-120
460-00-4	4-Bromofluorobenzene (Surr)	100		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		78-125

Lab Name: TestAmerica Canton	Job No.: <u>240-65994-1</u>
SDG No.:	
Client Sample ID: MRC-SWDUP2-061316	Lab Sample ID: 240-65996-5
Matrix: Water	Lab File ID: UXM6078.D
Analysis Method: 8260C	Date Collected: 06/13/2016 00:00
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 19:35
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Ratch No · 235221	Unite · ua/I

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.0	Ū	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

Lab Name: TestAmerica Canton

SDG No.:

Client Sample ID: MRC-SWDUP2-061316

Matrix: Water

Analysis Method: 8260C

Sample wt/vol: 5(mL)

Soil Aliquot Vol:

Soil Extract Vol.:

MRC-SWDUP2-061316

Lab Sample ID: 240-65996-5

Lab File ID: UXM6078.D

Date Collected: 06/13/2016 00:00

Date Analyzed: 06/20/2016 19:35

Dilution Factor: 1

Soil Extract Vol.:

GC Column: DB-624

ID: 0.18(mm)

Level: (low/med) Low

Analysis Batch No.: 235221 Units: ug/L

79-20-9 Methyl acetate 10 U 10 1634-04-4 Methyl tert-butyl ether 1.0 U 1.0 O 108-87-2 Methylcyclohexane 1.0 U 1.0 O 75-09-2 Methylene Chloride 1.0 U 1.0 O 100-42-5 Styrene 1.0 U 1.0 O 127-18-4 Tetrachloroethene 1.0 U 1.0 O 108-88-3 Toluene 1.0 U 1.0 O 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0 O 79-01-6 trans-1,3-Dichloropropene 1.0 U 1.0 O 75-69-4 Trichlorofluoromethane 1.0 U 1.0 O 75-01-4 Vinyl chloride 1.0 U 1.0 O						
1634-04-4 Methyl tert-butyl ether 1.0 U 1.0 0 108-87-2 Methylcyclohexane 1.0 U 1.0 0 75-09-2 Methylene Chloride 1.0 U 1.0 0 100-42-5 Styrene 1.0 U 1.0 0 127-18-4 Tetrachloroethene 1.0 U 1.0 0 108-88-3 Toluene 1.0 U 1.0 0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0 0 10061-02-6 trans-1,3-Dichloropropene 1.0 U 1.0 0 79-01-6 Trichloroethene 0.25 J 1.0 0 75-69-4 Trichlorofluoromethane 1.0 U 1.0 0 75-01-4 Vinyl chloride 1.0 U 1.0 0	CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-87-2 Methylcyclohexane 1.0 U 1.0 0 75-09-2 Methylene Chloride 1.0 U 1.0 0 100-42-5 Styrene 1.0 U 1.0 0 127-18-4 Tetrachloroethene 1.0 U 1.0 0 108-88-3 Toluene 1.0 U 1.0 0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0 0 10061-02-6 trans-1,3-Dichloropropene 1.0 U 1.0 0 79-01-6 Trichloroethene 0.25 J 1.0 0 75-69-4 Trichlorofluoromethane 1.0 U 1.0 0 75-01-4 Vinyl chloride 1.0 U 1.0 0	79-20-9	Methyl acetate	10	U	10	2.3
75-09-2 Methylene Chloride 1.0 U 1.0 0 100-42-5 Styrene 1.0 U 1.0 0 127-18-4 Tetrachloroethene 1.0 U 1.0 0 108-88-3 Toluene 1.0 U 1.0 0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0 0 10061-02-6 trans-1,3-Dichloropropene 1.0 U 1.0 0 79-01-6 Trichloroethene 0.25 J 1.0 0 75-69-4 Trichlorofluoromethane 1.0 U 1.0 0 75-01-4 Vinyl chloride 1.0 U 1.0 0	1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
100-42-5 Styrene 1.0 U 1.0 0 127-18-4 Tetrachloroethene 1.0 U 1.0 0 108-88-3 Toluene 1.0 U 1.0 0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0 0 10061-02-6 trans-1,3-Dichloropropene 1.0 U 1.0 0 79-01-6 Trichloroethene 0.25 J 1.0 0 75-69-4 Trichlorofluoromethane 1.0 U 1.0 0 75-01-4 Vinyl chloride 1.0 U 1.0 0	108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
127-18-4 Tetrachloroethene 1.0 U 1.0 0 108-88-3 Toluene 1.0 U 1.0 0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0 0 10061-02-6 trans-1,3-Dichloropropene 1.0 U 1.0 0 79-01-6 Trichloroethene 0.25 J 1.0 0 75-69-4 Trichlorofluoromethane 1.0 U 1.0 0 75-01-4 Vinyl chloride 1.0 U 1.0 0	75-09-2	Methylene Chloride	1.0	U	1.0	0.33
108-88-3 Toluene 1.0 U 1.0 0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0 0 10061-02-6 trans-1,3-Dichloropropene 1.0 U 1.0 0 79-01-6 Trichloroethene 0.25 J 1.0 0 75-69-4 Trichlorofluoromethane 1.0 U 1.0 0 75-01-4 Vinyl chloride 1.0 U 1.0 0	100-42-5	Styrene	1.0	U	1.0	0.45
156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0 0 10061-02-6 trans-1,3-Dichloropropene 1.0 U 1.0 0 79-01-6 Trichloroethene 0.25 J 1.0 0 75-69-4 Trichlorofluoromethane 1.0 U 1.0 0 75-01-4 Vinyl chloride 1.0 U 1.0 0	127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
10061-02-6 trans-1,3-Dichloropropene 1.0 U 1.0 0 79-01-6 Trichloroethene 0.25 J 1.0 0 75-69-4 Trichlorofluoromethane 1.0 U 1.0 0 75-01-4 Vinyl chloride 1.0 U 1.0 0	108-88-3	Toluene	1.0	U	1.0	0.23
79-01-6 Trichloroethene 0.25 J 1.0 0 75-69-4 Trichlorofluoromethane 1.0 U 1.0 0 75-01-4 Vinyl chloride 1.0 U 1.0 0	156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
75-69-4 Trichlorofluoromethane 1.0 U 1.0 0 75-01-4 Vinyl chloride 1.0 U 1.0 0	10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
75-01-4 Vinyl chloride 1.0 U 1.0 0	79-01-6	Trichloroethene	0.25	J	1.0	0.22
	75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
1330-20-7 Xylenes, Total 2.0 U 2.0 0	75-01-4	Vinyl chloride	1.0	U	1.0	0.29
	1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	100		80-120
1868-53-7	Dibromofluoromethane (Surr)	92		79-120
460-00-4	4-Bromofluorobenzene (Surr)	98		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	94		78-125

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SWDUP1-061316 Lab Sample ID: 240-65994-12

Matrix: Water Lab File ID: 20474_27.D

Analysis Method: 522 MOD Date Collected: 06/13/2016 00:00

Extract. Method: 3535A Date Extracted: 06/16/2016 18:26

Sample wt/vol: 100(mL) Date Analyzed: 06/17/2016 16:32

Con. Extract Vol.: 2000(uL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 105857 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	0.12	J	0.20	0.057

CAS NO.	SURROGATE	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8 (Surr)	105		70-130

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SWFB-061316 Lab Sample ID: 240-65996-1

Matrix: Water Lab File ID: 20593_15.D

Analysis Method: 522 MOD Date Collected: 06/13/2016 00:00

Extract. Method: 3535A Date Extracted: 06/22/2016 18:02

Sample wt/vol: 100(mL) Date Analyzed: 06/24/2016 23:32

Con. Extract Vol.: 2000(uL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 106221 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	0.20	U	0.20	0.057

CAS NO.	SURROGATE	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8 (Surr)	95		70-130

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW1A-061316 Lab Sample ID: 240-65996-2

Matrix: Water Lab File ID: 20593_16.D

Analysis Method: 522 MOD Date Collected: 06/13/2016 11:51

Extract. Method: 3535A Date Extracted: 06/22/2016 18:02

Sample wt/vol: 100(mL) Date Analyzed: 06/24/2016 23:45

Con. Extract Vol.: 2000(uL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 106221 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	0.13	J	0.20	0.057

CAS NO.	SURROGATE	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8 (Surr)	92		70-130

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW2A-061316 Lab Sample ID: 240-65996-3

Matrix: Water Lab File ID: 20593_17.D

Analysis Method: 522 MOD Date Collected: 06/13/2016 11:58

Extract. Method: 3535A Date Extracted: 06/22/2016 18:02

Sample wt/vol: 100(mL) Date Analyzed: 06/24/2016 23:59

Con. Extract Vol.: 2000(uL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 106221 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	0.16	J	0.20	0.057

CAS NO.	SURROGATE	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8 (Surr)	97		70-130

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW5A1-061316 Lab Sample ID: 240-65994-1

Matrix: Water Lab File ID: Xf2018.D

Analysis Method: 680 Date Collected: 06/13/2016 13:13

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 504.4(mL) Date Analyzed: 06/20/2016 16:30

Con. Extract Vol.: .5 (mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup: (Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.30	U *	0.30	0.030
26601-64-9	Hexachlorobiphenyl	0.20	U *	0.20	0.015
53742-07-7	Nonachlorobiphenyl	0.50	П *	0.50	0.049
55722-26-4	Octachlorobiphenyl	0.30	Π *	0.30	0.038
27323-18-8	Monochlorobiphenyl	0.099	Π *	0.099	0.0056
2051-24-3	DCB Decachlorobiphenyl	0.50	Π *	0.50	0.069
25512-42-9	Dichlorobiphenyl	0.099	Π *	0.099	0.0054
25429-29-2	Pentachlorobiphenyl	0.20	Π *	0.20	0.014
26914-33-0	Tetrachlorobiphenyl	0.20	U *	0.20	0.013
25323-68-6	Trichlorobiphenyl	0.099	U *	0.099	0.0064

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	48	*	25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW5A2-061316 Lab Sample ID: 240-65994-2

Matrix: Water Lab File ID: Xf2112.D

Analysis Method: 680 Date Collected: 06/13/2016 13:18

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 509.9(mL) Date Analyzed: 06/22/2016 01:01

Con. Extract Vol.: .5 (mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup: (Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.29	U	0.29	0.029
26601-64-9	Hexachlorobiphenyl	0.20	U	0.20	0.015
53742-07-7	Nonachlorobiphenyl	0.49	U	0.49	0.048
55722-26-4	Octachlorobiphenyl	0.29	U	0.29	0.037
27323-18-8	Monochlorobiphenyl	0.098	U	0.098	0.0055
2051-24-3	DCB Decachlorobiphenyl	0.49	U	0.49	0.069
25512-42-9	Dichlorobiphenyl	0.098	U	0.098	0.0053
25429-29-2	Pentachlorobiphenyl	0.20	U	0.20	0.014
26914-33-0	Tetrachlorobiphenyl	0.20	U	0.20	0.013
25323-68-6	Trichlorobiphenyl	0.098	U	0.098	0.0064

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	83		25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW5B-061316 Lab Sample ID: 240-65994-3

Matrix: Water Lab File ID: Xf2113.D

Analysis Method: 680 Date Collected: 06/13/2016 13:22

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 1037.6(mL) Date Analyzed: 06/22/2016 01:30

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: _____ GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.29	U	0.29	0.029
26601-64-9	Hexachlorobiphenyl	0.19	U	0.19	0.014
53742-07-7	Nonachlorobiphenyl	0.48	U	0.48	0.047
55722-26-4	Octachlorobiphenyl	0.29	U	0.29	0.037
27323-18-8	Monochlorobiphenyl	0.096	U	0.096	0.0054
2051-24-3	DCB Decachlorobiphenyl	0.48	U	0.48	0.067
25512-42-9	Dichlorobiphenyl	0.096	U	0.096	0.0052
25429-29-2	Pentachlorobiphenyl	0.19	U	0.19	0.013
26914-33-0	Tetrachlorobiphenyl	0.19	U	0.19	0.013
25323-68-6	Trichlorobiphenyl	0.096	U	0.096	0.0063

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	71		25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW6A-061316 Lab Sample ID: 240-65994-4

Matrix: Water Lab File ID: Xf2114.D

Analysis Method: 680 Date Collected: 06/13/2016 12:41

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 1037.6(mL) Date Analyzed: 06/22/2016 01:59

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: _____ GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.29	U *	0.29	0.029
26601-64-9	Hexachlorobiphenyl	0.19	П *	0.19	0.014
53742-07-7	Nonachlorobiphenyl	0.48	П *	0.48	0.047
55722-26-4	Octachlorobiphenyl	0.29	Π *	0.29	0.037
27323-18-8	Monochlorobiphenyl	0.096	Π *	0.096	0.0054
2051-24-3	DCB Decachlorobiphenyl	0.48	Π *	0.48	0.067
25512-42-9	Dichlorobiphenyl	0.096	Π *	0.096	0.0052
25429-29-2	Pentachlorobiphenyl	0.19	Π *	0.19	0.013
26914-33-0	Tetrachlorobiphenyl	0.19	U *	0.19	0.013
25323-68-6	Trichlorobiphenyl	0.096	U *	0.096	0.0063

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	74	*	25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW6B-061316 Lab Sample ID: 240-65994-5

Matrix: Water Lab File ID: Xf2115.D

Analysis Method: 680 Date Collected: 06/13/2016 12:52

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 1042.4 (mL) Date Analyzed: 06/22/2016 02:27

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: _____ GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.29	U *	0.29	0.029
26601-64-9	Hexachlorobiphenyl	0.19	U *	0.19	0.014
53742-07-7	Nonachlorobiphenyl	0.48	U *	0.48	0.047
55722-26-4	Octachlorobiphenyl	0.29	U *	0.29	0.036
27323-18-8	Monochlorobiphenyl	0.096	U *	0.096	0.0054
2051-24-3	DCB Decachlorobiphenyl	0.48	П *	0.48	0.067
25512-42-9	Dichlorobiphenyl	0.096	Π *	0.096	0.0052
25429-29-2	Pentachlorobiphenyl	0.036	J *	0.19	0.013
26914-33-0	Tetrachlorobiphenyl	0.19	U *	0.19	0.012
25323-68-6	Trichlorobiphenyl	0.096	U *	0.096	0.0062

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	71	*	25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

% Moisture:

Client Sample ID: MRC-SW7A-061316 Lab Sample ID: 240-65994-6

Matrix: Water Lab File ID: Xf2116.D

Analysis Method: 680 Date Collected: 06/13/2016 12:18

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 501.9(mL) Date Analyzed: 06/22/2016 02:56

Con. Extract Vol.: .5 (mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

Analysis Batch No.: 438264 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.30	U	0.30	0.030
26601-64-9	Hexachlorobiphenyl	0.20	U	0.20	0.015
53742-07-7	Nonachlorobiphenyl	0.50	U	0.50	0.049
55722-26-4	Octachlorobiphenyl	0.30	U	0.30	0.038
27323-18-8	Monochlorobiphenyl	0.10	U	0.10	0.0056
2051-24-3	DCB Decachlorobiphenyl	0.50	U	0.50	0.070
25512-42-9	Dichlorobiphenyl	0.10	U	0.10	0.0054
25429-29-2	Pentachlorobiphenyl	0.20	U	0.20	0.014
26914-33-0	Tetrachlorobiphenyl	0.20	U	0.20	0.013
25323-68-6	Trichlorobiphenyl	0.10	U	0.10	0.0065

GPC Cleanup:(Y/N) N

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	68		25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW7B-061316 Lab Sample ID: 240-65994-7

Matrix: Water Lab File ID: Xf2117.D

Analysis Method: 680 Date Collected: 06/13/2016 12:24

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 1012.9(mL) Date Analyzed: 06/22/2016 03:25

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.30	U *	0.30	0.030
26601-64-9	Hexachlorobiphenyl	0.20	П *	0.20	0.015
53742-07-7	Nonachlorobiphenyl	0.49	П *	0.49	0.048
55722-26-4	Octachlorobiphenyl	0.30	Π *	0.30	0.038
27323-18-8	Monochlorobiphenyl	0.099	Π *	0.099	0.0055
2051-24-3	DCB Decachlorobiphenyl	0.49	Π *	0.49	0.069
25512-42-9	Dichlorobiphenyl	0.099	Π *	0.099	0.0053
25429-29-2	Pentachlorobiphenyl	0.20	Π *	0.20	0.014
26914-33-0	Tetrachlorobiphenyl	0.20	U *	0.20	0.013
25323-68-6	Trichlorobiphenyl	0.099	U *	0.099	0.0064

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	78	*	25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW8A-061316 Lab Sample ID: 240-65994-8

Matrix: Water Lab File ID: Xf2118.D

Analysis Method: 680 Date Collected: 06/13/2016 12:57

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 1039.4 (mL) Date Analyzed: 06/22/2016 03:54

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: _____ GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.29	U *	0.29	0.029
26601-64-9	Hexachlorobiphenyl	0.19	U *	0.19	0.014
53742-07-7	Nonachlorobiphenyl	0.48	U *	0.48	0.047
55722-26-4	Octachlorobiphenyl	0.29	U *	0.29	0.037
27323-18-8	Monochlorobiphenyl	0.096	U *	0.096	0.0054
2051-24-3	DCB Decachlorobiphenyl	0.48	П *	0.48	0.067
25512-42-9	Dichlorobiphenyl	0.096	Π *	0.096	0.0052
25429-29-2	Pentachlorobiphenyl	0.19	Π *	0.19	0.013
26914-33-0	Tetrachlorobiphenyl	0.19	U *	0.19	0.013
25323-68-6	Trichlorobiphenyl	0.096	U *	0.096	0.0063

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	72	*	25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW8B-061316 Lab Sample ID: 240-65994-9

Matrix: Water Lab File ID: Xf2119.D

Analysis Method: 680 Date Collected: 06/13/2016 13:04

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 1008.3(mL) Date Analyzed: 06/22/2016 04:22

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.30	U *	0.30	0.030
26601-64-9	Hexachlorobiphenyl	0.20	U *	0.20	0.015
53742-07-7	Nonachlorobiphenyl	0.50	U *	0.50	0.049
55722-26-4	Octachlorobiphenyl	0.30	U *	0.30	0.038
27323-18-8	Monochlorobiphenyl	0.099	U *	0.099	0.0056
2051-24-3	DCB Decachlorobiphenyl	0.50	U *	0.50	0.069
25512-42-9	Dichlorobiphenyl	0.099	U *	0.099	0.0054
25429-29-2	Pentachlorobiphenyl	0.20	U *	0.20	0.014
26914-33-0	Tetrachlorobiphenyl	0.20	U *	0.20	0.013
25323-68-6	Trichlorobiphenyl	0.099	U *	0.099	0.0064

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	67	*	25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW9A-061316 Lab Sample ID: 240-65994-10

Matrix: Water Lab File ID: Xf2120.D

Analysis Method: 680 Date Collected: 06/13/2016 12:29

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 1039.6(mL) Date Analyzed: 06/22/2016 04:51

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup: (Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.29	U	0.29	0.029
26601-64-9	Hexachlorobiphenyl	0.19	U	0.19	0.014
53742-07-7	Nonachlorobiphenyl	0.48	U	0.48	0.047
55722-26-4	Octachlorobiphenyl	0.29	U	0.29	0.037
27323-18-8	Monochlorobiphenyl	0.096	U	0.096	0.0054
2051-24-3	DCB Decachlorobiphenyl	0.48	U	0.48	0.067
25512-42-9	Dichlorobiphenyl	0.096	U	0.096	0.0052
25429-29-2	Pentachlorobiphenyl	0.19	U	0.19	0.013
26914-33-0	Tetrachlorobiphenyl	0.19	U	0.19	0.013
25323-68-6	Trichlorobiphenyl	0.096	U	0.096	0.0063

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	74		25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW9B-061316 Lab Sample ID: 240-65994-11

Matrix: Water Lab File ID: Xf2121.D

Analysis Method: 680 Date Collected: 06/13/2016 12:34

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 1038.3(mL) Date Analyzed: 06/22/2016 05:20

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.29	U	0.29	0.029
26601-64-9	Hexachlorobiphenyl	0.19	U	0.19	0.014
53742-07-7	Nonachlorobiphenyl	0.48	U	0.48	0.047
55722-26-4	Octachlorobiphenyl	0.29	U	0.29	0.037
27323-18-8	Monochlorobiphenyl	0.096	U	0.096	0.0054
2051-24-3	DCB Decachlorobiphenyl	0.48	U	0.48	0.067
25512-42-9	Dichlorobiphenyl	0.096	U	0.096	0.0052
25429-29-2	Pentachlorobiphenyl	0.19	U	0.19	0.013
26914-33-0	Tetrachlorobiphenyl	0.19	U	0.19	0.013
25323-68-6	Trichlorobiphenyl	0.096	U	0.096	0.0063

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	68		25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SWFB-061316 Lab Sample ID: 240-65996-1

Matrix: Water Lab File ID: Xf2122.D

Analysis Method: 680 Date Collected: 06/13/2016 00:00

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 1011.3(mL) Date Analyzed: 06/22/2016 05:48

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: _____ GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.30	U *	0.30	0.030
26601-64-9	Hexachlorobiphenyl	0.20	Π *	0.20	0.015
53742-07-7	Nonachlorobiphenyl	0.49	Π *	0.49	0.048
55722-26-4	Octachlorobiphenyl	0.30	Π *	0.30	0.038
27323-18-8	Monochlorobiphenyl	0.099	Π *	0.099	0.0055
2051-24-3	DCB Decachlorobiphenyl	0.49	Π *	0.49	0.069
25512-42-9	Dichlorobiphenyl	0.099	Π *	0.099	0.0053
25429-29-2	Pentachlorobiphenyl	0.20	Π *	0.20	0.014
26914-33-0	Tetrachlorobiphenyl	0.20	U *	0.20	0.013
25323-68-6	Trichlorobiphenyl	0.099	U *	0.099	0.0064

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	81	*	25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SWDUP2-061316 Lab Sample ID: 240-65996-5

Matrix: Water Lab File ID: Xf2123.D

Analysis Method: 680 Date Collected: 06/13/2016 00:00

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 1035.6(mL) Date Analyzed: 06/22/2016 06:17

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: _____ GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.29	U	0.29	0.029
26601-64-9	Hexachlorobiphenyl	0.19	U	0.19	0.014
53742-07-7	Nonachlorobiphenyl	0.48	U	0.48	0.047
55722-26-4	Octachlorobiphenyl	0.29	U	0.29	0.037
27323-18-8	Monochlorobiphenyl	0.097	U	0.097	0.0054
2051-24-3	DCB Decachlorobiphenyl	0.48	U	0.48	0.068
25512-42-9	Dichlorobiphenyl	0.097	U	0.097	0.0052
25429-29-2	Pentachlorobiphenyl	0.19	U	0.19	0.014
26914-33-0	Tetrachlorobiphenyl	0.19	U	0.19	0.013
25323-68-6	Trichlorobiphenyl	0.097	U	0.097	0.0063

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	78		25-113

Appendix C

Support Documentation

CASE NARRATIVE

Client: Tetra Tech, Inc.

Project: MRC Surface Water Sampling

Report Number: 240-65994-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

The 522 1,4-Dioxane analysis was performed at the TestAmerica Burlington laboratory. The 680 Polychlorinated Biphenyls analysis was performed at the TestAmerica Savannah laboratory.

TestAmerica Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

RECEIPT

The samples were received on 6/14/2016 9:20 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 6 coolers at receipt time were 1.1° C, 1.1° C, 1.2° C, 1.2° C, 2.0° C and 2.0° C.

One container for the following samples was received broken 1XL each for: MRC-SW5A2-061316 (240-65994-2) and MRC-SW7A-061316 (240-65994-6). There is one liter that remains for each sample to have the 680 PCB analysis extracted.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples MRC-SW5A1-061316 (240-65994-1), MRC-SWFB-061316 (240-65996-1), MRC-SW5A2-061316 (240-65994-2), MRC-SW1A-061316 (240-65996-2), MRC-SW5B-061316 (240-65994-3), MRC-SW2A-061316 (240-65996-3), MRC-SW6A-061316 (240-65994-4), TB-061316 (240-65996-4), MRC-SW6B-061316 (240-65994-5), MRC-SWDUP2-061316 (240-65996-5), MRC-SW7A-061316 (240-65994-6), MRC-SW7B-061316 (240-65994-7), MRC-SW8A-061316 (240-65994-8), MRC-SW8B-061316 (240-65994-9), MRC-SW9A-061316 (240-65994-10) and MRC-SW9B-061316 (240-65994-11) were analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260C. The samples were analyzed on 06/20/2016 and 06/21/2016.

The continuing calibration verification (CCV) associated with batch 240-235221 recovered above the upper control limit for multiple analytes. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: MRC-SWFB-061316 (240-65996-1), MRC-SW1A-061316 (240-65996-2), MRC-SW2A-061316 (240-65996-3), TB-061316 (240-65996-4) and MRC-SWDUP2-061316 (240-65996-5).

The continuing calibration verification (CCV) for analytical batch 235154 exceeded control criteria for multiple compounds. The samples associated with this CCV were non-detects for the affected analytes. In accordance with the laboratory SOP, a low level CCV at the reporting limit (labeled as an MRL) was analyzed and the affected compounds were detected; therefore the data has been reported. No further corrective action was required. The following samples were impacted: MRC-SW5A1-061316 (240-65994-1), MRC-SW5A2-061316 (240-65994-2), MRC-SW5B-061316 (240-65994-3), MRC-SW6A-061316 (240-65994-4), MRC-SW6B-061316 (240-65994-5), MRC-SW7A-061316 (240-65994-6), MRC-SW7B-061316 (240-65994-7), MRC-SW8A-061316 (240-65994-8), MRC-SW8B-061316 (240-65994-9), MRC-SW9A-061316 (240-65994-10) and MRC-SW9B-061316 (240-65994-11).

The laboratory control sample (LCS) for 235154 recovered outside control limits for the following analytes: Methylene Chloride. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported. The following samples were impacted: MRC-SW5A1-061316 (240-65994-1), MRC-SW5A2-061316 (240-65994-2), MRC-SW5B-061316 (240-65994-3), MRC-SW6A-061316 (240-65994-4), MRC-SW6B-061316 (240-65994-5), MRC-SW7A-061316 (240-65994-6).

MRC-SW7B-061316 (240-65994-7), MRC-SW8A-061316 (240-65994-8), MRC-SW8B-061316 (240-65994-9), MRC-SW9A-061316 (240-65994-10), MRC-SW9B-061316 (240-65994-11) and (LCS 240-235154/4).

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with 235310.MRC-SW7B-061316 (240-65994-7)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

1,4-DIOXANE

Samples MRC-SWFB-061316 (240-65996-1), MRC-SW1A-061316 (240-65996-2), MRC-SW2A-061316 (240-65996-3) and MRC-SWDUP1-061316 (240-65994-12) were analyzed for 1,4-Dioxane in accordance with EPA Method 522. The samples were prepared on 06/16/2016 and 06/22/2016 and analyzed on 06/17/2016 and 06/24/2016.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

POLYCHLORINATED BIPHENYLS (PCBS)

Samples MRC-SW5A1-061316 (240-65994-1), MRC-SWFB-061316 (240-65996-1), MRC-SW5A2-061316 (240-65994-2), MRC-SW5B-061316 (240-65994-3), MRC-SW6A-061316 (240-65994-4), MRC-SW6B-061316 (240-65994-5), MRC-SWDUP2-061316 (240-65996-5), MRC-SW7A-061316 (240-65994-6), MRC-SW7B-061316 (240-65994-7), MRC-SW8A-061316 (240-65994-8), MRC-SW8B-061316 (240-65994-9), MRC-SW9A-061316 (240-65994-10) and MRC-SW9B-061316 (240-65994-11) were analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA Method 680. The samples were prepared on 06/16/2016 and analyzed on 06/20/2016 and 06/22/2016.

The SOP for the 680 Method allows that the capping CCV for soils has the limit of <30% average %D with no analyte >60%D and for liquids <20% average D with no analyte >40%D. Due to software limitations for this method, the limits are set at <20%D and flags will appear on data when data is outside that criteria. (CCV 680-438006/20) has been flagged.

The internal standard response for the following samples was outside of acceptance limits when compared to the area of the CCVIS(continuing calibration verification internal standard). The 680 method allows that the sample also be compared to the average internal standard area of the calibration (ICISAV). Due to limitations in the software, when the areas of the sample are out of control for either the CCVIS or the ICISAV both are flagged. Although a * flag appears on the data, the sample is within the area range for the internal standard area of the calibration (ICISAV). MRC-SW5A1-061316 (240-65994-1MSD)

The internal standard response for the following samples was outside of acceptance limits when compared to the area of the internal standard area of the calibration (ICISAV). The 680 method allows that the sample also be compared to the internal standard area of the CCVIS(continuing calibration verification internal standard). Due to limitations in the software, when the areas of the sample are out of control for either the CCVIS or the ICISAV both are flagged. Although a * flag appears on the data, the sample is within the area range for the internal standard area of the CCVIS(continuing calibration verification internal standard). LCS 680-437585/16-A, MB 680-437585/15-A, MRC-SW5A1-061316 (240-65994-1) and MRC-SW5A1-061316 (240-65994-1MS)

The internal standard response for the following samples was outside of acceptance limits when compared to the area of the CCVIS(continuing calibration verification internal standard). The 680 method allows that the sample also be compared to the average internal standard area of the calibration (ICISAV). Due to limitations in the software, when the areas of the sample are out of control for either the CCVIS or the ICISAV both are flagged. Although a * flag appears on the data, the sample is within the area range for the internal standard area of the calibration (ICISAV). MRC-SWFB-061316 (240-65996-1), MRC-SW6A-061316 (240-65994-4), MRC-SW6B-061316 (240-65994-5), MRC-SW7B-061316 (240-65994-7), MRC-SW8A-061316 (240-65994-8) and MRC-SW8B-061316 (240-65994-9).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Method Summary

Client: Tetra Tech, Inc.

Project/Site: MRC Surface Water Sampling

TestAmerica Job ID: 240-65994-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL CAN
522 MOD	1,4 Dioxane (GC/MS SIM)	EPA	TAL BUR
680	Polychlorinated Biphenyls (PCBs) (GC/MS)	EPA	TAL SAV

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Sample Summary

Client: Tetra Tech, Inc. Project/Site: MRC Surface Water Sampling

TestAmerica Job ID: 240-65994-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-65994-1	MRC-SW5A1-061316	Water	06/13/16 13:13	06/14/16 09:20
240-65994-2	MRC-SW5A2-061316	Water	06/13/16 13:18	06/14/16 09:20
240-65994-3	MRC-SW5B-061316	Water	06/13/16 13:22	06/14/16 09:20
240-65994-4	MRC-SW6A-061316	Water	06/13/16 12:41	06/14/16 09:20
240-65994-5	MRC-SW6B-061316	Water	06/13/16 12:52	06/14/16 09:20
240-65994-6	MRC-SW7A-061316	Water	06/13/16 12:18	06/14/16 09:20
240-65994-7	MRC-SW7B-061316	Water	06/13/16 12:24	06/14/16 09:20
240-65994-8	MRC-SW8A-061316	Water	06/13/16 12:57	06/14/16 09:20
240-65994-9	MRC-SW8B-061316	Water	06/13/16 13:04	06/14/16 09:20
240-65994-10	MRC-SW9A-061316	Water	06/13/16 12:29	06/14/16 09:20
240-65994-11	MRC-SW9B-061316	Water	06/13/16 12:34	06/14/16 09:20
240-65994-12	MRC-SWDUP1-061316	Water	06/13/16 00:00	06/14/16 09:20
240-65996-1	MRC-SWFB-061316	Water	06/13/16 00:00	06/14/16 09:20
240-65996-2	MRC-SW1A-061316	Water	06/13/16 11:51	06/14/16 09:20
240-65996-3	MRC-SW2A-061316	Water	06/13/16 11:58	06/14/16 09:20
240-65996-4	TB-061316	Water	06/13/16 00:00	06/14/16 09:20
240-65996-5	MRC-SWDUP2-061316	Water	06/13/16 00:00	06/14/16 09:20

180325 Oil/ North Canton 4101 Shuffel Street, N. W. **Chain of Custody Record** BALTIMORE North Canton, OH 44720 phone 330.497.9396 fax 330.497.0772 TestAmerica Laboratories, Inc. Client Contact Project Manager: Tony Apanavage Site Contact: Tony Apanavage Date: 6/13/2016 COC No: Tel/Fax: 301-233-8230 (cell) Tetra Tech Lab Contact: John McFadden Carrier: Fedex 1 of 2 COCs 20251 Century Blvd, Suite 200 **Analysis Turnaround Time** Job No. Germantown, MD 20874 Calendar (C) or Work Days (W) (301) 528-3021 Phone TAT if different from Below: STANDARD (301) 528-3000 FAX 2 weeks SDG No. Project Name: MRC Surface Water Sampling 1 week Site: MRC Dark Head Cove / Cow Per Creek 2 days Project # 112IC07776.07 1 day VOCs (8260C) Sampler: MULLIS Sample Sample Sample Sample Identification Date Time Type Matrix Cont. Sample Specific Notes: 1313 MRC-SW5A1-061316 6/13/2016 Water 5 6/13/2016 318 MRC-SW5A2-061316 5 Water MRC-SW5B-06 316 6/13/2016 Water 5 <u>P</u>a¢e 6/13/2016 1241 MRC-SW6A-06 316 Water 5 MRC-SW6B-06 B16 6/13/2016 Water 5 <u>3</u> 3 6/13/2016 MRC-SW7A-06 316 Water 5 6/13/2016 1277 MRC-SW7B-06 316 Water 5 MRC-SW8A-06 316 6#13/2016 Water 5 MRC-SW8B-06 316 6/13/2016 Water 6/13/2016 1229 MRC-SW9A-06 316 Water MRC-SW9B-06 316 6/13/2016 Water 5 PMRC SWOUD STORE MACGINEPT- WIRIG/13/2016 MPL-Swirft-Obl3/6 Water P-4 Preservation Used: 1= Lee, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) ☐ Flammable Non-Hazard Disposal By Lab Skin Irritant Unknown Return To Client Archive For Months Special Instructions/QC Requirements & Comments: MRC-SWEUF1-061316 for 14-dokune only Relinquished by:

Company:

Relinquished by

Relinguished by:

Form No. CA-C-WI-002, Rev. 2, dated 03/06/2012

TestAmerica Canton Sample Receipt Form/Narrative Logic	n#: 05994
Canton Facility	и и
Client Tetra Tech Site Name	Cooler unpacked by:
Cooler Received on O6-14-16 Opened on O6-14-16	$ O_{SO} $
FedEx: 1st Grd Exp UPS FAS Stetson Client Drop Off TestAmerica Courier	Other
Receipt After-hours: Drop-off Date/Time Storage Location	
TestAmerica Cooler # Balk we Foam Box Client Cooler Box Other	
Packing material used: But ble Wrap Foam Plastic Bag None Other	
COOLANT: Wet Ide Blue Ice Dry Ice Water None 1. Cooler temperature upon receipt See Multiple Cooler For	
1. Cooler temperature upon receipt IR GUN# IR-8 (CF-+1.3 °C) Observed Cooler Temp. See Multiple Cooler For Corrected Cooler Temp.	emp. °C
IR GUN #36 (CF +1.0°C) Observed Cooler Temp. °C Corrected Cooler Te	emp. °C
2. Were custody seals on the outside of the cooler(s)? If Yes Quantity Pach Yes	
	s No NA
-Were custody seals on the bottle(s) or bottle kits (LLHg/MeHg)?	. •
3. Shippers' packing slip attached to the cooler(s)?	
4. Did custody papers accompany the sample(s)?	No
5. Were the custody papers relinquished & signed in the appropriate place? 6. Was/were the person(s) who collected the samples clearly identified on the COC?	No No
1 - 1	10
	No
9. Were correct bottle(s) used for the test(s) indicated?	No
10. Sufficient quantity received to perform indicated analyses?	No
11. Are these work share samples?	100
If yes, Questions 11-15 have been checked at the originating laboratory.	No
	No Pri Strip Lot# HC5/4/50
	s (N) NA
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot # Yes	
15. Was a LL Hg or Me Hg trip blank present? Yes Contacted PM Date by via Verbal Ve	₩
Contacted PM Date by via Verbal Ver	oice Mail Other
Concerning	
14. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	Samples processed by:
Sample'S MRC-SWSAZ and MRC-SW7A each	
Titie Amber. Samplès MRC-SWSAI MRC-SWSA	2/ MRC-SUBA COUL
had one lid broken on Ambers.	
	
	v
15. SAMPLE CONDITION	and the standard and
Sample(s) were received after the recommended holding Sample(s) were received	in a broken container
Sample(s) were received with bubble >6 mm ir	l l
Sample(s)were received with outbole >0 min in	diamotor. (110tily 1111)
16. SAMPLE PRESERVATION	
0 - 1.()	they preserved in the laboratory
Sample(s) were furt Time preserved: Preservative(s) added/Lot number(s):	ther preserved in the laboratory.
1 mo proserva1 reservative(s) added Decinamov(s).	

Ref:-SOP-NC-SC-0005-Sample-Receiving-L:\QAQC\QA Department\QA TARDIS\Document Control\Work Instructions\In Revision\W1-NC-099-061316 Cooler Receipt Form.doc djl

Cooler #	IR Gun#	Observed Temp °C	Corrected Temp	Coolant
Balt:min	36	1.0	2.0	Ice
		0,2	1.7	1
	b	0.1	1.1	V
menter and has many and a series of the contract of the contra	AND THE PROPERTY OF A THE PROP	A selection with the control of the control of the selection of the control of th		manya firmininin manamanashin menanashi aliku a ta'u ji an genera a na sa
	<u> </u>			
	- to			
1				
			delta della	
٠,	·			•
			r _t ,	
			July th COV 30 offer.	

6/14/2016

Login Container Summary Report

240-65994

Temperature readings:			-		
Client Sample ID	<u>Lab ID</u>	Container Type	Container pH	Preservative Added (mls)	Lot #
MRC-SWAPT-061316	240-65994-A-12	Amber Glass 250mL - hydrochloric	<2		
MRC-SWAPT-061316	240-65994-B-12	Amber Glass 250mL - hydrochloric	<2		
					-
	·				

18**080325**

North Canton

4101 Shuffel Street, N. W.

North Canton, OH 44720 phone 330.497.9396 fax 330.497.0772

BABALTIMORE

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc.

p.10.10 000115113050	Client Conta	ct		Project Man	ager: Tony	Apanavag	e		Site (Conta	ct: To	ony Ap	anavage	e		Dat	e: 6	/13/2	2016			T:		COC No:	\neg
Tetra Tech				Tel/Fax: 301	-233-8230	(cell)			Lab	Conta	act: Jo	hn Mo	fadden			Carr	ier:	Fede	x			İ		2 of 2 COCs	\neg
20251 Century Blvd	, Suite 200			I	Analysis Tu	rnaround I	ſime		П					T			Т	\top	T	T				Job No.	\neg
Germantown, MD 2	0874			Calendar	(C) or Wo	k Days (W)			11																
(301) 528-3021	Phor	ie		TAT	if different fro	m Below; STA	NDARD]	ı	1 1			ĺ							1				
(301) 528-3000	FA	X			2	weeks								-				- [İ		H			SDG No.	
Project Name: MRC	Surface Water S	mpling			1	week			П								1					1			
Site: MRC Dark He	ad Cove / Cow Per	Creek			2	days					ล									İ		H		i .	. 1
Project # 112IC077	76.07				1	day			Tal 2	3	(522)					l	1							Sampler: Mullis	
									Filtered Sample	PCBs (680)	1,4-Dioxane									1	1.				
				Sample	Sample	Sample		# of	tere	3 g	ặ	ŀ					- -						ļ	<u> </u>	
	Sample Identific	ation		Date	Time	Туре	Matrix	Cont.		2 2	4,1			_				_	-	<u> </u>		Ш		Sample Specific Notes:	
	MRC-SWFB-06	1316			000	sw	Water	7	x	x	x			_			_		$\downarrow \downarrow$	1.				Field Rinsate Blank	
	MRC-SW1A-06	1316		6/13/2016	[15]	SW	Water	5	x		x						- 1			1.	1			!	l
	MRC-SW2A-06	1316	_	6/13/2016	1158	sw	Water	5	x		x						!								
Page 317 of 320	TB-061316			6/13/2016	2000	sw	Water	2	l x					T		П					1				-
Ö	MBC=SWOO	0-2	16/2//	6/13/2010			witer	5	١,	ž X	,			†			_	+	+	1:	:11	1	1	0 / 1 2	\dashv
3	1,200 70000		01710	0/19 200		100	DAIL!		╀		╅┈┤			┼┈	╁	┢	- -		- -	1 3	+	┼╫	 	Ouplicate 2	
9									Ш		$\perp \perp$						1							<u> </u>	.
ယ္လ						!			Ιİ											T i					
0							1		11		11		\Box	1		•	٠		-1	1	 	1 - 1	l		-
							<u> </u>		╂╌┠	-	+	_	+					Hillin	ii m	1 1000	 		ļ <u></u>		
										1				1									Ш	Ì	I
														11									Ш		\neg
							 		+	\dashv	+		++	- 11				l III.					III	i	
							ļ		$oldsymbol{\perp}$	_ _	1	_		24	10-65	996	Chá	in of	Cus	todv	, HILD TÄH	11111	111		
									11	-							ľ	ī	I	1	1 :				
Preservation Used:	16 e. 2= HCl: 3	H2SO4:	4=HNO3: 5=NaO	H; 6= Other		<u> </u>			_	2 1	1		11		†	-	7	+	十	╅	+	1 1	1	 	
Possible Hazard Ide	ntification			,								sposa	I (A fee	ma	y be	ass	esse	ed if	sami	ples	are	reta	ine	d longer than 1 month)	—
Non-Hazard	Flammable		Skin Irritant	Poison B	. \square	Unknown					Retu	rn To (Client	(Disp	osai	l By I	ab		\Box	Arc	chiv	re For Months	ļ
Special Instructions		& Comm	ents: AAD Co	SW OUP	5 ~26	13/1	60 1	F3/6	<i>e</i>	0	ar	RC				·						i:		nonata s	$\overline{}$
			101100	76000	2 00	1716	cos u	وساماء	W.		ru	دار						•						1	l
Relinquished by:	11 1-	 		Company:	J*'. 1		Date/Ti	ne:	R	Receiv	ed by:	Kh	7/	广			7	Comp	any;	1	. '	r	<u> </u>	Date/Time:	\dashv
	VELO L			Comment	ELL	<u> </u>	Date/Ti	122					-	<u> </u>			_	16	310	<u> Im</u>	<u>C/1</u>	Ca	ļ	Date/Time: (6/13/16/1525	
Relinquished by:	Perhal			Company/	Me Pico	1 6/1	3/6/		_ 1/	CEGEIX	ed by:	~	(6)	L	_	_	ľ	Conn	jany:	\mathcal{C}		1.		Date/Time: 6/14/16 4:70	, ,
Relinquished by:	1			Company:	<u> </u>		Date/Ti			Receiv	ed by:	:					7	Comp	any:		īΪ			Date/Time:	\dashv
	<i>V</i>			1]												_		1 '			}	
																					F	orm	No.	CA-C-WI-002, Rev. 2, dated 03/06/2	2012

	TestAmerica Canton Sample Receipt Form/Narrative Logic	n#:65996
	Client Tetra Tech Site Name	Cooler unpacked by:
	Cooler Received on 06-14-16 Opened on 06-14-16	O20
	FedEx: 1st Grd (x) UPS FAS Stetson Client Drop Off TestAmerica Courier	Other
	Receipt After-hours: Drop-off Date/Time Storage Location	
'	Foam Box Client Cooler Box Other Packing material used: Bubble Wrap Foam Plastin Bag None Other	
_ -	Packing material used: Buble Wrap Foam Plast Bag None Other COOLANT: We fice Blue Ice Dry Ice Water None	
	I. Cooler temperature upon receipt IR GUN# IR-8 (CF +1.3 °C) Observed Cooler Temp. IR GUN #36 (CF +1.0 °C) Observed Cooler Temp. OC Corrected Cooler Temp. OC Corrected Cooler Temp. OC Corrected Cooler Temp. OC Corrected Cooler Temp. OC Corrected Cooler Temp. OC Corrected Cooler Temp. OC Corrected Cooler Temp.	Cemp°C emp°C
3 3 4 5 8 9 9 1 1 1 1 1 1 1 1 1 1	-Were custody seals on the outside of the cooler(s) signed & dated? -Were custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? Shippers' packing slip attached to the cooler(s)? Did custody papers accompany the sample(s)? Were the custody papers relinquished & signed in the appropriate place? Was/were the person(s) who collected the samples clearly identified on the COC? Did all bottles arrive in good condition (Unbroken)? Could all bottle labels be reconciled with the COC? Were correct bottle(s) used for the test(s) indicated? Sufficient quantity received to perform indicated analyses? Are these work share samples? If yes, Questions 11-15 have been checked at the originating laboratory. Were sample(s) at the correct pH upon receipt? Were VOAs on the COC?	S No NA S No S No S No S No S No S No S No S No
	4. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	Samples processed by:
- - - - - 1	5. SAMPLE CONDITION	£-
S	ample(s)were received after the recommended holding	
	ample(s) were received ample(s) were received with bubble >6 mm in	in a broken container.
3	ample(s)were received with onpose >0 tilli ii	in diameter. (Notify 1 191)
1	6. SAMPLE PRESERVATION	
S	P	ther preserved in the laboratory.

Ref: SOP NC-SC-0005, Sample Receiving.

L:\QAQC\QA Department\QA TARDIS\Document Control\Work Instructions\In Revision\WI-NC-099-061316 Cooler Receipt Form.doc djl

Cooler#	IR Gun#	Observed Temp °C	Login#: 1/5996 Corrected Temp °C	Coolant
Q W.	36			T(1
Bult: more	36	1.0	2.0	FCC
		0.2	1.7	
4	Ф	0.1		y
	Z 410 7/7 1100 / 200			
				46 to
	·			
		•		
		1		
			· · · · · · · · · · · · · · · · · · ·	
	•			
`,				
		· · · · · · · · · · · · · · · · · · ·		
				•
			0,5	
			v v	
				·
,				

Temperature readings:					
Client Sample ID	<u>Lab ID</u>	Container Type	Container pH	Preservative Added (mls)	Lot #
MRC-SWFB-061316	240-65996-D-1	Amber Glass 250mL - hydrochloric	<2		
MRC-SWFB-061316	240-65996-E-1	Amber Glass 250mL - hydrochloric	<2		
_MRC-SW1A-0613-16	240=65996=D=2	- Amber Glass-250mL - hydrochloric	<2		
MRC-SW1A-061316	240-65996-E-2	Amber Glass 250mL - hydrochloric	<2		
MRC-SW2A-061316	240-65996-D-3	Amber Glass 250mL - hydrochloric	<2		
MRC-SW2A-061316	240-65996-E-3	Amber Glass 250mL - hydrochloric	<2		

Page 1 of 1

Method 8260C

Volatile Organic Compounds (GC/MS) by Method 8260C

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab File ID: BFB6528.D BFB Injection Date: 05/28/2016

Instrument ID: A3UX11 BFB Injection Time: 08:28

Analysis Batch No.: 232366

M/E	ION ABUNDANCE CRITERIA		ATIVE DANCE
50	15.0 - 40.0 % of mass 95	15.5	
75	30.0 - 60.0 % of mass 95	43.7	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.4	
173	Less than 2.0 % of mass 174	0.0	(0.0) 1
174	50.0 - 120.00 % of mass 95	89.7	
175	5.0 - 9.0 % of mass 174	6.8	(7.6) 1
176	95.0 - 101.0 % of mass 174	86.3	(96.2) 1
177	5.0 - 9.0 % of mass 176	5.8	(6.7) 2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	STD8260 240-232366/2	UXJ4939.D	05/28/2016	09:12
	STD8260 240-232366/3	UXJ4940.D	05/28/2016	09:34
	STD8260 240-232366/4	UXJ4941.D	05/28/2016	09:56
	STD8260 240-232366/5	UXJ4942.D	05/28/2016	10:19
	STD8260 240-232366/6	UXJ4943.D	05/28/2016	10:40
	STD8260 240-232366/7	UXJ4944.D	05/28/2016	11:03
	ICV 240-232366/14	UXJ4945.D	05/28/2016	11:25
	ICV 240-232366/15	UXJ4952.D	05/28/2016	14:03

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab File ID: BFB6620.D BFB Injection Date: 06/20/2016

Instrument ID: A3UX11 BFB Injection Time: 09:01

Analysis Batch No.: 235154

M/E	ION ABUNDANCE CRITERIA	% REL ABUNI	
50	15.0 - 40.0 % of mass 95	16.2	
75	30.0 - 60.0 % of mass 95	46.4	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.6	
173	Less than 2.0 % of mass 174	0.0	(0.0) 1
174	50.0 - 120.00 % of mass 95	84.1	
175	5.0 - 9.0 % of mass 174	6.4	(7.6) 1
176	95.0 - 101.0 % of mass 174	81.9	(97.4) 1
177	5.0 - 9.0 % of mass 176	5.4	(6.6) 2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 240-235154/2	UXJ5601.D	06/20/2016	09:34
	LCS 240-235154/4	UXJ5602.D	06/20/2016	09:57
	CCV 240-235154/3	UXJ5603.D	06/20/2016	10:20
	MB 240-235154/6	UXJ5605.D	06/20/2016	11:05
MRC-SW5A1-061316	240-65994-1	UXJ5610.D	06/20/2016	13:13
MRC-SW5A2-061316	240-65994-2	UXJ5611.D	06/20/2016	13:35
MRC-SW5B-061316	240-65994-3	UXJ5612.D	06/20/2016	13:57
MRC-SW6A-061316	240-65994-4	UXJ5613.D	06/20/2016	14:20
MRC-SW6B-061316	240-65994-5	UXJ5614.D	06/20/2016	14:43
MRC-SW7A-061316	240-65994-6	UXJ5615.D	06/20/2016	15:05
MRC-SW7B-061316	240-65994-7	UXJ5616.D	06/20/2016	15:27
MRC-SW8A-061316	240-65994-8	UXJ5617.D	06/20/2016	15:49
MRC-SW8B-061316	240-65994-9	UXJ5618.D	06/20/2016	16:12
MRC-SW9A-061316	240-65994-10	UXJ5619.D	06/20/2016	16:34
MRC-SW9B-061316	240-65994-11	UXJ5620.D	06/20/2016	16:57
	240-65995-B-5 MS	UXJ5626.D	06/20/2016	19:12
	240-65995-B-5 MSD	UXJ5627.D	06/20/2016	19:35

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab File ID: BFB6621.D BFB Injection Date: 06/21/2016

Instrument ID: A3UX11 BFB Injection Time: 08:00

Analysis Batch No.: 235310

M/E	ION ABUNDANCE CRITERIA	·	LATIVE DANCE
50	15.0 - 40.0 % of mass 95	17.1	
75	30.0 - 60.0 % of mass 95	46.0	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.6	
173	Less than 2.0 % of mass 174	0.0	(0.0) 1
174	50.0 - 120.00 % of mass 95	82.2	
175	5.0 - 9.0 % of mass 174	7.0	(8.5) 1
176	95.0 - 101.0 % of mass 174	80.6	(98.1) 1
177	5.0 - 9.0 % of mass 176	5.7	(7.1) 2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 240-235310/2	UXJ5658.D	06/21/2016	08:52
	CCV 240-235310/3	UXJ5660.D	06/21/2016	09:36
	LCS 240-235310/4	UXJ5661.D	06/21/2016	10:17
	MB 240-235310/6	UXJ5663.D	06/21/2016	11:01
MRC-SW7B-061316	240-65994-7	UXJ5670.D	06/21/2016	13:59

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab File ID: BFB4865.D BFB Injection Date: 06/01/2016

Instrument ID: A3UX16 BFB Injection Time: 11:38

Analysis Batch No.: 232711

M/E	ION ABUNDANCE CRITERIA		LATIVE DANCE
50	15.0 - 40.0 % of mass 95	16.1	
75	30.0 - 60.0 % of mass 95	47.6	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.2	
173	Less than 2.0 % of mass 174	0.4	(0.5) 1
174	50.0 - 120.00 % of mass 95	74.9	
175	5.0 - 9.0 % of mass 174	5.3	(7.1) 1
176	95.0 - 101.0 % of mass 174	73.3	(97.9) 1
177	5.0 - 9.0 % of mass 176	5.1	(7.0) 2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	STD8269 240-232711/2	UXM5570.D	06/01/2016	12:06
	STD8260 240-232711/3	UXM5571.D	06/01/2016	12:29
	STD8260 240-232711/4	UXM5572.D	06/01/2016	12:51
	STD8260 240-232711/5	UXM5573.D	06/01/2016	13:14
	STD8260 240-232711/6	UXM5574.D	06/01/2016	13:37
	STD8260 240-232711/7	UXM5575.D	06/01/2016	14:00
	STD8260 240-232711/8	UXM5576.D	06/01/2016	14:22
	ICV 240-232711/9	UXM5577.D	06/01/2016	14:45
	ICV 240-232711/16	UXM5584.D	06/01/2016	17:24

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab File ID: BFB4888.D BFB Injection Date: 06/20/2016

Instrument ID: A3UX16 BFB Injection Time: 11:25

Analysis Batch No.: 235221

M/E	ION ABUNDANCE CRITERIA		ATIVE DANCE
50	15.0 - 40.0 % of mass 95	18.0	
75	30.0 - 60.0 % of mass 95	48.4	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.3	
173	Less than 2.0 % of mass 174	0.2	(0.2) 1
174	50.0 - 120.00 % of mass 95	74.1	
175	5.0 - 9.0 % of mass 174	5.1	(6.9) 1
176	95.0 - 101.0 % of mass 174	72.1	(97.3) 1
177	5.0 - 9.0 % of mass 176	4.5	(6.2) 2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	LCS 240-235221/4	UXM6059.D	06/20/2016	12:25
	CCVIS 240-235221/2	UXM6060.D	06/20/2016	12:47
	CCV 240-235221/3	UXM6061.D	06/20/2016	13:10
	MB 240-235221/6	UXM6063.D	06/20/2016	13:55
	240-65962-B-1 MS	UXM6071.D	06/20/2016	16:56
	240-65962-B-1 MSD	UXM6072.D	06/20/2016	17:19
MRC-SWFB-061316	240-65996-1	UXM6074.D	06/20/2016	18:04
MRC-SW1A-061316	240-65996-2	UXM6075.D	06/20/2016	18:27
MRC-SW2A-061316	240-65996-3	UXM6076.D	06/20/2016	18:50
TB-061316	240-65996-4	UXM6077.D	06/20/2016	19:12
MRC-SWDUP2-061316	240-65996-5	UXM6078.D	06/20/2016	19:35

Lab Name: TestAmerica Canton Job No.: 240-65994-1 Analy Batch No.: 232366

SDG No.:

Instrument ID: A3UX11 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 05/28/2016 09:12 Calibration End Date: 05/28/2016 11:03 Calibration ID: 34632

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	STD8260 240-232366/7	UXJ4944.D
Level 2	STD8260 240-232366/6	UXJ4943.D
Level 3	STD8260 240-232366/5	UXJ4942.D
Level 4	STD8260 240-232366/4	UXJ4941.D
Level 5	STD8260 240-232366/3	UXJ4940.D
Level 6	STD8260 240-232366/2	UXJ4939.D

ANALYTE			RRF			CURVE		COEFFICIE	NT #	MIN RRF	%RSD				
	LVL 1 LVL 6	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%RS	D OR C	DD	OR COD
Dichlorodifluoromethane	0.1874 0.1365	0.1804	0.1569	0.1477	0.1345	Ave		0.1572		0.1000	14.2	20	. 0		
Chloromethane	0.2347	0.2368	0.2391	0.2296	0.2034	Ave		0.2254		0.1000	6.8	20	. 0		
Vinyl chloride	0.2661	0.2726	0.2549	0.2398	0.2079	Ave		0.2393		0.1000	13.3	20	. 0		
Butadiene	0.2902 0.1915	0.2430	0.2236	0.2072	0.1931	Ave		0.2248			16.7	20	. 0		
Bromomethane	0.1050 0.1039	0.1171	0.1178	0.1085	0.1034	Ave		0.1093		0.0500	6.0	20	. 0		
Chloroethane	0.1242	0.1183	0.1173	0.1128	0.1037	Ave		0.1134		0.0500	7.2	20	. 0		
Dichlorofluoromethane	0.2652	0.2510	0.2494	0.2472	0.2313	Ave		0.2466			4.9	20	. 0		
Trichlorofluoromethane	0.1586 0.1718	0.1896	0.1718	0.1763	0.1658	Ave		0.1723		0.1000	6.1	20	. 0		
Ethyl ether	0.2791	0.2355	0.2143	0.2247	0.1967	Ave		0.2239			14.1	20	. 0		
Acrolein	0.0309	0.0362	0.0322	0.0324	0.0295	Ave		0.0316			8.6	20	. 0		
1,1-Dichloroethene	0.1891	0.1879	0.1767	0.1764	0.1670	Ave		0.1767		0.1000	6.0	20	. 0		
1,1,2-Trichloro-1,2,2-trifluoroethane	0.1179 0.1005	0.1146	0.1068	0.1044	0.0984	Ave		0.1071		0.0500	7.2	20	. 0		
Acetone	0.1159 0.0473	0.0784	0.0616	0.0562	0.0505	Lin1	0.1399	0.0464		0.0100			0.99	90	0.9900
Iodomethane	0.2712	0.2508	0.2518	0.2412	0.2336	Ave		0.2451			7.0	20	. 0		
Carbon disulfide	0.5031	0.4698	0.4742	0.4421	0.4373	Ave		0.4562		0.1000	7.2	20	. 0		

Lab Name: TestAmerica Canton Job No.: 240-65994-1 Analy Batch No.: 232366

SDG No.:

Instrument ID: A3UX11 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 05/28/2016 09:12 Calibration End Date: 05/28/2016 11:03 Calibration ID: 34632

ANALYTE			RRF			CURVE		COEFFICIE	ENT	# MIN RRF	%RSD	#	MAX	R^2	#	MIN R^2
	LVL 1 LVL 6	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD		OR COD
3-Chloro-1-propene	0.1477 0.1632	0.1624	0.1618	0.1717	0.1628	Ave		0.1616			4.8		20.0			
Methyl acetate	0.1492 0.1172	0.1415	0.1379	0.1354	0.1267	Ave		0.1347		0.1000	8.4		20.0			
Methylene Chloride	0.4395 0.1915	0.3287	0.2437	0.2251	0.2061	Lin1	0.2668	0.1891		0.1000				0.9990		0.9900
2-Methyl-2-propanol	0.0152	0.0127	0.0136	0.0126	0.0116	Ave		0.0132			10.4		20.0			
Acrylonitrile	0.0740 0.0627	0.0715	0.0721	0.0723	0.0674	Ave		0.0700			6.0		20.0			
Methyl tert-butyl ether	0.6968	0.6644	0.6642	0.6935	0.6425	Ave		0.6617		0.1000	5.0		20.0		П	
trans-1,2-Dichloroethene	0.2888	0.2625	0.2591	0.2657	0.2505	Ave		0.2620		0.1000	5.8		20.0		П	
Hexane	0.0673 0.0553	0.0534	0.0515	0.0545	0.0543	Ave		0.0561			10.1		20.0		П	
1,1-Dichloroethane	0.4677 0.4326	0.4478	0.4396	0.4565	0.4422	Ave		0.4477		0.2000	2.8		20.0			
Vinyl acetate	0.4182 0.3938	0.4338	0.4161	0.4307	0.4152	Ave		0.4179			3.4		20.0			
cis-1,2-Dichloroethene	0.2801 0.2752	0.2762	0.2735	0.2834	0.2738	Ave		0.2770		0.1000	1.4		20.0			
2-Butanone (MEK)	0.0983	0.0786	0.0817	0.0829	0.0790	Ave		0.0824		0.0100	10.2		20.0			
2,2-Dichloropropane	0.2080 0.1863	0.1876	0.1977	0.2027	0.1990	Ave		0.1969			4.3		20.0			
Chlorobromomethane	0.1272 0.1276	0.1218	0.1259	0.1333	0.1309	Ave		0.1278			3.1		20.0		П	
Tetrahydrofuran	0.0601	0.0557	0.0518	0.0536	0.0500	Ave		0.0529			9.1		20.0		П	
Chloroform	0.4249	0.3907	0.3887	0.4080	0.4090	Ave		0.4028		0.2000	3.4		20.0			
1,1,1-Trichloroethane	0.2866 0.2625	0.2619	0.2664	0.2757	0.2770	Ave		0.2717		0.1000	3.6		20.0		\Box	
Cyclohexane	0.3397 0.2916	0.3042	0.2938	0.2971	0.2985	Ave		0.3041		0.1000	5.9		20.0		\parallel	
1,1-Dichloropropene	0.3733 0.3357	0.3276	0.3319	0.3472	0.3430	Ave		0.3431			4.8		20.0		\parallel	
Carbon tetrachloride	0.2549 0.2547	0.2228	0.2418	0.2613	0.2561	Ave		0.2486		0.1000	5.7		20.0		\Box	

Lab Name: TestAmerica Canton Job No.: 240-65994-1 Analy Batch No.: 232366

SDG No.:

Instrument ID: $\underline{\text{A3UX11}}$ GC Column: $\underline{\text{DB-624}}$ ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 05/28/2016 09:12 Calibration End Date: 05/28/2016 11:03 Calibration ID: 34632

ANALYTE			RRF			CURVE TYPE		COEFFICI	ENT	#	MIN RRF	%RSD	# MAX %RSD	R^2 OR COD	# MIN R^2 OR COD
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				*KSD	OR COD	OR COD
	LVL 6														
Isobutyl alcohol	0.0062	0.0059	0.0063	0.0071	0.0058	Ave		0.0060				14.3	20.0		
1,2-Dichloroethane	0.0045	0.2707	0.2764	0.2862	0 0050	2 -		0.2815			0 1000	3.7	20.0		
1,2-Dichioroethane	0.2981	0.2707	0.2/64	0.2862	0.2852	Ave		0.2815			0.1000	3.7	20.0		
Benzene	1.0915	1.0274	1.0168	1.0745	1.0726	Ave		1.0572			0.5000	2.8	20.0		
	1.0604														
n-Heptane	0.0767	0.0637	0.0501	0.0519	0.0539	Ave		0.0587				17.0	20.0		
	0.0562														
Trichloroethene	0.2904	0.2627	0.2619	0.2746	0.2860	Ave		0.2761			0.1500	4.3	20.0		
Methylcyclohexane	0.2807	0.3438	0 2040	0.3065	0.3225	7		0.3306			0.1000	9.8	20.0		
Methylcyclonexane	0.3699	0.3430	0.3046	0.3063	0.3223	Ave		0.3300			0.1000	9.0	20.0		
1,2-Dichloropropane	0.2636	0.2477	0.2418	0.2504	0.2626	Ave		0.2533			0.1000	3.4	20.0		
, 1 1	0.2540														
Dibromomethane	0.1260	0.1267	0.1228	0.1240	0.1303	Ave		0.1259				2.0	20.0		
	0.1258														
1,4-Dioxane	0.0010	0.0013	0.0014	0.0016	0.0017	Lin1	-0.017	0.0017						0.9990	0.9900
Dichlorobromomethane	0.2938	0.2907	0 2723	0.2880	0.3112	Δττο		0.2929			0.1500	4.5	20.0		
DIGITOTODIO MONG CITATIO	0.3017	0.2307	0.2723	0.2000	0.0112	1100		0.2323			0.1000	1.0	20.0		
2-Chloroethyl vinyl ether	0.1384	0.1484	0.1416	0.1458	0.1535	Ave		0.1454				3.6	20.0		
	0.1445														
cis-1,3-Dichloropropene	0.3776	0.3788	0.3775	0.4025	0.4308	Ave		0.3977			0.1500	5.9	20.0		
	0.4191														
4-Methyl-2-pentanone (MIBK)	0.1794	0.1670	0.1634	0.1645	0.1729	Ave		0.1675			0.0500	4.5	20.0		
Toluene	0.1579 1.6592	1.5809	1 5500	1.6505	1.6591	7		1.6133			0.4000	3.0	20.0		
Toluene	1.6592	1.5809	1.3386	1.0505	1.0591	Ave		1.0133			0.4000	3.0	20.0		
trans-1,3-Dichloropropene	0.4368	0.4583	0 4669	0.5112	0 5324	Δττο		0.4831			0.1000	7.4	20.0		
crand 1,0 Brenieropropene	0.4929	0.1000	0.1003	0.0112	0.0021	1100		0.1001			0.1000	, • •	20.0		
Ethyl methacrylate	0.4247	0.4124	0.4087	0.4397	0.4428	Ave		0.4217				4.0	20.0		
1	0.4021														
1,1,2-Trichloroethane	0.2779	0.2893	0.2905	0.2951	0.3013	Ave		0.2874			0.1000	4.0	20.0		
	0.2701														
Tetrachloroethene	0.3260	0.2891	0.2964	0.3117	0.3178	Ave		0.3065			0.1500	4.6	20.0		
1 2 2 1 1	0.2981	0 505:	0 5441	0 5 4 0 5	0 5 4 4 5			0.5005				0.0			
1,3-Dichloropropane	0.5178	0.5274	0.5141	0.5435	0.5440	Ave		0.5237				3.6	20.0		
2-Hexanone	0.4955 0.1845	0.1883	0 1722	0.1827	0.1815	7110		0.1780		+	0.0500	6.2	20.0		
Z-nexamone	0.1843	0.1003	0.1/32	0.102/	0.1013	Ave		0.1/00			0.0300	0.2	20.0		

Lab Name: TestAmerica Canton Job No.: 240-65994-1 Analy Batch No.: 232366

SDG No.:

Instrument ID: $\underline{\text{A3UX11}}$ GC Column: $\underline{\text{DB-624}}$ ID: $\underline{\text{0.18 (mm)}}$ Heated Purge: (Y/N) N

Calibration Start Date: 05/28/2016 09:12 Calibration End Date: 05/28/2016 11:03 Calibration ID: 34632

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD	# MAX %RSD	R^2 OR COD	# MIN R
	LVL 1 LVL 6	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				*RSD	OR COD	OR CO
Chlorodibromomethane	0.2713 0.3118	0.2819	0.2799	0.3107	0.3300	Ave		0.2976				7.8	20.0		
Ethylene Dibromide	0.2749 0.2645	0.2712	0.2625	0.2827	0.2896	Ave		0.2742				3.8	20.0		
Chlorobenzene	1.0021 0.9778	0.9625	0.9467	0.9849	1.0339	Ave		0.9846			0.3000	3.1	20.0		
1,1,1,2-Tetrachloroethane	0.3124 0.3245	0.2955	0.3071	0.3343	0.3508	Ave		0.3208				6.2	20.0		
Ethylbenzene	0.5297 0.5154	0.5166	0.5168	0.5295	0.5569	Ave		0.5275				3.0	20.0		
m-Xylene & p-Xylene	0.6526 0.6339	0.6292	0.6072	0.6409	0.6817	Ave		0.6409				3.9	20.0		
o-Xylene	0.6267 0.6070	0.5789	0.5953	0.6248	0.6608	Ave		0.6156				4.6	20.0		
Styrene	1.0612 1.0573	1.0236	1.0246	1.0787	1.1399	Ave		1.0642			0.3000	4.0	20.0		
Bromoform	0.1294 0.1729	0.1399	0.1527	0.1658	0.1841	Ave		0.1575			0.1000	13.1	20.0		
Isopropylbenzene	1.4418	1.3579	1.3867	1.4136	1.5024	Ave		1.4133			0.1000	3.7	20.0		
1,1,2,2-Tetrachloroethane	0.7048 0.6684	0.6947	0.6821	0.7009	0.7169	Ave		0.6946			0.3000	2.5	20.0		
Bromobenzene	0.9492 0.9267	0.9025	0.8699	0.9413	0.9437	Ave		0.9222				3.3	20.0		
1,2,3-Trichloropropane	0.2266 0.2086	0.2279	0.2147	0.2187	0.2292	Ave		0.2209				3.8	20.0		
trans-1,4-Dichloro-2-butene	0.1143 0.1900	0.1405	0.1609	0.1869	0.1886	Ave		0.1635				19.0	20.0		
N-Propylbenzene	0.8818 0.9344	0.8262	0.8621	0.9134	0.9434	Ave		0.8936				5.1	20.0		
2-Chlorotoluene	0.7900 0.8102	0.7694	0.7533	0.8111	0.8197	Ave		0.7923				3.3	20.0		
1,3,5-Trimethylbenzene	2.4904	2.4676	2.4041	2.5168	2.5605	Ave		2.4838				2.1	20.0		
4-Chlorotoluene	0.8392	0.7868	0.8198	0.8628	0.8527	Ave		0.8349				3.3	20.0		
tert-Butylbenzene	2.0991	2.0122	2.0006	2.1022	2.1464	Ave		2.0745				2.7	20.0		
1,2,4-Trimethylbenzene	2.5486 2.4454	2.3862	2.4030	2.4835	2.5470	Ave		2.4689				2.8	20.0		

Lab Name: TestAmerica Canton Job No.: 240-65994-1 Analy Batch No.: 232366

SDG No.:

Instrument ID: A3UX11 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 05/28/2016 09:12 Calibration End Date: 05/28/2016 11:03 Calibration ID: 34632

ANALYTE			RRF			CURVE					MIN RRF	%RSD	**	R^2	# MIN R^
	LVL 1 LVL 6	LVL 2	LVL 3	LVL 4	LVL 5	TYPE -	В	M1	M2				%RSD	OR COD	OR COL
sec-Butylbenzene	2.7399	2.5216	2.6264	2.7096	2.7610	Ave		2.6778				3.3	20.0		
1,3-Dichlorobenzene	1.4310 1.3899	1.4226	1.3716	1.4076	1.4392	Ave		1.4103			0.6000	1.8	20.0		
4-Isopropyltoluene	2.3727 2.2716	2.1405	2.1846	2.3189	2.3681	Ave		2.2761				4.2	20.0		
1,4-Dichlorobenzene	1.5090 1.3897	1.4507	1.3767	1.4493	1.4354	Ave		1.4351			0.5000	3.3	20.0		
n-Butylbenzene	1.6341	1.5296	1.6133	1.6710	1.7165	Ave		1.6446				4.2	20.0		
1,2-Dichlorobenzene	1.3346 1.2285	1.2638	1.2189	1.2545	1.3092	Ave		1.2683			0.4000	3.6	20.0		
1,2-Dibromo-3-Chloropropane	0.1065 0.1011	0.1093	0.0973	0.1023	0.1039	Ave		0.1034			0.0500	4.0	20.0		
1,2,4-Trichlorobenzene	0.6139 0.6504	0.5991	0.5773	0.5968	0.6016	Ave		0.6065			0.2000	4.0	20.0		
Hexachlorobutadiene	0.2676 0.2710	0.2301	0.2389	0.2482	0.2407	Ave		0.2494				6.6	20.0		
Naphthalene	1.5365 1.5180	1.5623	1.4231	1.4795	1.4541	Ave		1.4956				3.5	20.0		
1,2,3-Trichlorobenzene	0.6048 0.5976	0.5621	0.5340	0.5478	0.5466	Ave		0.5655				5.2	20.0		
Dibromofluoromethane (Surr)	0.2118 0.2284	0.2331	0.2147	0.2235	0.2274	Ave		0.2231				3.7	20.0		
1,2-Dichloroethane-d4 (Surr)	0.2439 0.2455	0.2559	0.2483	0.2521	0.2548	Ave		0.2501				2.0	20.0		
Toluene-d8 (Surr)	1.3628 1.3928	1.4804	1.3814	1.4319	1.4793	Ave		1.4214				3.6	20.0		
4-Bromofluorobenzene (Surr)	0.4331	0.4504	0.4110	0.4176	0.4550	Ave		0.4299				4.5	20.0		

Lab Name: TestAmerica Canton Job No.: 240-65994-1 Analy Batch No.: 232711

SDG No.:

Instrument ID: A3UX16 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 06/01/2016 12:06 Calibration End Date: 06/01/2016 14:22 Calibration ID: 34643

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	STD8260 240-232711/8	UXM5576.D
Level 2	STD8260 240-232711/7	UXM5575.D
Level 3	STD8260 240-232711/6	UXM5574.D
Level 4	STD8260 240-232711/5	UXM5573.D
Level 5	STD8260 240-232711/4	UXM5572.D
Level 6	STD8260 240-232711/3	UXM5571.D
Level 7	STD8269 240-232711/2	UXM5570.D

ANALYTE			RRF			CURVE		COEFFICI	ENT #	MIN RRF	%RSD		MAX	R^2	" -	MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			9	RSD	OR COD		OR COD
Dichlorodifluoromethane	0.2658	0.2105	0.2317	0.2446	0.2397	Ave		0.2419		0.1000	7.3		20.0			<u> </u>
Chloromethane	0.2547	0.3026	0.2941	0.3192	0.2884	Ave		0.2976		0.1000	6.3		20.0			
Vinyl chloride	0.2701	0.2864	0.2872	0.3180	0.3044	Ave		0.3048		0.1000	4.5		20.0			
Butadiene	0.2922	0.2978 0.3028 0.2740	0.3071	0.2922	0.2814	Ave		0.2947			5.8		20.0			
Bromomethane	0.2831 0.1151 0.0765	0.1086	0.1054	0.1220	0.0735	Qua	0.0578	0.0802	-0.000339	0.0500				0.9940		0.9900
Chloroethane	0.1578		0.1504	0.1643	0.1208	Ave		0.1388		0.0500	13.6		20.0			
Dichlorofluoromethane	0.5184 0.2583	0.2843	0.3142	0.3606	0.2407	Qua	0.1531	0.2534	-0.000241					0.9970		0.9900
Trichlorofluoromethane	0.2173 0.1946	0.2095 0.1761	0.1992	0.2109	0.1892	Ave		0.1995		0.1000	7.2		20.0			
Ethyl ether	0.3560	0.3010	0.2684	0.2256	0.2235	Lin1	0.0783	0.2144						0.9990		0.9900
Acrolein	0.0391	0.0353	0.0358	0.0343	0.0330	Ave		0.0346			7.0		20.0			
1,1-Dichloroethene	0.3372	0.2530	0.2570	0.2618	0.2679	Ave		0.2710		0.1000	11.0		20.0			
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2237	0.1930	0.1824	0.1752	0.1856	Ave		0.1905		0.0500	8.5		20.0			
Acetone	0.2239	0.1440	0.0985	0.0817	0.0769	Lin1	0.1458	0.0695		0.0100				0.9990		0.9900
Iodomethane	0.4300 0.3525	0.3807	0.3992	0.3934	0.3676	Ave		0.3849			6.6		20.0			

Lab Name: TestAmerica Canton Job No.: 240-65994-1 Analy Batch No.: 232711

SDG No.:

Instrument ID: A3UX16 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 06/01/2016 12:06 Calibration End Date: 06/01/2016 14:22 Calibration ID: 34643

ANALYTE			RRF			CURVE		COEFFICI	ENT	# M	IIN RRF	%RSD	# MAX %RSD	R^2 OR COD	# MIN R^2 OR COD
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				*RSD	OR COD	OR COD
	LVL 6	LVL 7													
Carbon disulfide	0.9313	0.8580	0.8641	0.8340	0.8112	Ave		0.8432			0.1000	5.6	20.0		
	0.7876	0.8159													
3-Chloro-1-propene	0.2140	0.1806	0.1710	0.1652	0.1707	Ave		0.1767				9.9	20.0		
	0.1616	0.1737													
Methyl acetate	0.1637	0.1612	0.1513	0.1591	0.1572	Ave		0.1583			0.1000	2.7	20.0		
	0.1543	0.1612													
Methylene Chloride	0.8350	0.5307	0.3976	0.3123	0.2926	Lin1	0.2795	0.2595			0.1000			0.9980	0.9900
	0.2580	0.2734													
2-Methyl-2-propanol	0.0208		0.0189	0.0181	0.0178	Ave		0.0187				8.6	20.0		
	0.0171	0.0174													
Acrylonitrile	0.0805		0.0791	0.0816	0.0804	Ave		0.0806				2.2	20.0		
	0.0796														
Methyl tert-butyl ether	0.8433	0.7518	0.7713	0.7710	0.7554	Ave		0.7693			0.1000	4.8	20.0		
	0.7214	0.7709													
trans-1,2-Dichloroethene	0.2759		0.2766	0.2759	0.2675	Ave		0.2741			0.1000	4.3	20.0		
	0.2557	0.2720													
Hexane	0.0907	0.0761	0.0790	0.0691	0.0739	Ave		0.0778				8.8	20.0		
1 1 5 1 1 1 1	0.0811	0.0748	0 4005	0 4070	0 4000	_		0 4000			0 0000	- 1	0.0.0		
1,1-Dichloroethane	0.5461 0.4561	0.4860 0.4895	0.4885	0.4978	0.4882	Ave		0.4932			0.2000	5.4	20.0		
Vinyl acetate	0.4561	0.4895	0.4474	0.4566	0.4610	7		0.4610				()	20.0		
vinyi acetate	0.5072	0.4180	0.44/4	0.4566	0.4610	Ave		0.4610				6.3	20.0		
2,2-Dichloropropane	0.4463	0.3022	0.3026	0.3055	0.2945	7		0.3040				9.2	20.0		
z,z-bichioropropane	0.3627		0.3026	0.3033	0.2943	Ave		0.3040				9.2	20.0		
cis-1,2-Dichloroethene	0.2733		0.3033	0.3019	0.2957	7110		0.3002			0.1000	4.8	20.0		
CIS-1, Z-DICHIOTOECHEHE	0.2733		0.3033	0.3019	0.2937	Ave		0.3002			0.1000	4.0	20.0		
2-Butanone (MEK)	0.1380	0.0946	0.1032	0.1041	0.0965	7770		0.1039			0.0100	15 0	20.0		
2 Bucanone (Filt)	0.0937	0.0974	0.1032	0.1041	0.0303	2100		0.1033			0.0100	13.0	20.0		
Chlorobromomethane	0.1735	0.1529	0.1423	0.1389	0.1367	Ave		0.1437				10.8	20.0		
CHIOLOGIC MOME CHAIR	0.1257	0.1358	0.1123	0.1303	0.1307	1110		0.1137				10.0	20.0		
Tetrahydrofuran	0.0892	0.0681	0.0641	0.0630	0.0607	Ave		0.0667				15.4	20.0		
	0.0598	0.0620													
Chloroform	0.5085		0.4645	0.4572	0.4407	Ave		0.4559			0.2000	6.3	20.0		
	0.4143	0.4474													
1,1,1-Trichloroethane	0.3792	0.3829	0.3471	0.3382	0.3447	Ave		0.3496			0.1000	6.6	20.0		
	0.3224	0.3330													
Cyclohexane	0.5099	0.4608	0.4342	0.4263	0.4547	Ave		0.4582			0.1000	5.9	20.0		
	0.4686	0.4527													
1,1-Dichloropropene	0.4261		0.3808	0.3873	0.3786	Ave		0.3882				4.9	20.0		
	0.3658	0.3840													

Lab Name: TestAmerica Canton Job No.: 240-65994-1 Analy Batch No.: 232711

SDG No.:

Instrument ID: A3UX16 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 06/01/2016 12:06 Calibration End Date: 06/01/2016 14:22 Calibration ID: 34643

ANALYTE			RRF			CURVE		COEFFICIE	INT	# M3	IN RRF	%RSD	# MAX %RSD	R^2 OR COD	# MIN R^2 OR COD
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	М1	M2				*RSD	OR COD	OR COD
	LVL 6	LVL 7													
Carbon tetrachloride	0.3923	0.3529	0.3067	0.3168	0.3107	Ave		0.3280			0.1000	10.0	20.0		
	0.3032	0.3132													
Isobutyl alcohol	0.0075		0.0057	0.0060	0.0058	Ave		0.0062				10.8	20.0		
	0.0057	0.0058													
1,2-Dichloroethane	0.3912		0.3523	0.3560	0.3524	Ave		0.3581		1 1 1	0.1000	4.7	20.0		
	0.3357	0.3622													
Benzene	1.1464		1.1208	1.1182	1.1146	Ave		1.1128			0.5000	3.5	20.0		
	1.0413														
n-Heptane	0.8658	0.4891	0.3113	0.2049	0.1790	Lin1	0.3425	0.1521						0.9950	0.9900
	0.1847	0.1570													
Trichloroethene	0.3294		0.2797	0.2846	0.2796	Ave		0.2871		1 1 '	0.1500	7.0	20.0		
	0.2661	0.2899	0 10.65	0 1101		_		1505							
Methylcyclohexane	0.5109	0.4698	0.4267	0.4101	0.4420	Ave		0.4527		'	0.1000	7.4	20.0		
1.0.5'.17	0.4682	0.4413	0.0501	0.0600	0.0550	_		0.0670			0 1000		0.0.0		
1,2-Dichloropropane	0.3109		0.2591	0.2638	0.2558	Ave		0.2678		'	0.1000	7.7	20.0		
Dibromomethane	0.2464	0.2680	0.1590	0.1411	0.1416			0.1494				7 0	20.0		
Dibromomethane	0.1642 0.1341		0.1590	0.1411	0.1416	Ave		0.1494				7.8	20.0		
1,4-Dioxane	0.1341		0.0021	0.0021	0.0023	70		0.0021				4.9	20.0		
1,4-DIOXANE	0.0020	0.0022	0.0021	0.0021	0.0023	Ave		0.0021				4.9	20.0		
Dichlorobromomethane	0.4212		0.3437	0.3465	0.3397	7110		0.3531			0.1500	9.2	20.0		
DICHIOLODIOMOMECHANE	0.4212		0.3437	0.5405	0.3397	Ave		0.3331			0.1300	9.2	20.0		
2-Chloroethyl vinyl ether	0.1538		0.1420	0.1428	0.1448	7770		0.1448				3.6	20.0		
2 Chioloechyl vinyl echel	0.1393		0.1420	0.1420	0.1110	Ave		0.1440				3.0	20.0		
cis-1,3-Dichloropropene	0.5169		0.4377	0.4485	0.4405	Ave		0.4504			0.1500	7.1	20.0		
ers 1,5 bremforopropene	0.4190	0.4595	0.4377	0.4403	0.1103	2100		0.4304			0.1500	/ • ±	20.0		
4-Methyl-2-pentanone (MIBK)	0.2155		0.2027	0.2030	0.1990	Ave		0.2024			0.0500	3.8	20.0		
	0.1908														
Toluene	1.8078		1.6197	1.6140	1.6207	Ave		1.6423			0.4000	5.1	20.0		
	1.5456	1.6831													
trans-1,3-Dichloropropene	0.5854		0.5557	0.5361	0.5421	Ave		0.5439			0.1000	4.1	20.0		
	0.5147	0.5456													
Ethyl methacrylate	0.5357	0.4567	0.4685	0.4479	0.4402	Ave		0.4573				8.3	20.0		
	0.4188	0.4334													
1,1,2-Trichloroethane	0.2886		0.2772	0.2912	0.2815	Ave		0.2860			0.1000	2.9	20.0		
	0.2791	0.2832													
Tetrachloroethene	0.3308		0.2777	0.2955	0.2960	Ave		0.2970			0.1500	5.6	20.0		
	0.2848	0.2974													
1,3-Dichloropropane	0.5948		0.5370	0.5310	0.5300	Ave		0.5367				5.2	20.0		
	0.5061	0.5372				1									

Lab Name: TestAmerica Canton Job No.: 240-65994-1 Analy Batch No.: 232711

SDG No.:

Instrument ID: A3UX16 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 06/01/2016 12:06 Calibration End Date: 06/01/2016 14:22 Calibration ID: 34643

ANALYTE			RRF			CURVE		COEFFICIE	ENT	# M	IN RRF	%RSD	# MAX %RSD	R^2 OR COD	# MIN R^2 OR COD
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				*RSD	OR COD	OR COD
	LVL 6	LVL 7													
2-Hexanone	0.2702	0.2135	0.2111	0.1984	0.2007	Ave		0.2098			0.0500	13.6	20.0		
	0.1877	0.1870													
Chlorodibromomethane	0.4389		0.3295	0.3314	0.3332	Ave		0.3538				12.3	20.0		
	0.3177	0.3399													
Ethylene Dibromide	0.3417	0.2738		0.2848	0.2919	Ave		0.2906				8.0	20.0		
	0.2751	0.2835													
Chlorobenzene	1.1892		1.0244	1.0192	1.0080	Ave		1.0416			0.3000	6.8	20.0		
	0.9615														
1,1,1,2-Tetrachloroethane	0.4284		0.3655	0.3675	0.3563	Ave		0.3717				7.4	20.0		
	0.3412	0.3634													
Ethylbenzene	0.6350			0.5716	0.5684	Ave		0.5737				5.1	20.0		
	0.5391	0.5736													
m-Xylene & p-Xylene	0.8090	0.7153		0.7165	0.7005	Ave		0.7167				6.1	20.0		
	0.6776														
o-Xylene	0.7828		0.7109	0.7017	0.7035	Ave		0.7199				4.7	20.0		
	0.6776	0.7224													
Styrene	1.2751		1.1650	1.1717	1.1713	Ave		1.1767			0.3000	4.4	20.0		
	1.1040														
Bromoform	0.2021	0.1856	0.1907	0.1935	0.1934	Ave		0.1935			0.1000	2.9	20.0		
	0.1898	0.1995													
Isopropylbenzene	1.9322		1.7487	1.7471	1.7692	Ave		1.7848			0.1000	4.2	20.0		
	1.7091	1.8331	0 6050	0 6001	0.6045	_		0.5050							
1,1,2,2-Tetrachloroethane	0.7589			0.6894	0.6915	Ave		0.6963			0.3000	4.2	20.0		
7	0.6733			0.7604	0.7016	_		0.7000				4 0	0.0.0		
Bromobenzene	0.8272 0.7233		0.7889	0.7684	0.7816	Ave		0.7820				4.0	20.0		
1 0 0 m.'.1.1	0.7233		0.0170	0.2037	0.2208	T 1 . 1	0.0867	0.2029						0.9970	0.9900
1,2,3-Trichloropropane	0.4533			0.2037	0.2208	Lini	0.0867	0.2029						0.9970	0.9900
trans-1,4-Dichloro-2-butene	0.2033	0.2083		0.1934	0 1000	7		0.1991				5.2	20.0		
trans-1,4-Dichioro-2-Dutene	0.2081	0.2098	0.2113	0.1934	0.1898	Ave		0.1991				5.2	20.0		
N-Propylbenzene	1.0373		0 0000	0.9136	0 0101	7		0.9385				5.4	20.0		
N-Propyrbenzene	0.8830	0.9436	0.9090	0.9136	0.9191	Ave		0.9363				3.4	20.0		
2-Chlorotoluene	0.9555		0.7699	0.7644	0 7603	λ110		0.8045				9.3	20.0		
2 Chitotocotuene	0.7312	0.8014	0.7000	0.7044	0.7093	Ave		0.0043				۶.۵	20.0		
1,3,5-Trimethylbenzene	3.0092	2.8007	2.8557	2.7340	2.8511	λ110		2.8479				4.1	20.0		
T' 2' 2 ITIMECHÀ INCHIZENC	2.6976		2.0007	2.7540	2.0011	1110		2.04/9				4.1	20.0		
4-Chlorotoluene	0.9328		0.8042	0.8170	0.8228	Ave		0.8281				6.5	20.0		
1 dillolocoluciic	0.7537	0.8293	0.0042	3.01/0	0.0220	1100		0.0201				0.0	20.0		
tert-Butylbenzene	2.5383		2.4127	2.3965	2.4849	Ave		2.4620		++-		2.8	20.0		
COT C DOOM TOCHTO		2.5572	2.712/	2.5505	2.3037	11100		2.7020				2.0	20.0		

Lab Name: TestAmerica Canton Job No.: 240-65994-1 Analy Batch No.: 232711

SDG No.:

Instrument ID: A3UX16 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFICI	ENT	# M	MIN RRF	%RSD		R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR COD
1,2,4-Trimethylbenzene	3.2212	2.8942	2.9390	2.9103	2.9845	Ave		2.9773				4.9	20.0		
sec-Butylbenzene	3.6758 3.2676	3.3683 3.5151	3.2579	3.2123	3.3949	Ave		3.3846				4.8	20.0		
1,3-Dichlorobenzene	1.6908 1.4357		1.5479	1.5290	1.5344	Ave		1.5506			0.6000	4.9	20.0		
4-Isopropyltoluene	3.1582 2.8283		2.8226	2.8587	2.9339	Ave		2.9440				4.3	20.0		
1,4-Dichlorobenzene	1.6660 1.4327	1.5476	1.5656	1.5412	1.5577	Ave		1.5582			0.5000	4.5	20.0		
n-Butylbenzene	2.8401 2.3843		2.4586	2.3986	2.4954	Ave		2.5234				6.1	20.0		
1,2-Dichlorobenzene	1.6201		1.4046	1.4681	1.4834	Ave		1.4789			0.4000	5.4	20.0		
1,2-Dibromo-3-Chloropropane	0.1835		0.1620	0.1504	0.1537	Ave		0.1603			0.0500	8.4	20.0		
1,2,4-Trichlorobenzene	1.0780		0.9787	0.9584	0.9634	Ave		0.9684			0.2000	6.0	20.0		
Hexachlorobutadiene	0.4164 0.3120	0.3404	0.3469	0.3377	0.3325	Ave		0.3429				10.2	20.0		
Naphthalene	2.8816 2.2973		2.5060	2.4521	2.4179	Ave		2.4825				7.7	20.0		
1,2,3-Trichlorobenzene	1.0204		0.8741	0.8778	0.8406	Ave		0.8687				8.5	20.0		
Dibromofluoromethane (Surr)	+++++ 0.2142	0.2459	0.2421	0.2373	0.2329	Ave		0.2344				4.7	20.0		
1,2-Dichloroethane-d4 (Surr)	+++++	0.2977	0.2809	0.2939	0.2799	Ave		0.2836				4.6	20.0		
Toluene-d8 (Surr)	1.2967	1.2980	1.3722	1.3589	1.3423	Ave		1.3482				3.5	20.0		
4-Bromofluorobenzene (Surr)	+++++		0.5183	0.5087	0.5099	Ave		0.5111				3.8	20.0		

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: ICV 240-232366/14 Calibration Date: 05/28/2016 11:25

Instrument ID: A3UX11 Calib Start Date: 05/28/2016 09:12

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 05/28/2016 11:03

Lab File ID: UXJ4945.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.1572	0.0785*	0.1000	0.00499	0.0100	-50.1*	20.0
Chloromethane	Ave	0.2254	0.1613	0.1000	0.00716	0.0100	-28.4*	20.0
Vinyl chloride	Ave	0.2393	0.1918	0.1000	0.00801	0.0100	-19.9	20.0
Butadiene	Ave	0.2248	0.1710		0.00761	0.0100	-23.9	30.0
Bromomethane	Ave	0.1093	0.0897	0.0500	0.00821	0.0100	-17.9	20.0
Chloroethane	Ave	0.1134	0.0951	0.0500	0.00838	0.0100	-16.2	20.0
Dichlorofluoromethane	Ave	0.2466	0.2222		0.00901	0.0100	-9.9	20.0
Trichlorofluoromethane	Ave	0.1723	0.1649	0.1000	0.00957	0.0100	-4.3	20.0
Ethyl ether	Ave	0.2239	0.2205		0.00985	0.0100	-1.5	20.0
Acrolein	Ave	0.0316	0.0196		0.0309	0.0500	-38.1	50.0
1,1-Dichloroethene	Ave	0.1767	0.1892	0.1000	0.0107	0.0100	7.1	20.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.1071	0.1197	0.0500	0.0112	0.0100	11.8	20.0
Acetone	Lin1		0.0409	0.0100	0.0146	0.0200	-27.1	50.0
Iodomethane	Ave	0.2451	0.2543		0.0104	0.0100	3.8	20.0
Carbon disulfide	Ave	0.4562	0.4979	0.1000	0.0109	0.0100	9.1	20.0
3-Chloro-1-propene	Ave	0.1616	0.1753		0.0108	0.0100	8.5	20.0
Methyl acetate	Ave	0.1347	0.1285	0.1000	0.0477	0.0500	-4.6	20.0
Methylene Chloride	Lin1		0.2133	0.1000	0.00987	0.0100	-1.3	50.0
2-Methyl-2-propanol	Ave	0.0132	0.0104		0.0788	0.100	-21.2	50.0
Acrylonitrile	Ave	0.0700	0.0688		0.0982	0.100	-1.8	20.0
Methyl tert-butyl ether	Ave	0.6617	0.6529	0.1000	0.00987	0.0100	-1.3	20.0
trans-1,2-Dichloroethene	Ave	0.2620	0.2698	0.1000	0.0103	0.0100	3.0	20.0
Hexane	Ave	0.0561	0.0718		0.0128	0.0100	28.0*	20.0
1,1-Dichloroethane	Ave	0.4477	0.4276	0.2000	0.00955	0.0100	-4.5	20.0
Vinyl acetate	Ave	0.4179	0.4341		0.0104	0.0100	3.9	50.0
2-Butanone (MEK)	Ave	0.0824	0.0709	0.0100	0.0172	0.0200	-13.9	20.0
cis-1,2-Dichloroethene	Ave	0.2770	0.2702	0.1000	0.00975	0.0100	-2.5	20.0
2,2-Dichloropropane	Ave	0.1969	0.1923		0.00977	0.0100	-2.3	20.0
Chlorobromomethane	Ave	0.1278	0.1279		0.0100	0.0100	0.0	20.0
Tetrahydrofuran	Ave	0.0529	0.0487		0.0184	0.0200	-8.0	20.0
Chloroform	Ave	0.4028	0.3863	0.2000	0.00959	0.0100	-4.1	20.0
1,1,1-Trichloroethane	Ave	0.2717	0.2653	0.1000	0.00977	0.0100	-2.3	20.0
Cyclohexane	Ave	0.3041	0.3496	0.1000	0.0115	0.0100	14.9	20.0
1,1-Dichloropropene	Ave	0.3431	0.3373		0.00983	0.0100	-1.7	20.0
Carbon tetrachloride	Ave	0.2486	0.2618	0.1000	0.0105	0.0100	5.3	20.0
Isobutyl alcohol	Ave	0.0060	0.0055		0.231	0.250	-7.5	20.0
1,2-Dichloroethane	Ave	0.2815	0.2824	0.1000	0.0100	0.0100	0.3	20.0
Benzene	Ave	1.057	1.019	0.5000	0.00964	0.0100	-3.6	20.0
n-Heptane	Ave	0.0587	0.0635		0.0108	0.0100	8.1	20.0
Trichloroethene	Ave	0.2761	0.2702	0.1500	0.00979	0.0100	-2.1	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: ICV 240-232366/14 Calibration Date: 05/28/2016 11:25

Instrument ID: A3UX11 Calib Start Date: 05/28/2016 09:12

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 05/28/2016 11:03

Lab File ID: UXJ4945.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	0.3306	0.3651	0.1000	0.0110	0.0100	10.4	20.0
1,2-Dichloropropane	Ave	0.2533	0.2462	0.1000	0.00972	0.0100	-2.8	20.0
Dibromomethane	Ave	0.1259	0.1188		0.00943	0.0100	-5.7	20.0
1,4-Dioxane	Lin1		0.0009		0.119	0.200	-40.4	50.0
Dichlorobromomethane	Ave	0.2929	0.2750	0.1500	0.00939	0.0100	-6.1	20.0
2-Chloroethyl vinyl ether	Ave	0.1454	0.1420		0.00977	0.0100	-2.3	20.0
cis-1,3-Dichloropropene	Ave	0.3977	0.3785	0.1500	0.00952	0.0100	-4.8	20.0
4-Methyl-2-pentanone (MIBK)	Ave	0.1675	0.1619	0.0500	0.0193	0.0200	-3.4	20.0
Toluene	Ave	1.613	1.577	0.4000	0.00977	0.0100	-2.3	20.0
trans-1,3-Dichloropropene	Ave	0.4831	0.4634	0.1000	0.00959	0.0100	-4.1	20.0
Ethyl methacrylate	Ave	0.4217	0.4208		0.00998	0.0100	-0.2	20.0
1,1,2-Trichloroethane	Ave	0.2874	0.2803	0.1000	0.00975	0.0100	-2.5	20.0
Tetrachloroethene	Ave	0.3065	0.3058	0.1500	0.00998	0.0100	-0.2	20.0
1,3-Dichloropropane	Ave	0.5237	0.5135		0.00980	0.0100	-2.0	20.0
2-Hexanone	Ave	0.1780	0.1624	0.0500	0.0182	0.0200	-8.8	20.0
Chlorodibromomethane	Ave	0.2976	0.2888		0.00970	0.0100	-3.0	20.0
Ethylene Dibromide	Ave	0.2742	0.2692		0.00982	0.0100	-1.8	20.0
Chlorobenzene	Ave	0.9846	0.9345	0.3000	0.00949	0.0100	-5.1	20.0
1,1,1,2-Tetrachloroethane	Ave	0.3208	0.3054		0.00952	0.0100	-4.8	20.0
Ethylbenzene	Ave	0.5275	0.5081		0.00963	0.0100	-3.7	20.0
m-Xylene & p-Xylene	Ave	0.6409	0.6189		0.00966	0.0100	-3.4	20.0
o-Xylene	Ave	0.6156	0.5915		0.00961	0.0100	-3.9	20.0
Styrene	Ave	1.064	1.036	0.3000	0.00973	0.0100	-2.7	20.0
Bromoform	Ave	0.1575	0.1606	0.1000	0.0102	0.0100	2.0	20.0
Isopropylbenzene	Ave	1.413	1.372	0.1000	0.00971	0.0100	-2.9	20.0
1,1,2,2-Tetrachloroethane	Ave	0.6946	0.6670	0.3000	0.00960	0.0100	-4.0	20.0
Bromobenzene	Ave	0.9222	0.8545		0.00927	0.0100	-7.3	20.0
1,2,3-Trichloropropane	Ave	0.2209	0.2222		0.0101	0.0100	0.6	20.0
trans-1,4-Dichloro-2-butene	Ave	0.1635	0.1515		0.00927	0.0100	-7.3	20.0
N-Propylbenzene	Ave	0.8936	0.8451		0.00946	0.0100	-5.4	20.0
2-Chlorotoluene	Ave	0.7923	0.7318		0.00924	0.0100	-7.6	20.0
1,3,5-Trimethylbenzene	Ave	2.484	2.313		0.00931	0.0100	-6.9	20.0
4-Chlorotoluene	Ave	0.8349	0.7709		0.00923	0.0100	-7.7	20.0
tert-Butylbenzene	Ave	2.075	1.952		0.00941	0.0100	-5.9	20.0
1,2,4-Trimethylbenzene	Ave	2.469	2.264		0.00917	0.0100	-8.3	20.0
sec-Butylbenzene	Ave	2.678	2.475		0.00924	0.0100	-7.6	20.0
1,3-Dichlorobenzene	Ave	1.410	1.275	0.6000	0.00904	0.0100	-9.6	20.0
4-Isopropyltoluene	Ave	2.276	2.122		0.00933	0.0100	-6.7	20.0
1,4-Dichlorobenzene	Ave	1.435	1.312	0.5000	0.00914	0.0100	-8.6	20.0
n-Butylbenzene	Ave	1.645	1.481		0.00901	0.0100	-9.9	20.0
1,2-Dichlorobenzene	Ave	1.268	1.157	0.4000	0.00912	0.0100	-8.8	20.0
					1			

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: <u>ICV 240-232366/14</u> Calibration Date: 05/28/2016 11:25

Instrument ID: A3UX11 Calib Start Date: 05/28/2016 09:12

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 05/28/2016 11:03

Lab File ID: UXJ4945.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.1034	0.0919	0.0500	0.00889	0.0100	-11.1	50.0
1,2,4-Trichlorobenzene	Ave	0.6065	0.5148	0.2000	0.00849	0.0100	-15.1	50.0
Hexachlorobutadiene	Ave	0.2494	0.2019		0.00810	0.0100	-19.0	20.0
Naphthalene	Ave	1.496	1.340		0.00896	0.0100	-10.4	50.0
1,2,3-Trichlorobenzene	Ave	0.5655	0.4760		0.00842	0.0100	-15.8	20.0
Dibromofluoromethane (Surr)	Ave	0.2231	0.2015		0.0108	0.0120	-9.7	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.2501	0.2259		0.0108	0.0120	-9.7	20.0
Toluene-d8 (Surr)	Ave	1.421	1.311		0.0110	0.0120	-7.8	20.0
4-Bromofluorobenzene (Surr)	Ave	0.4299	0.3884		0.0108	0.0120	-9.6	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVIS 240-235154/2 Calibration Date: 06/20/2016 09:34

Instrument ID: A3UX11 Calib Start Date: 05/28/2016 09:12

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 05/28/2016 11:03

Lab File ID: UXJ5601.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.1572	0.2042	0.1000	0.0130	0.0100	29.8*	20.0
Chloromethane	Ave	0.2254	0.2846	0.1000	0.0126	0.0100	26.3*	20.0
Vinyl chloride	Ave	0.2393	0.2630	0.1000	0.0110	0.0100	9.9	20.0
Butadiene	Ave	0.2248	0.2519		0.0112	0.0100	12.1	20.0
Bromomethane	Ave	0.1093	0.0735	0.0500	0.00673	0.0100	-32.7*	20.0
Chloroethane	Ave	0.1134	0.0992	0.0500	0.00874	0.0100	-12.6	20.0
Dichlorofluoromethane	Ave	0.2466	0.2663		0.0108	0.0100	8.0	20.0
Trichlorofluoromethane	Ave	0.1723	0.2511	0.1000	0.0146	0.0100	45.7*	20.0
Ethyl ether	Ave	0.2239	0.2029		0.00906	0.0100	-9.4	20.0
Acrolein	Ave	0.0316	0.0237		0.0374	0.0500	-25.1	50.0
1,1-Dichloroethene	Ave	0.1767	0.1907	0.1000	0.0108	0.0100	7.9	20.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.1071	0.1162	0.0500	0.0109	0.0100	8.5	20.0
Acetone	Lin1		0.0462	0.0100	0.0169	0.0200	-15.6	50.0
Iodomethane	Ave	0.2451	0.2368		0.00966	0.0100	-3.4	20.0
Carbon disulfide	Ave	0.4562	0.4742	0.1000	0.0104	0.0100	3.9	20.0
3-Chloro-1-propene	Ave	0.1616	0.1649		0.0102	0.0100	2.0	20.0
Methyl acetate	Ave	0.1347	0.1260	0.1000	0.0468	0.0500	-6.5	20.0
Methylene Chloride	Lin1		0.2338	0.1000	0.0110	0.0100	9.5	50.0
2-Methyl-2-propanol	Ave	0.0132	0.0088		0.0671	0.100	-32.9	50.0
Acrylonitrile	Ave	0.0700	0.0649		0.0927	0.100	-7.3	20.0
Methyl tert-butyl ether	Ave	0.6617	0.6433	0.1000	0.00972	0.0100	-2.8	20.0
trans-1,2-Dichloroethene	Ave	0.2620	0.2684	0.1000	0.0102	0.0100	2.5	20.0
Hexane	Ave	0.0561	0.0636		0.0113	0.0100	13.5	20.0
1,1-Dichloroethane	Ave	0.4477	0.4635	0.2000	0.0104	0.0100	3.5	20.0
Vinyl acetate	Ave	0.4179	0.3914		0.00937	0.0100	-6.3	50.0
2-Butanone (MEK)	Ave	0.0824	0.0736	0.0100	0.0179	0.0200	-10.6	20.0
cis-1,2-Dichloroethene	Ave	0.2770	0.2881	0.1000	0.0104	0.0100	4.0	20.0
2,2-Dichloropropane	Ave	0.1969	0.2061		0.0105	0.0100	4.7	20.0
Chlorobromomethane	Ave	0.1278	0.1340		0.0105	0.0100	4.8	20.0
Tetrahydrofuran	Ave	0.0529	0.0479		0.0181	0.0200	-9.6	20.0
Chloroform	Ave	0.4028	0.4281	0.2000	0.0106	0.0100	6.3	20.0
1,1,1-Trichloroethane	Ave	0.2717	0.2699	0.1000	0.00994	0.0100	-0.6	20.0
Cyclohexane	Ave	0.3041	0.3309	0.1000	0.0109	0.0100	8.8	20.0
1,1-Dichloropropene	Ave	0.3431	0.3652		0.0106	0.0100	6.4	20.0
Carbon tetrachloride	Ave	0.2486	0.2662	0.1000	0.0107	0.0100	7.1	20.0
Isobutyl alcohol	Ave	0.0060	0.0060		0.251	0.250	0.5	20.0
1,2-Dichloroethane	Ave	0.2815	0.3067	0.1000	0.0109	0.0100	8.9	20.0
Benzene	Ave	1.057	1.102	0.5000	0.0104	0.0100	4.3	20.0
n-Heptane	Ave	0.0587	0.0646		0.0110	0.0100	10.0	20.0
Trichloroethene	Ave	0.2761	0.2817	0.1500	0.0102	0.0100	2.1	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVIS 240-235154/2 Calibration Date: 06/20/2016 09:34

Instrument ID: A3UX11 Calib Start Date: 05/28/2016 09:12

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 05/28/2016 11:03

Lab File ID: UXJ5601.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	0.3306	0.3513	0.1000	0.0106	0.0100	6.3	20.0
1,2-Dichloropropane	Ave	0.2533	0.2606	0.1000	0.0103	0.0100	2.8	20.0
Dibromomethane	Ave	0.1259	0.1313		0.0104	0.0100	4.3	20.0
1,4-Dioxane	Lin1		0.0011		0.140	0.200	-30.0	50.0
Dichlorobromomethane	Ave	0.2929	0.3045	0.1500	0.0104	0.0100	3.9	20.0
2-Chloroethyl vinyl ether	Ave	0.1454	0.1431		0.0197	0.0200	-1.6	20.0
cis-1,3-Dichloropropene	Ave	0.3977	0.3901	0.1500	0.00981	0.0100	-1.9	20.0
4-Methyl-2-pentanone (MIBK)	Ave	0.1675	0.1582	0.0500	0.0189	0.0200	-5.6	20.0
Toluene	Ave	1.613	1.799	0.4000	0.0112	0.0100	11.5	20.0
trans-1,3-Dichloropropene	Ave	0.4831	0.5143	0.1000	0.0106	0.0100	6.5	20.0
Ethyl methacrylate	Ave	0.4217	0.4325		0.0103	0.0100	2.5	20.0
1,1,2-Trichloroethane	Ave	0.2874	0.3087	0.1000	0.0107	0.0100	7.4	20.0
Tetrachloroethene	Ave	0.3065	0.3272	0.1500	0.0107	0.0100	6.8	20.0
1,3-Dichloropropane	Ave	0.5237	0.5659		0.0108	0.0100	8.1	20.0
2-Hexanone	Ave	0.1780	0.1745	0.0500	0.0196	0.0200	-2.0	20.0
Chlorodibromomethane	Ave	0.2976	0.3188		0.0107	0.0100	7.1	20.0
Ethylene Dibromide	Ave	0.2742	0.2916		0.0106	0.0100	6.3	20.0
Chlorobenzene	Ave	0.9846	1.026	0.3000	0.0104	0.0100	4.2	20.0
1,1,1,2-Tetrachloroethane	Ave	0.3208	0.3317		0.0103	0.0100	3.4	20.0
Ethylbenzene	Ave	0.5275	0.5448		0.0103	0.0100	3.3	20.0
m-Xylene & p-Xylene	Ave	0.6409	0.6844		0.0107	0.0100	6.8	20.0
o-Xylene	Ave	0.6156	0.6439		0.0105	0.0100	4.6	20.0
Styrene	Ave	1.064	1.097	0.3000	0.0103	0.0100	3.1	20.0
Bromoform	Ave	0.1575	0.1430	0.1000	0.00908	0.0100	-9.2	20.0
Isopropylbenzene	Ave	1.413	1.434	0.1000	0.0101	0.0100	1.5	20.0
1,1,2,2-Tetrachloroethane	Ave	0.6946	0.7283	0.3000	0.0105	0.0100	4.8	20.0
Bromobenzene	Ave	0.9222	0.9786		0.0106	0.0100	6.1	20.0
1,2,3-Trichloropropane	Ave	0.2209	0.2415		0.0109	0.0100	9.3	20.0
trans-1,4-Dichloro-2-butene	Ave	0.1635	0.1683		0.0103	0.0100	2.9	20.0
N-Propylbenzene	Ave	0.8936	1.025		0.0115	0.0100	14.8	20.0
2-Chlorotoluene	Ave	0.7923	0.8593		0.0108	0.0100	8.5	20.0
1,3,5-Trimethylbenzene	Ave	2.484	2.685		0.0108	0.0100	8.1	20.0
4-Chlorotoluene	Ave	0.8349	0.9366		0.0112	0.0100	12.2	20.0
tert-Butylbenzene	Ave	2.075	2.162		0.0104	0.0100	4.2	20.0
1,2,4-Trimethylbenzene	Ave	2.469	2.647		0.0107	0.0100	7.2	20.0
sec-Butylbenzene	Ave	2.678	2.793		0.0104	0.0100	4.3	20.0
1,3-Dichlorobenzene	Ave	1.410	1.406	0.6000	0.00997	0.0100	-0.3	20.0
4-Isopropyltoluene	Ave	2.276	2.313		0.0102	0.0100	1.6	20.0
1,4-Dichlorobenzene	Ave	1.435	1.455	0.5000	0.0101	0.0100	1.4	20.0
n-Butylbenzene	Ave	1.645	1.667		0.0101	0.0100	1.4	20.0
1,2-Dichlorobenzene	Ave	1.268	1.206	0.4000	0.00951	0.0100	-4.9	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVIS 240-235154/2 Calibration Date: 06/20/2016 09:34

Instrument ID: A3UX11 Calib Start Date: 05/28/2016 09:12

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 05/28/2016 11:03

Lab File ID: UXJ5601.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.1034	0.0816	0.0500	0.00789	0.0100	-21.1	50.0
1,2,4-Trichlorobenzene	Ave	0.6065	0.5723	0.2000	0.00944	0.0100	-5.6	50.0
Hexachlorobutadiene	Ave	0.2494	0.2198		0.00881	0.0100	-11.9	20.0
Naphthalene	Ave	1.496	1.391		0.00930	0.0100	-7.0	50.0
1,2,3-Trichlorobenzene	Ave	0.5655	0.5329		0.00942	0.0100	-5.8	20.0
Dibromofluoromethane (Surr)	Ave	0.2231	0.2105		0.0113	0.0120	-5.7	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.2501	0.2507		0.0120	0.0120	0.3	20.0
Toluene-d8 (Surr)	Ave	1.421	1.423		0.0120	0.0120	0.1	20.0
4-Bromofluorobenzene (Surr)	Ave	0.4299	0.3935		0.0109	0.0120	-8.5	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: (CCVIS) 240-235310/2 Calibration Date: 06/21/2016 08:52

Instrument ID: A3UX11 Calib Start Date: 05/28/2016 09:12

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 05/28/2016 11:03

Lab File ID: UXJ5658.D Conc. Units: ng/uL Heated Purge: (Y/N) N

	ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
	Dichlorodifluoromethane	Ave	0.1572	0.1689	0.1000	0.0107	0.0100	7.4	20.0
\dashv	Chloromethane	Ave	0.2254	0.2423	0.1000	0.0108	0.0100	7.5	20.0
	Vinyl chloride	Ave	0.2393	0.2266	0.1000	0.00947	0.0100	-5.3	20.0
	Butadiene	Ave	0.2248	0.2087		0.00928	0.0100	-7.2	20.0
	Bromomethane	Ave	0.1093	0.0650	0.0500	0.00595	0.0100	-40.5*	20.0
	Chloroethane	Ave	0.1134	0.0823	0.0500	0.00726	0.0100	-27.4*	20.0
	Dichlorofluoromethane	Ave	0.2466	0.2274		0.00922	0.0100	-7.8	20.0
	Trichlorofluoromethane	Ave	0.1723	0.2008	0.1000	0.0117	0.0100	16.5	20.0
	Ethyl ether	Ave	0.2239	0.1935		0.00864	0.0100	-13.6	20.0
	Acrolein	Ave	0.0316	0.0215		0.0340	0.0500	-32.0	50.0
	1,1-Dichloroethene	Ave	0.1767	0.1787	0.1000	0.0101	0.0100	1.1	20.0
	1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.1071	0.1027	0.0500	0.00959	0.0100	-4.1	20.0
İ	Acetone	Lin1		0.0365	0.0100	0.0127	0.0200	-36.5	50.0
Ì	Iodomethane	Ave	0.2451	0.2228		0.00909	0.0100	-9.1	20.0
Ì	Carbon disulfide	Ave	0.4562	0.4866	0.1000	0.0107	0.0100	6.7	20.0
Ì	3-Chloro-1-propene	Ave	0.1616	0.1508		0.00933	0.0100	-6.7	20.0
Ì	Methyl acetate	Ave	0.1347	0.1144	0.1000	0.0425	0.0500	-15.0	20.0
Ì	Methylene Chloride	Lin1		0.2045	0.1000	0.00941	0.0100	-5.9	50.0
Ī	2-Methyl-2-propanol	Ave	0.0132	0.0082		0.0622	0.100	-37.8	50.0
Ī	Acrylonitrile	Ave	0.0700	0.0605		0.0864	0.100	-13.6	20.0
Ī	Methyl tert-butyl ether	Ave	0.6617	0.5887	0.1000	0.00890	0.0100	-11.0	20.0
	trans-1,2-Dichloroethene	Ave	0.2620	0.2466	0.1000	0.00941	0.0100	-5.9	20.0
	Hexane	Ave	0.0561	0.0617		0.0110	0.0100	10.0	20.0
	1,1-Dichloroethane	Ave	0.4477	0.4287	0.2000	0.00958	0.0100	-4.2	20.0
	Vinyl acetate	Ave	0.4179	0.3691		0.00883	0.0100	-11.7	50.0
	cis-1,2-Dichloroethene	Ave	0.2770	0.2551	0.1000	0.00921	0.0100	-7.9	20.0
	2,2-Dichloropropane	Ave	0.1969	0.1843		0.00936	0.0100	-6.4	20.0
	2-Butanone (MEK)	Ave	0.0824	0.0630	0.0100	0.0153	0.0200	-23.5*	20.0
	Chlorobromomethane	Ave	0.1278	0.1210		0.00946	0.0100	-5.4	20.0
	Tetrahydrofuran	Ave	0.0529	0.0444		0.0168	0.0200	-16.1	20.0
	Chloroform	Ave	0.4028	0.3828	0.2000	0.00950	0.0100	-5.0	20.0
	1,1,1-Trichloroethane	Ave	0.2717	0.2502	0.1000	0.00921	0.0100	-7.9	20.0
	Cyclohexane	Ave	0.3041	0.3056	0.1000	0.0100	0.0100	0.5	20.0
	1,1-Dichloropropene	Ave	0.3431	0.3313		0.00965	0.0100	-3.5	20.0
	Carbon tetrachloride	Ave	0.2486	0.2326	0.1000	0.00936	0.0100	-6.4	20.0
[Isobutyl alcohol	Ave	0.0060	0.0054		0.226	0.250	-9.5	20.0
[1,2-Dichloroethane	Ave	0.2815	0.2865	0.1000	0.0102	0.0100	1.7	20.0
	Benzene	Ave	1.057	1.003	0.5000	0.00949	0.0100	-5.1	20.0
	n-Heptane	Ave	0.0587	0.0578		0.00984	0.0100	-1.6	20.0
	Trichloroethene	Ave	0.2761	0.2556	0.1500	0.00926	0.0100	-7.4	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVIS 240-235310/2 Calibration Date: 06/21/2016 08:52

Instrument ID: A3UX11 Calib Start Date: 05/28/2016 09:12

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 05/28/2016 11:03

Lab File ID: UXJ5658.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	0.3306	0.3178	0.1000	0.00961	0.0100	-3.9	20.0
1,2-Dichloropropane	Ave	0.2533	0.2303	0.1000	0.00909	0.0100	-9.1	20.0
Dibromomethane	Ave	0.1259	0.1203		0.00955	0.0100	-4.5	20.0
1,4-Dioxane	Lin1		0.0012		0.147	0.200	-26.5	50.0
Dichlorobromomethane	Ave	0.2929	0.2693	0.1500	0.00919	0.0100	-8.1	20.0
2-Chloroethyl vinyl ether	Ave	0.1454	0.1282		0.0176	0.0200	-11.8	20.0
cis-1,3-Dichloropropene	Ave	0.3977	0.3428	0.1500	0.00862	0.0100	-13.8	20.0
4-Methyl-2-pentanone (MIBK)	Ave	0.1675	0.1470	0.0500	0.0176	0.0200	-12.2	20.0
Toluene	Ave	1.613	1.622	0.4000	0.0101	0.0100	0.5	20.0
trans-1,3-Dichloropropene	Ave	0.4831	0.4473	0.1000	0.00926	0.0100	-7.4	20.0
Ethyl methacrylate	Ave	0.4217	0.3893		0.00923	0.0100	-7.7	20.0
1,1,2-Trichloroethane	Ave	0.2874	0.2810	0.1000	0.00978	0.0100	-2.2	20.0
1,3-Dichloropropane	Ave	0.5237	0.5170		0.00987	0.0100	-1.3	20.0
Tetrachloroethene	Ave	0.3065	0.2963	0.1500	0.00967	0.0100	-3.3	20.0
2-Hexanone	Ave	0.1780	0.1510	0.0500	0.0170	0.0200	-15.2	20.0
Chlorodibromomethane	Ave	0.2976	0.2761		0.00928	0.0100	-7.2	20.0
Ethylene Dibromide	Ave	0.2742	0.2608		0.00951	0.0100	-4.9	20.0
Chlorobenzene	Ave	0.9846	0.9258	0.3000	0.00940	0.0100	-6.0	20.0
1,1,1,2-Tetrachloroethane	Ave	0.3208	0.3015		0.00940	0.0100	-6.0	20.0
Ethylbenzene	Ave	0.5275	0.5163		0.00979	0.0100	-2.1	20.0
m-Xylene & p-Xylene	Ave	0.6409	0.6193		0.00966	0.0100	-3.4	20.0
o-Xylene	Ave	0.6156	0.5720		0.00929	0.0100	-7.1	20.0
Styrene	Ave	1.064	1.009	0.3000	0.00948	0.0100	-5.2	20.0
Bromoform	Ave	0.1575	0.1254	0.1000	0.00796	0.0100	-20.4*	20.0
Isopropylbenzene	Ave	1.413	1.310	0.1000	0.00927	0.0100	-7.3	20.0
1,1,2,2-Tetrachloroethane	Ave	0.6946	0.6708	0.3000	0.00966	0.0100	-3.4	20.0
Bromobenzene	Ave	0.9222	0.9004		0.00976	0.0100	-2.4	20.0
1,2,3-Trichloropropane	Ave	0.2209	0.2233		0.0101	0.0100	1.1	20.0
trans-1,4-Dichloro-2-butene	Ave	0.1635	0.1219		0.00746	0.0100	-25.4*	20.0
N-Propylbenzene	Ave	0.8936	0.9048		0.0101	0.0100	1.3	20.0
2-Chlorotoluene	Ave	0.7923	0.7753		0.00979	0.0100	-2.1	20.0
1,3,5-Trimethylbenzene	Ave	2.484	2.428		0.00978	0.0100	-2.2	20.0
4-Chlorotoluene	Ave	0.8349	0.8245		0.00987	0.0100	-1.3	20.0
tert-Butylbenzene	Ave	2.075	1.943		0.00937	0.0100	-6.3	20.0
1,2,4-Trimethylbenzene	Ave	2.469	2.379		0.00964	0.0100	-3.6	20.0
sec-Butylbenzene	Ave	2.678	2.548		0.00952	0.0100	-4.8	20.0
1,3-Dichlorobenzene	Ave	1.410	1.291	0.6000	0.00915	0.0100	-8.5	20.0
4-Isopropyltoluene	Ave	2.276	2.115		0.00929	0.0100	-7.1	20.0
1,4-Dichlorobenzene	Ave	1.435	1.304	0.5000	0.00908	0.0100	-9.2	20.0
n-Butylbenzene	Ave	1.645	1.507		0.00916	0.0100	-8.4	20.0
1,2-Dichlorobenzene	Ave	1.268	1.114	0.4000	0.00879	0.0100	-12.1	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVIS 240-235310/2 Calibration Date: 06/21/2016 08:52

Instrument ID: A3UX11 Calib Start Date: 05/28/2016 09:12

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 05/28/2016 11:03

Lab File ID: UXJ5658.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.1034	0.0751	0.0500	0.00726	0.0100	-27.4	50.0
1,2,4-Trichlorobenzene	Ave	0.6065	0.5140	0.2000	0.00847	0.0100	-15.3	50.0
Hexachlorobutadiene	Ave	0.2494	0.1959		0.00785	0.0100	-21.5*	20.0
Naphthalene	Ave	1.496	1.240		0.00829	0.0100	-17.1	50.0
1,2,3-Trichlorobenzene	Ave	0.5655	0.4764		0.00842	0.0100	-15.8	20.0
Dibromofluoromethane (Surr)	Ave	0.2231	0.2064		0.0111	0.0120	-7.5	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.2501	0.2401		0.0115	0.0120	-4.0	20.0
Toluene-d8 (Surr)	Ave	1.421	1.354		0.0114	0.0120	-4.7	20.0
4-Bromofluorobenzene (Surr)	Ave	0.4299	0.3806		0.0106	0.0120	-11.5	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: ICV 240-232711/9 Calibration Date: 06/01/2016 14:45

Instrument ID: A3UX16 Calib Start Date: 06/01/2016 12:06

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 06/01/2016 14:22

Lab File ID: UXM5577.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.2419	0.3305	0.1000	0.0137	0.0100	36.6*	20.0
Chloromethane	Ave	0.2976	0.3513	0.1000	0.0118	0.0100	18.0	20.0
Vinyl chloride	Ave	0.3048	0.3483	0.1000	0.0114	0.0100	14.3	20.0
Butadiene	Ave	0.2947	0.3177		0.0108	0.0100	7.8	30.0
Bromomethane	Qua		0.1145	0.0500	0.0144	0.0100	44.4*	20.0
Chloroethane	Ave	0.1388	0.1683	0.0500	0.0121	0.0100	21.3*	20.0
Dichlorofluoromethane	Qua		0.3588		0.0137	0.0100	37.3*	20.0
Trichlorofluoromethane	Ave	0.1995	0.2430	0.1000	0.0122	0.0100	21.8*	20.0
Ethyl ether	Lin1		0.2244		0.0101	0.0100	1.0	20.0
Acrolein	Ave	0.0346	0.0395		0.0569	0.0500	13.9	50.0
1,1-Dichloroethene	Ave	0.2710	0.2759	0.1000	0.0102	0.0100	1.8	20.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.1905	0.1970	0.0500	0.0103	0.0100	3.4	20.0
Acetone	Lin1		0.0687	0.0100	0.0177	0.0200	-11.7	50.0
Iodomethane	Ave	0.3849	0.4271		0.0111	0.0100	11.0	20.0
Carbon disulfide	Ave	0.8432	0.8967	0.1000	0.0106	0.0100	6.3	20.0
3-Chloro-1-propene	Ave	0.1767	0.1932		0.0109	0.0100	9.3	20.0
Methyl acetate	Ave	0.1583	0.1544	0.1000	0.0488	0.0500	-2.5	20.0
Methylene Chloride	Lin1		0.3051	0.1000	0.0107	0.0100	6.8	50.0
2-Methyl-2-propanol	Ave	0.0187	0.0175		0.0933	0.100	-6.7	50.0
Acrylonitrile	Ave	0.0806	0.0825		0.102	0.100	2.3	20.0
trans-1,2-Dichloroethene	Ave	0.2741	0.2952	0.1000	0.0108	0.0100	7.7	20.0
Methyl tert-butyl ether	Ave	0.7693	0.7901	0.1000	0.0103	0.0100	2.7	20.0
Hexane	Ave	0.0778	0.0778		0.0100	0.0100	-0.0	20.0
1,1-Dichloroethane	Ave	0.4932	0.4950	0.2000	0.0100	0.0100	0.4	20.0
Vinyl acetate	Ave	0.4610	0.5063		0.0110	0.0100	9.8	50.0
2,2-Dichloropropane	Ave	0.3040	0.3134		0.0103	0.0100	3.1	20.0
2-Butanone (MEK)	Ave	0.1039	0.0862	0.0100	0.0166	0.0200	-17.0	20.0
cis-1,2-Dichloroethene	Ave	0.3002	0.3024	0.1000	0.0101	0.0100	0.7	20.0
Chlorobromomethane	Ave	0.1437	0.1388		0.00966	0.0100	-3.4	20.0
Tetrahydrofuran	Ave	0.0667	0.0577		0.0173	0.0200	-13.5	20.0
Chloroform	Ave	0.4559	0.4658	0.2000	0.0102	0.0100	2.2	20.0
1,1,1-Trichloroethane	Ave	0.3496	0.3618	0.1000	0.0103	0.0100	3.5	20.0
Cyclohexane	Ave	0.4582	0.4706	0.1000	0.0103	0.0100	2.7	20.0
1,1-Dichloropropene	Ave	0.3882	0.3966		0.0102	0.0100	2.1	20.0
Carbon tetrachloride	Ave	0.3280	0.3396	0.1000	0.0104	0.0100	3.6	20.0
Isobutyl alcohol	Ave	0.0062	0.0056		0.229	0.250	-8.3	20.0
1,2-Dichloroethane	Ave	0.3581	0.3730	0.1000	0.0104	0.0100	4.1	20.0
Benzene	Ave	1.113	1.149	0.5000	0.0103	0.0100	3.2	20.0
n-Heptane	Lin1		0.1858		0.00996	0.0100	-0.4	20.0
Trichloroethene	Ave	0.2871	0.2971	0.1500	0.0103	0.0100	3.5	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: ICV 240-232711/9 Calibration Date: 06/01/2016 14:45

Instrument ID: A3UX16 Calib Start Date: 06/01/2016 12:06

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 06/01/2016 14:22

Lab File ID: UXM5577.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	0.4527	0.4581	0.1000	0.0101	0.0100	1.2	20.0
1,2-Dichloropropane	Ave	0.2678	0.2796	0.1000	0.0104	0.0100	4.4	20.0
Dibromomethane	Ave	0.1494	0.1494		0.0100	0.0100	-0.0	20.0
1,4-Dioxane	Ave	0.0021	0.0020		0.188	0.200	-6.2	50.0
Dichlorobromomethane	Ave	0.3531	0.3505	0.1500	0.00993	0.0100	-0.7	20.0
2-Chloroethyl vinyl ether	Ave	0.1448	0.1445		0.00998	0.0100	-0.2	20.0
cis-1,3-Dichloropropene	Ave	0.4504	0.4612	0.1500	0.0102	0.0100	2.4	20.0
4-Methyl-2-pentanone (MIBK)	Ave	0.2024	0.1946	0.0500	0.0192	0.0200	-3.8	20.0
Toluene	Ave	1.642	1.695	0.4000	0.0103	0.0100	3.2	20.0
trans-1,3-Dichloropropene	Ave	0.5439	0.5423	0.1000	0.00997	0.0100	-0.3	20.0
Ethyl methacrylate	Ave	0.4573	0.4489		0.00982	0.0100	-1.8	20.0
1,1,2-Trichloroethane	Ave	0.2860	0.2886	0.1000	0.0101	0.0100	0.9	20.0
1,3-Dichloropropane	Ave	0.5367	0.5305		0.00988	0.0100	-1.2	20.0
Tetrachloroethene	Ave	0.2970	0.3033	0.1500	0.0102	0.0100	2.1	20.0
2-Hexanone	Ave	0.2098	0.1810	0.0500	0.0173	0.0200	-13.7	20.0
Chlorodibromomethane	Ave	0.3538	0.3434		0.00971	0.0100	-2.9	20.0
Ethylene Dibromide	Ave	0.2906	0.2993		0.0103	0.0100	3.0	20.0
Chlorobenzene	Ave	1.042	1.058	0.3000	0.0102	0.0100	1.5	20.0
1,1,1,2-Tetrachloroethane	Ave	0.3717	0.3698		0.00995	0.0100	-0.5	20.0
Ethylbenzene	Ave	0.5737	0.5909		0.0103	0.0100	3.0	20.0
m-Xylene & p-Xylene	Ave	0.7167	0.7377		0.0103	0.0100	2.9	20.0
o-Xylene	Ave	0.7199	0.7248		0.0101	0.0100	0.7	20.0
Styrene	Ave	1.177	1.231	0.3000	0.0105	0.0100	4.6	20.0
Bromoform	Ave	0.1935	0.2144	0.1000	0.0111	0.0100	10.8	20.0
Isopropylbenzene	Ave	1.785	1.881	0.1000	0.0105	0.0100	5.4	20.0
1,1,2,2-Tetrachloroethane	Ave	0.6963	0.6931	0.3000	0.00995	0.0100	-0.5	20.0
Bromobenzene	Ave	0.7820	0.7968		0.0102	0.0100	1.9	20.0
1,2,3-Trichloropropane	Lin1		0.2166		0.0102	0.0100	2.5	20.0
trans-1,4-Dichloro-2-butene	Ave	0.1991	0.1927		0.00968	0.0100	-3.2	20.0
N-Propylbenzene	Ave	0.9385	0.9345		0.00996	0.0100	-0.4	20.0
2-Chlorotoluene	Ave	0.8045	0.7957		0.00989	0.0100	-1.1	20.0
1,3,5-Trimethylbenzene	Ave	2.848	2.896		0.0102	0.0100	1.7	20.0
4-Chlorotoluene	Ave	0.8281	0.8207		0.00991	0.0100	-0.9	20.0
tert-Butylbenzene	Ave	2.462	2.517		0.0102	0.0100	2.2	20.0
1,2,4-Trimethylbenzene	Ave	2.977	2.954		0.00992	0.0100	-0.8	20.0
sec-Butylbenzene	Ave	3.385	3.413		0.0101	0.0100	0.8	20.0
1,3-Dichlorobenzene	Ave	1.551	1.549	0.6000	0.00999	0.0100	-0.0	20.0
4-Isopropyltoluene	Ave	2.944	3.021		0.0103	0.0100	2.6	20.0
1,4-Dichlorobenzene	Ave	1.558	1.570	0.5000	0.0101	0.0100	0.8	20.0
n-Butylbenzene	Ave	2.523	2.525		0.0100	0.0100	0.0	20.0
1,2-Dichlorobenzene	Ave	1.479	1.513	0.4000	0.0102	0.0100	2.3	20.0
					1			

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: <u>ICV 240-232711/9</u> Calibration Date: 06/01/2016 14:45

Instrument ID: A3UX16 Calib Start Date: 06/01/2016 12:06

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 06/01/2016 14:22

Lab File ID: UXM5577.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.1603	0.1597	0.0500	0.00996	0.0100	-0.4	50.0
1,2,4-Trichlorobenzene	Ave	0.9684	0.9683	0.2000	0.0100	0.0100	-0.0	50.0
Hexachlorobutadiene	Ave	0.3429	0.3303		0.00963	0.0100	-3.7	20.0
Naphthalene	Ave	2.483	2.405		0.00969	0.0100	-3.1	50.0
1,2,3-Trichlorobenzene	Ave	0.8687	0.8247		0.00949	0.0100	-5.1	20.0
Dibromofluoromethane (Surr)	Ave	0.2344	0.2353		0.0100	0.0100	0.4	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.2836	0.2858		0.0101	0.0100	0.8	20.0
Toluene-d8 (Surr)	Ave	1.348	1.356		0.0101	0.0100	0.6	20.0
4-Bromofluorobenzene (Surr)	Ave	0.5111	0.5095		0.00997	0.0100	-0.3	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: <u>ICV 240-232711/16</u> Calibration Date: 06/01/2016 17:24

Instrument ID: A3UX16 Calib Start Date: 06/01/2016 15:08

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 06/01/2016 17:02

Lab File ID: UXM5584.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE	AVE RRF	RRF	MIN RRF	CALC	SPIKE	%D	MAX
	TYPE				AMOUNT	AMOUNT		%D
Acetonitrile	Ave	0.0228	0.0233		0.102	0.100	2.0	20.0
Isopropyl ether	Ave	0.2496	0.2758		0.0110	0.0100	10.5	20.0
2-Chloro-1,3-butadiene	Ave	0.4316	0.4683		0.0109	0.0100	8.5	20.0
Tert-butyl ethyl ether	Ave	0.8440	0.9047		0.0107	0.0100	7.2	20.0
Propionitrile	Ave	0.0286	0.0300		0.105	0.100	4.9	20.0
Ethyl acetate	Ave	0.1684	0.1820		0.0216	0.0200	8.1	50.0
Methacrylonitrile	Ave	0.1290	0.1351		0.105	0.100	4.7	20.0
Tert-amyl methyl ether	Ave	0.7756	0.8251		0.0106	0.0100	6.4	20.0
n-Butanol	Ave	0.0049	0.0047		0.240	0.250	-4.0	20.0
Methyl methacrylate	Ave	0.1806	0.1852		0.0205	0.0200	2.5	20.0
2-Nitropropane	Ave	0.0636	0.0608		0.0191	0.0200	-4.4	20.0
1-Chlorohexane	Ave	0.4765	0.4839		0.0102	0.0100	1.6	20.0
Cyclohexanone	Lin1		0.0159		0.0945	0.100	-5.5	20.0
1,2,3-Trimethylbenzene	Ave	2.977	3.064		0.0103	0.0100	2.9	20.0
1,3,5-Trichlorobenzene	Ave	0.996	1.031		0.0104	0.0100	3.5	20.0
2-Methylnaphthalene	Ave	1.416	1.326		0.0187	0.0200	-6.4	20.0

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: (CCVIS)240-235221/2 Calibration Date: 06/20/2016 12:47

Instrument ID: A3UX16 Calib Start Date: 06/01/2016 12:06

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 06/01/2016 14:22

Lab File ID: UXM6060.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.2419	0.3045	0.1000	0.0126	0.0100	25.9*	20.0
Chloromethane	Ave	0.2976	0.3690	0.1000	0.0124	0.0100	24.0*	20.0
Vinyl chloride	Ave	0.3048	0.3498	0.1000	0.0115	0.0100	14.8	20.0
Butadiene	Ave	0.2947	0.3436		0.0117	0.0100	16.6	20.0
Bromomethane	Qua		0.0938	0.0500	0.0115	0.0100	15.4	20.0
Chloroethane	Ave	0.1388	0.1270	0.0500	0.00915	0.0100	-8.5	20.0
Dichlorofluoromethane	Qua		0.3349		0.0128	0.0100	27.7*	20.0
Trichlorofluoromethane	Ave	0.1995	0.2550	0.1000	0.0128	0.0100	27.8*	20.0
Ethyl ether	Lin1		0.2092		0.00939	0.0100	-6.1	20.0
Acrolein	Ave	0.0346	0.0256		0.0369	0.0500	-26.1	50.0
1,1-Dichloroethene	Ave	0.2710	0.2533	0.1000	0.00935	0.0100	-6.5	20.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.1905	0.1799	0.0500	0.00944	0.0100	-5.6	20.0
Acetone	Lin1		0.0705	0.0100	0.0182	0.0200	-9.1	50.0
Iodomethane	Ave	0.3849	0.3976		0.0103	0.0100	3.3	20.0
Carbon disulfide	Ave	0.8432	0.8429	0.1000	0.0100	0.0100	-0.0	20.0
3-Chloro-1-propene	Ave	0.1767	0.1561		0.00883	0.0100	-11.7	20.0
Methyl acetate	Ave	0.1583	0.1373	0.1000	0.0434	0.0500	-13.2	20.0
Methylene Chloride	Lin1		0.2847	0.1000	0.00989	0.0100	-1.1	50.0
2-Methyl-2-propanol	Ave	0.0187	0.0159		0.0848	0.100	-15.2	50.0
Acrylonitrile	Ave	0.0806	0.0703		0.0872	0.100	-12.8	20.0
Methyl tert-butyl ether	Ave	0.7693	0.7135	0.1000	0.00927	0.0100	-7.3	20.0
trans-1,2-Dichloroethene	Ave	0.2741	0.2731	0.1000	0.00996	0.0100	-0.4	20.0
Hexane	Ave	0.0778	0.0763		0.00980	0.0100	-2.0	20.0
1,1-Dichloroethane	Ave	0.4932	0.5040	0.2000	0.0102	0.0100	2.2	20.0
Vinyl acetate	Ave	0.4610	0.4171		0.00905	0.0100	-9.5	50.0
2,2-Dichloropropane	Ave	0.3040	0.3496		0.0115	0.0100	15.0	20.0
2-Butanone (MEK)	Ave	0.1039	0.0871	0.0100	0.0168	0.0200	-16.2	20.0
cis-1,2-Dichloroethene	Ave	0.3002	0.2990	0.1000	0.00996	0.0100	-0.4	20.0
Chlorobromomethane	Ave	0.1437	0.1277		0.00889	0.0100	-11.1	20.0
Tetrahydrofuran	Ave	0.0667	0.0520		0.0156	0.0200	-22.0*	20.0
Chloroform	Ave	0.4559	0.4494	0.2000	0.00986	0.0100	-1.4	20.0
1,1,1-Trichloroethane	Ave	0.3496	0.3703	0.1000	0.0106	0.0100	5.9	20.0
Cyclohexane	Ave	0.4582	0.4711	0.1000	0.0103	0.0100	2.8	20.0
1,1-Dichloropropene	Ave	0.3882	0.3864		0.00995	0.0100	-0.5	20.0
Carbon tetrachloride	Ave	0.3280	0.3094	0.1000	0.00943	0.0100	-5.7	20.0
Isobutyl alcohol	Ave	0.0062	0.0051		0.208	0.250	-16.7	20.0
1,2-Dichloroethane	Ave	0.3581	0.3429	0.1000	0.00957	0.0100	-4.3	20.0
Benzene	Ave	1.113	1.120	0.5000	0.0101	0.0100	0.7	20.0
n-Heptane	Lin1		0.1848		0.00990	0.0100	-1.0	20.0
Trichloroethene	Ave	0.2871	0.2798	0.1500	0.00974	0.0100	-2.6	20.0

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVIS 240-235221/2 Calibration Date: 06/20/2016 12:47

Instrument ID: A3UX16 Calib Start Date: 06/01/2016 12:06

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 06/01/2016 14:22

Lab File ID: UXM6060.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	0.4527	0.4490	0.1000	0.00992	0.0100	-0.8	20.0
1,2-Dichloropropane	Ave	0.2678	0.2618	0.1000	0.00978	0.0100	-2.2	20.0
Dibromomethane	Ave	0.1494	0.1352		0.00905	0.0100	-9.5	20.0
1,4-Dioxane	Ave	0.0021	0.0018		0.170	0.200	-15.1	50.0
Dichlorobromomethane	Ave	0.3531	0.3198	0.1500	0.00906	0.0100	-9.4	20.0
2-Chloroethyl vinyl ether	Ave	0.1448	0.1225		0.0169	0.0200	-15.4	20.0
cis-1,3-Dichloropropene	Ave	0.4504	0.4085	0.1500	0.00907	0.0100	-9.3	20.0
4-Methyl-2-pentanone (MIBK)	Ave	0.2024	0.1752	0.0500	0.0173	0.0200	-13.4	20.0
Toluene	Ave	1.642	1.674	0.4000	0.0102	0.0100	2.0	20.0
trans-1,3-Dichloropropene	Ave	0.5439	0.4881	0.1000	0.00897	0.0100	-10.3	20.0
Ethyl methacrylate	Ave	0.4573	0.3963		0.00867	0.0100	-13.3	20.0
1,1,2-Trichloroethane	Ave	0.2860	0.2732	0.1000	0.00955	0.0100	-4.5	20.0
1,3-Dichloropropane	Ave	0.5367	0.5078		0.00946	0.0100	-5.4	20.0
Tetrachloroethene	Ave	0.2970	0.2945	0.1500	0.00992	0.0100	-0.8	20.0
2-Hexanone	Ave	0.2098	0.1803	0.0500	0.0172	0.0200	-14.1	20.0
Chlorodibromomethane	Ave	0.3538	0.3004		0.00849	0.0100	-15.1	20.0
Ethylene Dibromide	Ave	0.2906	0.2608		0.00897	0.0100	-10.3	20.0
Chlorobenzene	Ave	1.042	1.027	0.3000	0.00986	0.0100	-1.4	20.0
1,1,1,2-Tetrachloroethane	Ave	0.3717	0.3528		0.00949	0.0100	-5.1	20.0
Ethylbenzene	Ave	0.5737	0.5706		0.00995	0.0100	-0.5	20.0
m-Xylene & p-Xylene	Ave	0.7167	0.7060		0.00985	0.0100	-1.5	20.0
o-Xylene	Ave	0.7199	0.7289		0.0101	0.0100	1.3	20.0
Styrene	Ave	1.177	1.156	0.3000	0.00982	0.0100	-1.8	20.0
Bromoform	Ave	0.1935	0.1556	0.1000	0.00804	0.0100	-19.6	20.0
Isopropylbenzene	Ave	1.785	1.817	0.1000	0.0102	0.0100	1.8	20.0
1,1,2,2-Tetrachloroethane	Ave	0.6963	0.6338	0.3000	0.00910	0.0100	-9.0	20.0
Bromobenzene	Ave	0.7820	0.7591		0.00971	0.0100	-2.9	20.0
1,2,3-Trichloropropane	Lin1		0.1878		0.00883	0.0100	-11.7	20.0
trans-1,4-Dichloro-2-butene	Ave	0.1991	0.1270		0.00638	0.0100	-36.2*	20.0
N-Propylbenzene	Ave	0.9385	0.9346		0.00996	0.0100	-0.4	20.0
2-Chlorotoluene	Ave	0.8045	0.7893		0.00981	0.0100	-1.9	20.0
1,3,5-Trimethylbenzene	Ave	2.848	2.835		0.00996	0.0100	-0.4	20.0
4-Chlorotoluene	Ave	0.8281	0.8238		0.00995	0.0100	-0.5	20.0
tert-Butylbenzene	Ave	2.462	2.541		0.0103	0.0100	3.2	20.0
1,2,4-Trimethylbenzene	Ave	2.977	2.990		0.0100	0.0100	0.4	20.0
sec-Butylbenzene	Ave	3.385	3.470		0.0103	0.0100	2.5	20.0
1,3-Dichlorobenzene	Ave	1.551	1.530	0.6000	0.00987	0.0100	-1.3	20.0
4-Isopropyltoluene	Ave	2.944	3.001		0.0102	0.0100	1.9	20.0
1,4-Dichlorobenzene	Ave	1.558	1.573	0.5000	0.0101	0.0100	1.0	20.0
n-Butylbenzene	Ave	2.523	2.544		0.0101	0.0100	0.8	20.0
1,2-Dichlorobenzene	Ave	1.479	1.484	0.4000	0.0100	0.0100	0.4	20.0

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVIS 240-235221/2 Calibration Date: 06/20/2016 12:47

Instrument ID: A3UX16 Calib Start Date: 06/01/2016 12:06

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 06/01/2016 14:22

Lab File ID: UXM6060.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.1603	0.1143	0.0500	0.00713	0.0100	-28.7	50.0
1,2,4-Trichlorobenzene	Ave	0.9684	0.9206	0.2000	0.00951	0.0100	-4.9	50.0
Hexachlorobutadiene	Ave	0.3429	0.3131		0.00913	0.0100	-8.7	20.0
Naphthalene	Ave	2.483	2.079		0.00838	0.0100	-16.2	50.0
1,2,3-Trichlorobenzene	Ave	0.8687	0.8010		0.00922	0.0100	-7.8	20.0
Dibromofluoromethane (Surr)	Ave	0.2344	0.2242		0.00957	0.0100	-4.3	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.2836	0.2682		0.00946	0.0100	-5.4	20.0
Toluene-d8 (Surr)	Ave	1.348	1.399		0.0104	0.0100	3.8	20.0
4-Bromofluorobenzene (Surr)	Ave	0.5111	0.5053		0.00989	0.0100	-1.1	20.0

FORM IV GC/MS VOA METHOD BLANK SUMMARY

Lab Name: TestAmerica Canton	Job No.: 240-65994-1				
SDG No.:					
Lab File ID: UXJ5605.D	Lab Sample ID: MB 240-235154/6				
Matrix: Water	Heated Purge: (Y/N) N				
Instrument ID: A3UX11	Date Analyzed: 06/20/2016 11:05				
GC Column: DB-624 ID: 0.18 (mm)					

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 240-235154/4	UXJ5602.D	06/20/2016 09:57
MRC-SW5A1-061316	240-65994-1	UXJ5610.D	06/20/2016 13:13
MRC-SW5A2-061316	240-65994-2	UXJ5611.D	06/20/2016 13:35
MRC-SW5B-061316	240-65994-3	UXJ5612.D	06/20/2016 13:57
MRC-SW6A-061316	240-65994-4	UXJ5613.D	06/20/2016 14:20
MRC-SW6B-061316	240-65994-5	UXJ5614.D	06/20/2016 14:43
MRC-SW7A-061316	240-65994-6	UXJ5615.D	06/20/2016 15:05
MRC-SW7B-061316	240-65994-7	UXJ5616.D	06/20/2016 15:27
MRC-SW8A-061316	240-65994-8	UXJ5617.D	06/20/2016 15:49
MRC-SW8B-061316	240-65994-9	UXJ5618.D	06/20/2016 16:12
MRC-SW9A-061316	240-65994-10	UXJ5619.D	06/20/2016 16:34
MRC-SW9B-061316	240-65994-11	UXJ5620.D	06/20/2016 16:57
	240-65995-B-5 MS	UXJ5626.D	06/20/2016 19:12
	240-65995-B-5 MSD	UXJ5627.D	06/20/2016 19:35

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Canton	Job No.: 240-65994-1	Job No.: 240-65994-1			
SDG No.:					
Client Sample ID:	Lab Sample ID: MB 240-2	35154/6			
Matrix: Water	Lab File ID: UXJ5605.D				
Analysis Method: 8260C	Date Collected:				
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 11:05				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	Vol.: GC Column: DB-624 ID: 0.18				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 235154	Units: wa/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	1.0	U	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Canton	Job No.: 240-65994-1		
SDG No.:			
Client Sample ID:	Lab Sample ID: MB 240-2	235154/6	
Matrix: Water	Lab File ID: UXJ5605.D		
Analysis Method: 8260C	Date Collected:		
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 11:05		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	Vol.: GC Column: DB-624 ID: 0.18		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 235154	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	92		80-120
1868-53-7	Dibromofluoromethane (Surr)	91		79-120
460-00-4	4-Bromofluorobenzene (Surr)	88		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	94		78-125

FORM IV GC/MS VOA METHOD BLANK SUMMARY

Lab Name: TestAmerica Canton		Job No.: 240-65994-1				
SDG No.:						
Lab File ID: UXM6063.D		Lab Sample ID: MB 240-235221/6				
Matrix: Water		Heated Purge: (Y/N) N				
Instrument ID: A3UX16		Date Analyzed: 06/20/2016 13:55				
GC Column: DB-624	ID: 0.18(mm)					

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 240-235221/4	UXM6059.D	06/20/2016 12:25
	240-65962-B-1 MS	UXM6071.D	06/20/2016 16:56
	240-65962-B-1 MSD	UXM6072.D	06/20/2016 17:19
MRC-SWFB-061316	240-65996-1	UXM6074.D	06/20/2016 18:04
MRC-SW1A-061316	240-65996-2	UXM6075.D	06/20/2016 18:27
MRC-SW2A-061316	240-65996-3	UXM6076.D	06/20/2016 18:50
TB-061316	240-65996-4	UXM6077.D	06/20/2016 19:12
MRC-SWDUP2-061316	240-65996-5	UXM6078.D	06/20/2016 19:35

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Canton	Job No.: <u>240-65994-1</u>	Job No.: 240-65994-1		
SDG No.:				
Client Sample ID:	Lab Sample ID: MB 240-2	235221/6		
Matrix: Water	Lab File ID: UXM6063.D			
Analysis Method: 8260C	Date Collected:			
Sample wt/vol: 5(mL)	le wt/vol: 5(mL) Date Analyzed: 06/20/2016 13:55			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18 (mm)		
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 235221	Units: ua/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	1.0	U	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Canton	Job No.: <u>240-65994-1</u>	Job No.: <u>240-65994-1</u>		
SDG No.:				
Client Sample ID:	Lab Sample ID: MB 240-2	235221/6		
Matrix: Water	Lab File ID: UXM6063.D			
Analysis Method: 8260C	Date Collected:			
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/20	13:55		
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 235221	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	103		80-120
1868-53-7	Dibromofluoromethane (Surr)	95		79-120
460-00-4	4-Bromofluorobenzene (Surr)	97		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	94		78-125

FORM IV GC/MS VOA METHOD BLANK SUMMARY

Lab Name: <u>TestAmerica Ca</u>	nton	Job No.: 240-65994-1
SDG No.:		
Lab File ID: UXJ5663.D		Lab Sample ID: MB 240-235310/6
Matrix: Water		Heated Purge: (Y/N) N
Instrument ID: A3UX11		Date Analyzed: 06/21/2016 11:01
GC Column: DB-624	ID: 0.18(mm)	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 240-235310/4	UXJ5661.D	06/21/2016 10:17
MRC-SW7B-061316	240-65994-7	UXJ5670.D	06/21/2016 13:59

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Canton	Job No.: 240-65994-1	
SDG No.:		
Client Sample ID:	Lab Sample ID: MB 240-2	235310/6
Matrix: Water	Lab File ID: UXJ5663.D	
Analysis Method: 8260C	Date Collected:	
Sample wt/vol: 5(mL)	Date Analyzed: 06/21/2016 11:01	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18 (mm)
% Moisture:	Level: (low/med) Low	
Analysis Batch No.: 235310	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	1.0	U	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Canton	Job No.: <u>240-65994-1</u>	Job No.: <u>240-65994-1</u>		
SDG No.:				
Client Sample ID:	Lab Sample ID: MB 240-2	235310/6		
Matrix: Water	Lab File ID: UXJ5663.D			
Analysis Method: 8260C Date Collected:				
Sample wt/vol: 5(mL)	Date Analyzed: 06/21/20	016 11:01		
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 235310	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	109		80-120
1868-53-7	Dibromofluoromethane (Surr)	115		79-120
460-00-4	4-Bromofluorobenzene (Surr)	104		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	118		78-125

FORM II GC/MS VOA SURROGATE RECOVERY

Lab Name:	TestAmerica Canton	Job No.:	240-65994-1
SDG No.:			

Matrix: Water Level: Low

GC Column (1): DB-624 ID: 0.18(mm)

			_						
Client Sample ID	Lab Sample ID	DBFM	#	DCA	#	TOL	#	BFB	#
MRC-SW5A1-061316	240-65994-1	92		96		90		86	
MRC-SW5A2-061316	240-65994-2	93		97		94		89	
MRC-SW5B-061316	240-65994-3	93		95		90		85	
MRC-SW6A-061316	240-65994-4	93		96		91		86	
MRC-SW6B-061316	240-65994-5	113	T	115		110		104	
MRC-SW7A-061316	240-65994-6	91	T	96		89		83	
MRC-SW7B-061316	240-65994-7	91	T	93		89		84	
MRC-SW7B-061316	240-65994-7	97	T	100		95		89	
MRC-SW8A-061316	240-65994-8	96	T	99		94		89	
MRC-SW8B-061316	240-65994-9	91	T	95		91		84	
MRC-SW9A-061316	240-65994-10	94	T	97		94		87	
MRC-SW9B-061316	240-65994-11	93	T	97		91		86	
MRC-SWFB-061316	240-65996-1	99	T	95		104		99	
MRC-SW1A-061316	240-65996-2	94	T	96		104		99	
MRC-SW2A-061316	240-65996-3	91	T	93		102		97	
TB-061316	240-65996-4	97	T	97		104		100	
MRC-SWDUP2-061316	240-65996-5	92	T	94		100		98	
	MB 240-235154/6	91		94		92		88	
	MB 240-235221/6	95		94		103		97	
	MB 240-235310/6	115		118		109		104	
	LCS 240-235154/4	97		101		96		90	
	LCS 240-235221/4	93		92		102		99	
	LCS 240-235310/4	94		101		95		88	
	240-65995-B-5 MS	98	T	104		96		92	
	240-65962-B-1 MS	95		92		104		98	
	240-65995-B-5 MSD	97		102		96		92	
	240-65962-B-1 MSD	95		94		105		98	

	QC LIMITS
DBFM = Dibromofluoromethane (Surr)	79-120
DCA = 1,2-Dichloroethane-d4 (Surr)	78-125
TOL = Toluene-d8 (Surr)	80-120
BFB = 4-Bromofluorobenzene (Surr)	61-120

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery values

Lab Nam	ab Name: TestAmerica Canton		Job No.: 240-65994-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: UXJ5602.D	
Lab ID:	LCS 240-235154/4		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	%	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
1,1,1-Trichloroethane	10.0	11.0	110	77-123	
1,1,2,2-Tetrachloroethane	10.0	11.9	119	71-123	
1,1,2-Trichloro-1,2,2-trifluor	10.0	7.70	77	67-138	
oethane					
1,1,2-Trichloroethane	10.0	11.0	110		
1,1-Dichloroethane	10.0	11.2	112		
1,1-Dichloroethene	10.0	11.8	118		
1,2,4-Trichlorobenzene	10.0	10.5	105		
1,2-Dibromo-3-Chloropropane	10.0	9.15	91		
Ethylene Dibromide	10.0	11.2	112		
1,2-Dichlorobenzene	10.0	10.0	100		
1,2-Dichloroethane	10.0	11.9	119		
1,2-Dichloropropane	10.0	10.7	107		
1,3-Dichlorobenzene	10.0	10.3	103		
1,4-Dichlorobenzene	10.0	10.6	106		
2-Butanone (MEK)	20.0	19.3	97		
2-Hexanone	20.0	20.1	101		
4-Methyl-2-pentanone (MIBK)	20.0	20.4	102	64-135	
Acetone	20.0	18.0	90		
Benzene	10.0	11.0	110	80-120	
Dichlorobromomethane	10.0	10.5	105	80-120	
Bromoform	10.0	10.1	101		
Bromomethane	10.0	7.40	74		
Carbon disulfide	10.0	13.2	132		
Carbon tetrachloride	10.0	10.7	107	77-131	
Chlorobenzene	10.0	10.5	105	80-120	
Chloroethane	10.0	8.56	86	36-126	
Chloroform	10.0	11.1	111	80-120	
Chloromethane	10.0	11.6	116		
cis-1,2-Dichloroethene	10.0	10.9	109	79-120	
cis-1,3-Dichloropropene	10.0	9.91	99		
Cyclohexane	10.0	8.41	84	60-140	
Chlorodibromomethane	10.0	10.5	105	74-120	
Dichlorodifluoromethane	10.0	6.14	61	23-136	
Ethylbenzene	10.0	10.7	107		
Isopropylbenzene	10.0	10.4	104	77-120	
Methyl acetate	50.0	54.0	108		
Methyl tert-butyl ether	10.0	11.1	111	69-121	
Methylcyclohexane	10.0	7.51	75	61-134	
Methylene Chloride	10.0	13.1	131	77-129	*
Styrene	10.0	10.6	106	76-122	
Tetrachloroethene	10.0	9.93	99	78-121	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

Lab Nam	Name: TestAmerica Canton		Job No.: 240-65994-1		
SDG No.	:				
Matrix:	Water	Level: Low	Lab File ID: UXJ5602.D		
Lab ID:	LCS 240-235154/4		Client ID:		

	SPIKE ADDED	LCS CONCENTRATION	LCS %	QC LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
Toluene	10.0	11.2	112	80-120	
trans-1,2-Dichloroethene	10.0	11.6	116	80-124	
trans-1,3-Dichloropropene	10.0	10.3	103	75-131	
Trichloroethene	10.0	10.7	107	80-121	
Trichlorofluoromethane	10.0	9.13	91	61-133	
Vinyl chloride	10.0	9.48	95	52-121	
Xylenes, Total	20.0	21.1	106	80-120	
m-Xylene & p-Xylene	10.0	10.7	107	80-120	
o-Xylene	10.0	10.4	104	80-120	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

Lab Nam	ab Name: TestAmerica Canton		Job No.: 240-65994-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: UXM6059.D	
Lab ID:	LCS 240-235221/4		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	ુ	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
1,1,1-Trichloroethane	10.0	9.62	96	77-123	
1,1,2,2-Tetrachloroethane	10.0	8.24	82	71-123	
1,1,2-Trichloro-1,2,2-trifluor	10.0	8.44	84		
oethane					
1,1,2-Trichloroethane	10.0	8.73	87	80-120	
1,1-Dichloroethane	10.0	9.16	92	79-125	
1,1-Dichloroethene	10.0	8.38	84		
1,2,4-Trichlorobenzene	10.0	8.52	85	61-120	
1,2-Dibromo-3-Chloropropane	10.0	6.30	63	50-132	
Ethylene Dibromide	10.0	8.44	84	80-120	
1,2-Dichlorobenzene	10.0	9.04	90	79-120	
1,2-Dichloroethane	10.0	8.84	88	80-120	
1,2-Dichloropropane	10.0	9.24	92	78-124	
1,3-Dichlorobenzene	10.0	9.07	91	79-120	
1,4-Dichlorobenzene	10.0	9.17	92	79-120	
2-Butanone (MEK)	20.0	14.5	72	56-138	
2-Hexanone	20.0	15.0	75	55-141	
4-Methyl-2-pentanone (MIBK)	20.0	15.2	76	64-135	
Acetone	20.0	12.6	63	34-148	
Benzene	10.0	9.25	93	80-120	
Dichlorobromomethane	10.0	8.58	86	80-120	
Bromoform	10.0	8.16	82	56-122	
Bromomethane	10.0	8.13	81	38-132	
Carbon disulfide	10.0	8.82	88	65-144	
Carbon tetrachloride	10.0	8.99	90	77-131	
Chlorobenzene	10.0	9.21	92	80-120	
Chloroethane	10.0	6.91	69	36-126	
Chloroform	10.0	9.23	92	80-120	
Chloromethane	10.0	9.86	99	48-133	
cis-1,2-Dichloroethene	10.0	9.12	91	79-120	
cis-1,3-Dichloropropene	10.0	8.58	86	74-126	
Cyclohexane	10.0	9.27	93	60-140	
Chlorodibromomethane	10.0	7.92	79	74-120	
Dichlorodifluoromethane	10.0	8.77	88	23-136	
Ethylbenzene	10.0	9.26	93	80-120	
Isopropylbenzene	10.0	9.53	95	77-120	
Methyl acetate	50.0	38.4	77	67-131	
Methyl tert-butyl ether	10.0	8.59	86	69-121	
Methylcyclohexane	10.0	9.02	90	61-134	
Methylene Chloride	10.0	9.66	97		
Styrene	10.0	9.23	92	76-122	
Tetrachloroethene	10.0	9.24	92		

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

Lab Nam	Name: TestAmerica Canton		Job No.: 240-65994-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: UXM6059.D	
Lab ID:	LCS 240-235221/4		Client ID:	

	SPIKE ADDED	LCS CONCENTRATION	LCS %	QC LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
Toluene	10.0	9.54	95	80-120	
trans-1,2-Dichloroethene	10.0	9.31	93	80-124	
trans-1,3-Dichloropropene	10.0	8.30	83	75-131	
Trichloroethene	10.0	9.09	91	80-121	
Trichlorofluoromethane	10.0	9.97	100	61-133	
Vinyl chloride	10.0	9.23	92	52-121	
Xylenes, Total	20.0	18.4	92	80-120	
m-Xylene & p-Xylene	10.0	9.22	92	80-120	
o-Xylene	10.0	9.21	92	80-120	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

Lab Nam	ab Name: TestAmerica Canton		Job No.: 240-65994-1		
SDG No.	:				
Matrix:	Water	Level: Low	Lab File ID: UXJ5661.D		
Lab ID:	LCS 240-235310/4		Client ID:		

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	ુ	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
1,1,1-Trichloroethane	10.0	9.86	99	77-123	
1,1,2,2-Tetrachloroethane	10.0	10.1	101	71-123	
1,1,2-Trichloro-1,2,2-trifluor	10.0	10.4	104		
oethane					
1,1,2-Trichloroethane	10.0	9.96	100	80-120	
1,1-Dichloroethane	10.0	9.66	97	79-125	
1,1-Dichloroethene	10.0	10.6	106	76-124	
1,2,4-Trichlorobenzene	10.0	8.42	84	61-120	
1,2-Dibromo-3-Chloropropane	10.0	7.86	79	50-132	
Ethylene Dibromide	10.0	9.99	100	80-120	
1,2-Dichlorobenzene	10.0	8.92	89	79-120	
1,2-Dichloroethane	10.0	10.6	106	80-120	
1,2-Dichloropropane	10.0	9.38	94	78-124	
1,3-Dichlorobenzene	10.0	9.01	90	79-120	
1,4-Dichlorobenzene	10.0	9.38	94	79-120	
2-Butanone (MEK)	20.0	17.8	89	56-138	
2-Hexanone	20.0	17.7	88	55-141	
4-Methyl-2-pentanone (MIBK)	20.0	18.4	92	64-135	
Acetone	20.0	18.5	92	34-148	
Benzene	10.0	9.73	97	80-120	
Dichlorobromomethane	10.0	9.27	93	80-120	
Bromoform	10.0	9.53	95	56-122	
Bromomethane	10.0	6.15	61	38-132	
Carbon disulfide	10.0	11.3	113	65-144	
Carbon tetrachloride	10.0	10.1	101	77-131	
Chlorobenzene	10.0	9.29	93	80-120	
Chloroethane	10.0	7.57	76	36-126	
Chloroform	10.0	9.91	99	80-120	
Chloromethane	10.0	10.6	106	48-133	
cis-1,2-Dichloroethene	10.0	9.81	98	79-120	
cis-1,3-Dichloropropene	10.0	8.80	88	74-126	
Cyclohexane	10.0	10.7	107	60-140	
Chlorodibromomethane	10.0	9.54	95	74-120	
Dichlorodifluoromethane	10.0	10.4	104	23-136	
Ethylbenzene	10.0	9.52	95	80-120	
Isopropylbenzene	10.0	9.33	93	77-120	
Methyl acetate	50.0	49.1	98	67-131	
Methyl tert-butyl ether	10.0	9.87	99		
Methylcyclohexane	10.0	9.69	97		
Methylene Chloride	10.0	11.1	111	77-129	
Styrene	10.0	9.39	94		
Tetrachloroethene	10.0	9.24	92		

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

Lab Name	e: TestAmerica Cant	con	Job No.: 240-	65994-1
SDG No.:	:			
Matrix:	Water	Level: Low	Lab File ID:	UXJ5661.D
Lab ID:	LCS 240-235310/4		Client ID:	

	SPIKE ADDED	LCS CONCENTRATION	LCS %	QC LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
Toluene	10.0	9.97	100	80-120	
trans-1,2-Dichloroethene	10.0	10.2	102	80-124	
trans-1,3-Dichloropropene	10.0	9.17	92	75-131	
Trichloroethene	10.0	9.45	95	80-121	
Trichlorofluoromethane	10.0	12.6	126	61-133	
Vinyl chloride	10.0	9.75	98	52-121	
Xylenes, Total	20.0	18.4	92	80-120	
m-Xylene & p-Xylene	10.0	9.38	94	80-120	
o-Xylene	10.0	9.03	90	80-120	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

Lab Name: TestAmerica Canton	4 –	1	
------------------------------	-----	---	--

SDG No.: ____

Matrix: Water Level: Low Lab File ID: UXJ5626.D

Lab ID: 240-65995-B-5 MS Client ID:

	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC	REC	
1,1,1-Trichloroethane	1670	170 U	1810	109	69-122	
1,1,2,2-Tetrachloroethane	1670	170 U	1860	112	61-130	
1,1,2-Trichloro-1,2,2-trifluor	1670	170 U	1030	62	44-140	
oethane						
1,1,2-Trichloroethane	1670	170 U	1820	109		
1,1-Dichloroethane	1670	170 U	1830	110		
1,1-Dichloroethene	1670	170 U	2000	120		
1,2,4-Trichlorobenzene	1670	170 U	1640	98		
1,2-Dibromo-3-Chloropropane	1670	330 U	1380	83		
Ethylene Dibromide	1670	170 U	1830	110		
1,2-Dichlorobenzene	1670	170 U	1620	97	67-118	
1,2-Dichloroethane	1670	170 U	1980	119	74-125	
1,2-Dichloropropane	1670	170 U	1760	106	73-122	
1,3-Dichlorobenzene	1670	170 U	1650	99	65-120	
1,4-Dichlorobenzene	1670	170 U	1650	99	66-120	
2-Butanone (MEK)	3330	6200	9790	106	49-132	
2-Hexanone	3330	1700 U	3190	96	49-142	
4-Methyl-2-pentanone (MIBK)	3330	1700 U	3460	104	58-136	
Acetone	3330	8000	12900	149	32-126	F1
Benzene	1670	170 U	1830	110	73-121	
Dichlorobromomethane	1670	170 U	1730	104	72-120	
Bromoform	1670	170 U	1480	89	45-121	
Bromomethane	1670	170 U	1050	63	26-136	
Carbon disulfide	1670	170 U	2080	125	54-144	
Carbon tetrachloride	1670	170 U	1680	101	65-129	
Chlorobenzene	1670	170 U	1690	101	72-120	
Chloroethane	1670	170 U	1370	82	27-131	
Chloroform	1670	170 U	1890	113	73-121	
Chloromethane	1670	170 U	2080	125	39-134	
cis-1,2-Dichloroethene	1670	170 U	1830	110	66-124	
cis-1,3-Dichloropropene	1670	170 U	1590	96	60-120	
Cyclohexane	1670	170 U	1180	71	41-137	
Chlorodibromomethane	1670	170 U	1620	97		
Dichlorodifluoromethane	1670	170 U	1250	75		
Ethylbenzene	1670	170 U		101		
Isopropylbenzene	1670	170 U	1610	96		
Methyl acetate	8330	1700 U	9080	109		
Methyl tert-butyl ether	1670	170 U	1850	111		
Methylcyclohexane	1670	170 U	985	59		
Methylene Chloride	1670	170 U	2080	125		
Styrene	1670	170 U	1690	101	64-126	
Tetrachloroethene	1670	170 U		91		

[#] Column to be used to flag recovery and RPD values

Lab Nam	e: TestAmerica Cant	con	Job No.: 240-65994-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: UXJ5626.D	
Lab ID:	240-65995-B-5 MS		Client ID:	

	SPIKE ADDED	SAMPLE CONCENTRATION	MS CONCENTRATION	MS %	QC LIMITS	#
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC	REC	
Toluene	1670	170 U	1750	105	72-122	
trans-1,2-Dichloroethene	1670	170 U	1880	113	72-125	
trans-1,3-Dichloropropene	1670	170 U	1580	95	58-132	
Trichloroethene	1670	170 U	1760	105	61-129	
Trichlorofluoromethane	1670	170 U	1850	111	49-133	
Vinyl chloride	1670	170 U	1730	104	44-122	
Xylenes, Total	3330	330 U	3310	99	67-122	
m-Xylene & p-Xylene	1670	330 U	1650	99	66-123	
o-Xylene	1670	170 U	1660	99	68-121	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

Lab Name: TestAmerica Canton

SDG No.: ____

Matrix: Water Level: Low Lab File ID: UXM6071.D

Lab ID: 240-65962-B-1 MS Client ID:

	SPIKE	SAMPLE	MS	MS	000	
		CONCENTRATION	_	_	QC LIMITS	#
COMPOUND	ADDED	I I		REC	REC	#
1,1,1-Trichloroethane	(ug/L) 3330	(ug/L) 330 U	(ug/L) 3230	97	69-122	
1,1,2,2-Tetrachloroethane	3330	330 U	2640	79	61-130	
1,1,2-Trichloro-1,2,2-trifluor	3330	330 U	2730	82	44-140	
oethane	3330	330 0	2730	02	44-140	
1,1,2-Trichloroethane	3330	330 U	2820	85	72-125	
1,1-Dichloroethane	3330	330 U	3030	91	73-124	
1,1-Dichloroethene	3330	330 U	2770	83	67-124	
1,2,4-Trichlorobenzene	3330	330 U	2870	86	48-120	
1,2-Dibromo-3-Chloropropane	3330	670 U	2080	62	42-130	
Ethylene Dibromide	3330	330 U	2690	81	69-125	
1,2-Dichlorobenzene	3330	330 U	3020	91	67-118	
1,2-Dichloroethane	3330	330 U	2900	87	74-125	
1,2-Dichloropropane	3330	330 U	2980	89	73-122	
1,3-Dichlorobenzene	3330	330 U	3020	91	65-120	
1,4-Dichlorobenzene	3330	330 U	3100	93	66-120	
2-Butanone (MEK)	6670	3300 U	4250	64	49-132	
2-Hexanone	6670	3300 U	4590	69	49-142	
4-Methyl-2-pentanone (MIBK)	6670	3300 U	4760	71	58-136	
Acetone	6670	3300 U	3700	56	32-126	
Benzene	3330	330 U	3080	92	73-121	
Dichlorobromomethane	3330	330 U	2760	83	72-120	
Bromoform	3330	330 U	2590	78	45-121	
Bromomethane	3330	330 U	3280	98	26-136	
Carbon disulfide	3330	330 U	2910	87	54-144	
Carbon tetrachloride	3330	330 U	3010	90	65-129	
Chlorobenzene	3330	330 U	3030	91	72-120	
Chloroethane	3330	330 U	2600	78	27-131	
Chloroform	3330	330 U	3110	93	73-121	
Chloromethane	3330	330 U	3220	97	39-134	
cis-1,2-Dichloroethene	3330	3400	6410	91	66-124	
cis-1,3-Dichloropropene	3330	330 U	2730	82	60-120	
Cyclohexane	3330	330 U	3050	92	41-137	
Chlorodibromomethane	3330	330 U	2530	76	62-122	
Dichlorodifluoromethane	3330	330 U	2830	85	14-137	
Ethylbenzene	3330	330 U	3100	93	68-121	
Isopropylbenzene	3330	330 U	3180	95		
Methyl acetate	16700	3300 U	12200	73		
Methyl tert-butyl ether	3330	330 U	2740	82	61-121	
Methylcyclohexane	3330	330 U	2960	89		
Methylene Chloride	3330	330 U	3090	93		
Styrene	3330	330 U	2990	90		
Tetrachloroethene	3330	330 U	3050	92	59-125	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

Lab Nam	e: TestAmerica Cant	ton	Job No.: 240-65994-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: UXM6071.D	
Lab ID:	240-65962-B-1 MS		Client ID:	

	SPIKE ADDED	SAMPLE CONCENTRATION	MS CONCENTRATION	MS %	QC LIMITS	#
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC	REC	
Toluene	3330	330 U	3170	95	72-122	
trans-1,2-Dichloroethene	3330	330 U	3160	95	72-125	
trans-1,3-Dichloropropene	3330	330 U	2620	79	58-132	
Trichloroethene	3330	9400	12300	86	61-129	
Trichlorofluoromethane	3330	330 U	4020	121	49-133	
Vinyl chloride	3330	330 U	3120	94	44-122	
Xylenes, Total	6670	670 U	6060	91	67-122	
m-Xylene & p-Xylene	3330	670 U	3060	92	66-123	
o-Xylene	3330	330 U	3000	90	68-121	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

Lab Name: TestAmerica Canton Job N	No.:	240-65994-1
------------------------------------	------	-------------

SDG No.:

Matrix: Water Level: Low Lab File ID: UXJ5627.D

Lab ID: 240-65995-B-5 MSD Client ID:

	SPIKE	MSD	MSD		QC LI	MITS	
	ADDED	CONCENTRATION		용			#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	
1,1,1-Trichloroethane	1670	1790	107	1	14	69-122	
1,1,2,2-Tetrachloroethane	1670	1930	116	4	18	61-130	
1,1,2-Trichloro-1,2,2-trifluor	1670	1790	107	53	35	44-140	F2
oethane	1.670	1000	1.00	- 1	1.0	70 105	
1,1,2-Trichloroethane	1670	1800	108		19	72-125	
1,1-Dichloroethane	1670	1790	107	3	14	73-124	
1,1-Dichloroethene	1670	2070	124	4	24	67-124	
1,2,4-Trichlorobenzene	1670	1730	104	5	28	48-120	
1,2-Dibromo-3-Chloropropane	1670	1520	91	10	24	42-130	
Ethylene Dibromide	1670	1800	108	1	24	69-125	
1,2-Dichlorobenzene	1670	1600	96	1	15	67-118	
1,2-Dichloroethane	1670	1930	116	3	24	74-125	
1,2-Dichloropropane	1670	1720	103	2	15	73-122	
1,3-Dichlorobenzene	1670	1650	99	0	15	65-120	
1,4-Dichlorobenzene	1670	1660	100	1	16	66-120	
2-Butanone (MEK)	3330	9330	93	5	19	49-132	
2-Hexanone	3330	3160	95	1	27	49-142	
4-Methyl-2-pentanone (MIBK)	3330	3530	106	2	32	58-136	
Acetone	3330	12600	139	3	28	32-126	F1
Benzene	1670	1760	106	4	13	73-121	
Dichlorobromomethane	1670	1690	102	2	19	72-120	
Bromoform	1670	1510	90	2	19	45-121	
Bromomethane	1670	1200	72	13	35	26-136	
Carbon disulfide	1670	2090	125	1	34	54-144	
Carbon tetrachloride	1670	1850	111	10	20	65-129	
Chlorobenzene	1670	1660	99	2	15	72-120	
Chloroethane	1670	1430	86	5	35	27-131	
Chloroform	1670	1830	110	3	17	73-121	
Chloromethane	1670	1980	119	5	20	39-134	
cis-1,2-Dichloroethene	1670	1770	106	3	22	66-124	
cis-1,3-Dichloropropene	1670	1560	93		21	60-120	
Cyclohexane	1670	1830	110	43	35	41-137	F2
Chlorodibromomethane	1670	1640	99	1	19	62-122	
Dichlorodifluoromethane	1670	1710	102	31	34	14-137	
Ethylbenzene	1670	1630	98	3	16	68-121	
Isopropylbenzene	1670	1630	98		20	61-122	
Methyl acetate	8330	9210	111	1	12	64-124	
Methyl tert-butyl ether	1670	1840	110		12	61-121	
Methylcyclohexane	1670	1670	100		35	39-135	
Methylene Chloride	1670	2030	122		14	70-124	
Styrene Styrene	1670	1650	99		15	64-126	
Tetrachloroethene	1670	1590	95		20	59-125	
10014011101000110110	10,0	1550		1		0, 120	

 $[\]ensuremath{\sharp}$ Column to be used to flag recovery and RPD values

Lab Name	e: TestAmerica Cant	on	Job No.: 240-65994-1
SDG No.	: <u> </u>		
Matrix:	Water	Level: Low	Lab File ID: UXJ5627.D
Lab ID:	240-65995-B-5 MSD		Client ID:

	SPIKE ADDED	MSD CONCENTRATION	MSD	olo	QC L1	IMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	∘ RPD	RPD	REC	#
Toluene	1670	1740	104	0	15	72-122	
	1670	1860	112	1	25	72-125	
trans-1,2-Dichloroethene						_	
trans-1,3-Dichloropropene	1670	1560	94	1	22	58-132	
Trichloroethene	1670	1690	102	4	14	61-129	
Trichlorofluoromethane	1670	2230	134	19	25	49-133	F1
Vinyl chloride	1670	1770	106	2	35	44-122	
Xylenes, Total	3330	3290	99	1	14	67-122	
m-Xylene & p-Xylene	1670	1650	99	0	15	66-123	
o-Xylene	1670	1640	98	1	14	68-121	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

Lab Name: TestAmerica Canton	4 –	1	
------------------------------	-----	---	--

SDG No.: _____

Matrix: Water Level: Low Lab File ID: UXM6072.D

Lab ID: 240-65962-B-1 MSD Client ID:

	SPIKE	MSD	MSD		QC LI	MITS	
	ADDED	CONCENTRATION		8		_	#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	
1,1,1-Trichloroethane	3330	3250	98	1	14	69-122	
1,1,2,2-Tetrachloroethane	3330	2790	84	5	18	61-130	
1,1,2-Trichloro-1,2,2-trifluor	3330	2870	86	5	35	44-140	
oethane 1,1,2-Trichloroethane	3330	2990	90	6	19	72-125	
1,1-Dichloroethane	3330	3040	91	0	14	73-124	
1,1-Dichloroethene	3330	2810	84	1	24	67-124	
1,2,4-Trichlorobenzene	3330	2980	89	4	28	48-120	
1,2-Dibromo-3-Chloropropane	3330	2190	66	5	24	40-120	
Ethylene Dibromide	3330	2850	86	6	24	69-125	
1,2-Dichlorobenzene	3330	3140	94	4	15	67-118	
1,2-Dichloroethane	3330	2890	87	0	24	74-125	
1,2-Dichloropropane	3330	3090	93	3	15	73-122	
1,3-Dichlorobenzene	3330	3140	94	4	15	65-120	
1,4-Dichlorobenzene	3330	3140	94	3	16	66-120	
2-Butanone (MEK)	6670	4260	64	0	19	49-132	
2-Hexanone	6670	4890	73	6	27	49-132	
	6670	5010	7.5 7.5	5	32	58-136	
4-Methyl-2-pentanone (MIBK) Acetone	6670	4070	61	9	28	32-126	
Benzene	3330	3080	92	0	13	73-121	
Dichlorobromomethane	3330	2840	85	3	19	72-120	
Bromoform	3330	2590	78	0	19	45-121	
Bromomethane	3330	2510	75	26	35	26-136	
Carbon disulfide	3330	2940	88	1	34	54-144	
Carbon tetrachloride	3330	3020	91	0	20	65-129	
Chlorobenzene	3330	3170	95	4	15	72-120	
Chloroethane	3330	2250	67	15	35	27-131	
Chloroform	3330	3100	93	0	17	73-121	
Chloromethane	3330	3150	95	2	20	39-134	
cis-1,2-Dichloroethene	3330	6330	89	1	22	66-124	
cis-1,3-Dichloropropene	3330	2830	85	3	21	60-120	
Cyclohexane	3330	3120	94	2	35	41-137	
Chlorodibromomethane	3330	2630	79	4	19	62-122	
Dichlorodifluoromethane	3330	2950	88	4	34	14-137	
Ethylbenzene	3330	3210	96	-	16	68-121	
Isopropylbenzene	3330	3270	98		20	61-122	
Methyl acetate	16700	12700	76		12	64-124	
Methyl tert-butyl ether	3330	2820	85		12	61-121	
Methylcyclohexane	3330	3070	92		35	39-135	
Methylene Chloride	3330	3000	90		14	70-124	
Styrene	3330	3120	94		15	64-126	
Tetrachloroethene	3330	3100	93		20	59-125	

 $[\]ensuremath{\mathtt{\#}}$ Column to be used to flag recovery and RPD values

Lab Nam	o Name: TestAmerica Canton		Job No.: 240-65994-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: UXM6072.D	
Lab ID:	240-65962-B-1 MSD		Client ID:	

	SPIKE ADDED	MSD CONCENTRATION	MSD	olo	QC L1	IMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	#
Toluene	3330	3250	98	3	15	72-122	
trans-1,2-Dichloroethene	3330	3180	95	1	25	72-125	
trans-1,3-Dichloropropene	3330	2790	84	6	22	58-132	
Trichloroethene	3330	12100	81	1	14	61-129	
Trichlorofluoromethane	3330	3670	110	9	25	49-133	
Vinyl chloride	3330	3140	94	1	35	44-122	
Xylenes, Total	6670	6300	95	4	14	67-122	
m-Xylene & p-Xylene	3330	3160	95	3	15	66-123	
o-Xylene	3330	3140	94	5	14	68-121	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

Lab Name:	TestAmerica	Canton	Job No	.:	240-65994-1
-----------	-------------	--------	--------	----	-------------

SDG No.:

Sample No.: STD8260 240-232366/4 Date Analyzed: 05/28/2016 09:56

Instrument ID: A3UX11 GC Column: DB-624 ID: 0.18(mm)

Lab File ID (Standard): UXJ4941.D Heated Purge: (Y/N) N

Calibration ID: 34632

	FB		CBZ		DCB	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MID-POINT	1420065	5.12	934240	7.78	380946	10.01
UPPER LIMIT	2840130	5.62	1868480	8.28	761892	10.51
LOWER LIMIT	710033	4.62	467120	7.28	190473	9.51
LAB SAMPLE ID CLIENT SAMPLE ID						
ICV 240-232366/14	1349328	5.12	892490	7.78	381895	10.03
ICV 240-232366/15	1213041	5.12	839047	7.78	340685	10.01
CCVIS 240-235154/2	1716764	5.12	1087867	7.78	406999	10.03
CCVIS 240-235310/2	1764914	5.12	1113939	7.78	422612	10.03

FB = Fluorobenzene

CBZ = Chlorobenzene-d5

DCB = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Sample No.: CCVIS 240-235154/2 Date Analyzed: 06/20/2016 09:34

Instrument ID: A3UX11 GC Column: DB-624 ID: 0.18(mm)

Lab File ID (Standard): UXJ5601.D Heated Purge: (Y/N) N

Calibration ID: 34635

		FB		CBZ		DCB	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		1716764	5.12	1087867	7.78	406999	10.03
UPPER LIMIT		3433528	5.62	2175734	8.28	813998	10.53
LOWER LIMIT		858382	4.62	543934	7.28	203500	9.53
LAB SAMPLE ID	CLIENT SAMPLE ID						
LCS 240-235154/4		1371391	5.12	891005	7.78	335807	10.03
CCV 240-235154/3		1258361	5.12	837101	7.78	306679	10.03
MB 240-235154/6		1216667	5.12	818773	7.78	305253	10.03
240-65994-1	MRC-SW5A1-061316	1207550	5.12	812550	7.78	300326	10.03
240-65994-2	MRC-SW5A2-061316	1167662	5.12	784965	7.78	285557	10.03
240-65994-3	MRC-SW5B-061316	1165506	5.12	799768	7.78	292761	10.03
240-65994-4	MRC-SW6A-061316	1187019	5.12	803788	7.78	294540	10.03
240-65994-5	MRC-SW6B-061316	968710	5.12	656984	7.78	237604	10.03
240-65994-6	MRC-SW7A-061316	1200151	5.12	814993	7.78	290465	10.03
240-65994-7	MRC-SW7B-061316	1183978	5.12	806752	7.78	293158	10.03
240-65994-8	MRC-SW8A-061316	1135030	5.12	762893	7.78	279192	10.03
240-65994-9	MRC-SW8B-061316	1185147	5.12	807191	7.78	290157	10.03
240-65994-10	MRC-SW9A-061316	1174059	5.12	788089	7.78	291883	10.03
240-65994-11	MRC-SW9B-061316	1168374	5.12	802392	7.78	292727	10.03
240-65995-B-5 MS		1177106	5.12	791875	7.78	297138	10.03
240-65995-B-5 MSD		1207951	5.12	798086	7.78	290014	10.03

FB = Fluorobenzene

CBZ = Chlorobenzene-d5

DCB = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Column used to flag values outside QC limits

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Sample No.: CCVIS 240-235310/2 Date Analyzed: 06/21/2016 08:52

Instrument ID: A3UX11 GC Column: DB-624 ID: 0.18(mm)

Lab File ID (Standard): <u>UXJ5658.D</u> Heated Purge: (Y/N) <u>N</u>

Calibration ID: 34635

		FB		CBZ		DCB		
		AREA #	RT #	AREA #	RT #	AREA #	RT #	
12/24 HOUR STD		1764914	5.12	1113939	7.78	422612	10.03	
UPPER LIMIT		3529828	5.62	2227878	8.28	845224	10.53	
LOWER LIMIT		882457	4.62	556970	7.28	211306	9.53	
LAB SAMPLE ID	CLIENT SAMPLE ID							
CCV 240-235310/3		1213542	5.12	834047	7.78	306694	10.03	
LCS 240-235310/4		1498486	5.12	959721	7.78	359922	10.03	
MB 240-235310/6		966867	5.12	676769	7.78	243781	10.03	
240-65994-7	MRC-SW7B-061316	1152494	5.12	782399	7.78	290345	10.03	

FB = Fluorobenzene

CBZ = Chlorobenzene-d5

DCB = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

Lab Name:	TestAmerica	Canton	Job No	.:	240-65994-1
-----------	-------------	--------	--------	----	-------------

SDG No.:

Sample No.: STD8260 240-232711/4 Date Analyzed: 06/01/2016 12:51

Instrument ID: A3UX16 GC Column: DB-624 ID: 0.18(mm)

Lab File ID (Standard): UXM5572.D _____ Heated Purge: (Y/N) N

Calibration ID: 34643

		FB		CBZ		DCB	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MID-POINT		1415622	5.17	1000389	7.87	522407	10.10
UPPER LIMIT		2831244	5.67	2000778	8.37	1044814	10.60
LOWER LIMIT		707811	4.67	500195	7.37	261204	9.60
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICV 240-232711/9		1350700	5.17	956772	7.85	515548	10.10
ICV 240-232711/16		1312230	5.17	922566	7.85	494155	10.10
CCVIS 240-235221/2		1396171	5.17	949016	7.85	500239	10.10

FB = Fluorobenzene

CBZ = Chlorobenzene-d5

DCB = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Sample No.: CCVIS 240-235221/2 Date Analyzed: 06/20/2016 12:47

Instrument ID: A3UX16 GC Column: DB-624 ID: 0.18(mm)

Calibration ID: 34649

		FB		CBZ		DCB	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		1396171	5.17	949016	7.85	500239	10.10
UPPER LIMIT		2792342	5.67	1898032	8.35	1000478	10.60
LOWER LIMIT		698086	4.67	474508	7.35	250120	9.60
LAB SAMPLE ID	CLIENT SAMPLE ID						
CCV 240-235221/3		1375714	5.17	916832	7.85	492698	10.10
MB 240-235221/6		1343976	5.17	893870	7.85	468158	10.10
240-65962-B-1 MS		1390550	5.17	929879	7.85	499779	10.10
240-65962-B-1 MSD		1373761	5.17	912327	7.87	488907	10.10
240-65996-1	MRC-SWFB-061316	1312400	5.17	902446	7.85	487740	10.10
240-65996-2	MRC-SW1A-061316	1340107	5.17	890190	7.85	473162	10.10
240-65996-3	MRC-SW2A-061316	1336499	5.17	896030	7.85	484805	10.10
240-65996-4	TB-061316	1339479	5.17	890612	7.87	476238	10.10
240-65996-5	MRC-SWDUP2-061316	1369329	5.17	924281	7.85	481400	10.10

FB = Fluorobenzene

CBZ = Chlorobenzene-d5

DCB = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

Lab Name: TestAmerica Canton		Job No.: 240-65994-1				
SDG No.:						
Instrument	ID: A3UX11	Start Date: 05/28/2016 08:28				
Analysis I	Batch Number: 232366	End Date: 05/28/2016 14:03				

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION	LAB FILE ID	COLUMN ID
			FACTOR		
BFB 240-232366/1		05/28/2016 08:28	1	BFB6528.D	DB-624 0.18(mm)
STD8260 240-232366/2		05/28/2016 09:12	1	UXJ4939.D	DB-624 0.18(mm)
IC					
STD8260 240-232366/3		05/28/2016 09:34	1	UXJ4940.D	DB-624 0.18(mm)
IC STD8260 240-232366/4		05/00/0016 00 56	1	UXJ4941.D	DD 604 0 10 ()
TCTS 240-232366/4		05/28/2016 09:56	1	UXJ4941.D	DB-624 0.18 (mm)
STD8260 240-232366/5		05/28/2016 10:19	1	UXJ4942.D	DB-624 0.18(mm)
IC					
STD8260 240-232366/6		05/28/2016 10:40	1	UXJ4943.D	DB-624 0.18(mm)
IC					
STD8260 240-232366/7		05/28/2016 11:03	1	UXJ4944.D	DB-624 0.18(mm)
IC		05/00/0016 11 05	1		DD 604 0 107
ICV 240-232366/14		05/28/2016 11:25	1	UXJ4945.D	DB-624 0.18(mm)
STD6 240-232366/8 IC		05/28/2016 11:48	1		DB-624 0.18(mm)
STD5 240-232366/9 IC		05/28/2016 12:10	1		DB-624 0.18(mm)
STD4 240-232366/10		05/28/2016 12:33	1		DB-624 0.18 (mm)
IC					
STD3 240-232366/11		05/28/2016 12:56	1		DB-624 0.18(mm)
IC					
STD2 240-232366/12		05/28/2016 13:18	1		DB-624 0.18(mm)
IC STD1 240-232366/13		05/28/2016 13:41	1		DB-624 0.18 (mm)
IC 240-232366/13		03/20/2016 13:41	1		DB-024 U.10 (MMI)
ICV 240-232366/15		05/28/2016 14:03	1	UXJ4952.D	DB-624 0.18(mm)

Lab Name: TestAmerica Canton	Job No.: 240-65994-1					
SDG No.:						
Instrument ID: A3UX11	Start Date: 06/20/2016 09:01					
Analysis Batch Number: 235154	End Date: 06/20/2016 19:35					

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 240-235154/1		06/20/2016 09:01	1	BFB6620.D	DB-624 0.18 (mm)
CCVIS 240-235154/2		06/20/2016 09:34	1	UXJ5601.D	DB-624 0.18 (mm)
LCS 240-235154/4		06/20/2016 09:57	1	UXJ5602.D	DB-624 0.18 (mm)
CCV 240-235154/3		06/20/2016 10:20	1	UXJ5603.D	DB-624 0.18 (mm)
ZZZZZ		06/20/2016 10:43	1		DB-624 0.18 (mm)
MB 240-235154/6		06/20/2016 11:05	1	UXJ5605.D	DB-624 0.18 (mm)
ZZZZZ		06/20/2016 11:42	1		DB-624 0.18 (mm)
ZZZZZ		06/20/2016 12:05	1		DB-624 0.18 (mm)
ZZZZZ		06/20/2016 12:28	20		DB-624 0.18 (mm)
ZZZZZ		06/20/2016 12:50	33.33		DB-624 0.18 (mm)
240-65994-1		06/20/2016 13:13	1	UXJ5610.D	DB-624 0.18 (mm)
240-65994-2		06/20/2016 13:35	1	UXJ5611.D	DB-624 0.18 (mm)
240-65994-3		06/20/2016 13:57	1	UXJ5612.D	DB-624 0.18 (mm)
240-65994-4		06/20/2016 14:20	1	UXJ5613.D	DB-624 0.18 (mm)
240-65994-5		06/20/2016 14:43	1	UXJ5614.D	DB-624 0.18 (mm)
240-65994-6		06/20/2016 15:05	1	UXJ5615.D	DB-624 0.18 (mm)
240-65994-7		06/20/2016 15:27	1	UXJ5616.D	DB-624 0.18 (mm)
240-65994-8		06/20/2016 15:49	1	UXJ5617.D	DB-624 0.18(mm)
240-65994-9		06/20/2016 16:12	1	UXJ5618.D	DB-624 0.18(mm)
240-65994-10		06/20/2016 16:34	1	UXJ5619.D	DB-624 0.18(mm)
240-65994-11		06/20/2016 16:57	1	UXJ5620.D	DB-624 0.18(mm)
ZZZZZ		06/20/2016 17:19	166.67		DB-624 0.18(mm)
ZZZZZ		06/20/2016 17:42	166.67		DB-624 0.18 (mm)
ZZZZZ		06/20/2016 18:04	166.67		DB-624 0.18 (mm)
ZZZZZ		06/20/2016 18:27	166.67		DB-624 0.18 (mm)
ZZZZZ		06/20/2016 18:50	3.33		DB-624 0.18 (mm)
240-65995-B-5 MS		06/20/2016 19:12	166.67	UXJ5626.D	DB-624 0.18 (mm)
240-65995-B-5 MSD		06/20/2016 19:35	166.67	UXJ5627.D	DB-624 0.18 (mm)

Lab Name: TestAmerica Canton	Job No.: 240-65994-1				
SDG No.:					
Instrument ID: A3UX11	Start Date: 06/21/2016 08:00				
Analysis Batch Number: 235310	End Date: 06/21/2016 13:59				

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 240-235310/1		06/21/2016 08:00	1	BFB6621.D	DB-624 0.18(mm)
CCVIS 240-235310/1		06/21/2016 08:52	1	UXJ5658.D	DB-624 0.18 (mm)
CCV 240-235310/3		06/21/2016 09:36	1	UXJ5660.D	DB-624 0.18(mm)
LCS 240-235310/4		06/21/2016 10:17	1	UXJ5661.D	DB-624 0.18(mm)
MB 240-235310/6		06/21/2016 11:01	1	UXJ5663.D	DB-624 0.18(mm)
240-65994-7		06/21/2016 13:59	1	UXJ5670.D	DB-624 0.18 (mm)

Lab Name: TestAmerica Canton	Job No.: 240-65994-1				
SDG No.:					
Instrument ID: A3UX16	Start Date: 06/01/2016 11:38				
Analysis Batch Number: 232711	End Date: 06/01/2016 19:41				

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
			FACTOR		
BFB 240-232711/1		06/01/2016 11:38	1	BFB4865.D	DB-624 0.18(mm)
STD8269 240-232711/2		06/01/2016 12:06	1	UXM5570.D	DB-624 0.18(mm)
IC STD8260 240-232711/3		06/01/2016 12:29	1	UXM5571.D	DB-624 0.18 (mm)
IC STD8260 240-232711/4		06/01/2016 12:51	1	UXM5572.D	DB-624 0.18(mm)
ICIS		06/01/2016 12:51	1	UXM3372.D	DB-624 0.18 (mm)
STD8260 240-232711/5		06/01/2016 13:14	1	UXM5573.D	DB-624 0.18 (mm)
STD8260 240-232711/6		06/01/2016 13:37	1	UXM5574.D	DB-624 0.18 (mm)
IC STD8260 240-232711/7		06/01/2016 14:00	1	UXM5575.D	DB-624 0.18 (mm)
IC		, , , , , , , , , , , , , , , , , , , ,	1		
STD8260 240-232711/8		06/01/2016 14:22	1	UXM5576.D	DB-624 0.18 (mm)
ICV 240-232711/9		06/01/2016 14:45	1	UXM5577.D	DB-624 0.18(mm)
STDA9 240-232711/10 IC		06/01/2016 15:08	1		DB-624 0.18(mm)
STDA9 240-232711/11 IC		06/01/2016 15:31	1		DB-624 0.18(mm)
STDA9 240-232711/12 IC		06/01/2016 15:53	1		DB-624 0.18(mm)
STDA9 240-232711/13 IC		06/01/2016 16:16	1		DB-624 0.18 (mm)
STDA9 240-232711/14		06/01/2016 16:39	1		DB-624 0.18(mm)
STDA9 240-232711/15 IC		06/01/2016 17:02	1		DB-624 0.18(mm)
ICV 240-232711/16		06/01/2016 17:24	1	UXM5584.D	DB-624 0.18(mm)
STDTHT 240-232711/17 IC		06/01/2016 17:47	1		DB-624 0.18(mm)
STDTHT 240-232711/18 IC		06/01/2016 18:10	1		DB-624 0.18 (mm)
STDTHT 240-232711/19 IC		06/01/2016 18:33	1		DB-624 0.18(mm)
STDTHT 240-232711/20 IC		06/01/2016 18:55	1		DB-624 0.18 (mm)
STDTHT 240-232711/21 IC		06/01/2016 19:18	1		DB-624 0.18(mm)
STDTHT 240-232711/22 IC		06/01/2016 19:41	1		DB-624 0.18(mm)

Lab Name: TestAmerica Canton	Job No.: 240-65994-1
SDG No.:	
Instrument ID: A3UX16	Start Date: 06/20/2016 11:25
Analysis Batch Number: 235221	End Date: 06/20/2016 22:59

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 240-235221/1		06/20/2016 11:25	1	BFB4888.D	DB-624 0.18 (mm)
LCS 240-235221/4		06/20/2016 12:25	1	UXM6059.D	DB-624 0.18(mm)
CCVIS 240-235221/2		06/20/2016 12:47	1	UXM6060.D	DB-624 0.18(mm)
CCV 240-235221/3		06/20/2016 13:10	1	UXM6061.D	DB-624 0.18(mm)
ZZZZZ		06/20/2016 13:33	1		DB-624 0.18(mm)
MB 240-235221/6		06/20/2016 13:55	1	UXM6063.D	DB-624 0.18(mm)
ZZZZZ		06/20/2016 14:41	10000		DB-624 0.18(mm)
ZZZZZ		06/20/2016 15:04	10000		DB-624 0.18(mm)
ZZZZZ		06/20/2016 15:26	66.67		DB-624 0.18(mm)
ZZZZZ		06/20/2016 15:49	25		DB-624 0.18(mm)
ZZZZZ		06/20/2016 16:11	1		DB-624 0.18(mm)
ZZZZZ		06/20/2016 16:33	333.33		DB-624 0.18(mm)
240-65962-B-1 MS		06/20/2016 16:56	333.33	UXM6071.D	DB-624 0.18(mm)
240-65962-B-1 MSD		06/20/2016 17:19	333.33	UXM6072.D	DB-624 0.18(mm)
240-65996-1		06/20/2016 18:04	1	UXM6074.D	DB-624 0.18(mm)
240-65996-2		06/20/2016 18:27	1	UXM6075.D	DB-624 0.18(mm)
240-65996-3		06/20/2016 18:50	1	UXM6076.D	DB-624 0.18(mm)
240-65996-4		06/20/2016 19:12	1	UXM6077.D	DB-624 0.18(mm)
240-65996-5		06/20/2016 19:35	1	UXM6078.D	DB-624 0.18(mm)
ZZZZZ		06/20/2016 19:58	1		DB-624 0.18(mm)
ZZZZZ		06/20/2016 20:43	40		DB-624 0.18(mm)
ZZZZZ		06/20/2016 21:06	100		DB-624 0.18(mm)
ZZZZZ		06/20/2016 21:29	1		DB-624 0.18(mm)
ZZZZZ		06/20/2016 21:51	1		DB-624 0.18(mm)
ZZZZZ		06/20/2016 22:14	1		DB-624 0.18(mm)
ZZZZZ		06/20/2016 22:36	1		DB-624 0.18(mm)
ZZZZZ		06/20/2016 22:59	1		DB-624 0.18(mm)

Method 522 MOD

1,4 Dioxane (GC/MS SIM) by Method 522

FORM V GC/MS SEMI VOA INSTRUMENT PERFORMANCE CHECK

DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Lab File ID: 20247_01.D BFB Injection Date: 06/01/2016

Instrument ID: CHS.i BFB Injection Time: 12:42

Analysis Batch No.: 105200

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE					
50	15.0 - 40.0 % of mass 95	22.9					
75	30.0 - 80.0 % of mass 95	51.1					
95	Base Peak, 100% relative abundance	100.0					
96	5.0 - 9.0 % of mass 95	6.4					
173	Less than 2.0 % of mass 174	0.7	(1.0) 1				
174	>50.0 % of mass 95	65.3					
175	5.0 - 9.0 % of mass 174	4.6	(7.0) 1				
176	>95.0 but <101.0 % of mass 174	63.7	(97.6) 1				
177	5.0 - 9.0 % of mass 176	4.1	(6.4) 2				

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	IC 200-105200/2	20247 02.D	06/01/2016	12:52
	IC 200-105200/3	20247 03.D	06/01/2016	13:05
	IC 200-105200/4	20247 04.D	06/01/2016	13:19
	ICIS 200-105200/5	20247 05.D	06/01/2016	13:32
	IC 200-105200/6	20247 06.D	06/01/2016	13:46
	IC 200-105200/7	20247 07.D	06/01/2016	13:59
	IC 200-105200/8	20247 08.D	06/01/2016	14:13
	ICV 200-105200/9	20247 09.D	06/01/2016	14:26
	CCVL 200-105857/2	20474 02.D	06/17/2016	10:56
	LCS 200-105835/2-A	20474 03.D	06/17/2016	11:09
	MB 200-105835/1-A	20474 04.D	06/17/2016	11:22
	CCV 200-105857/15	20474 15.D	06/17/2016	13:50
	660-74368-A-3-B MSD	20474 17.D	06/17/2016	14:17
	660-74368-A-3-C MS	20474 18.D	06/17/2016	14:31
	CCV 200-105857/26	20474 26.D	06/17/2016	16:18
MRC-SWDUP1-061316	240-65994-12	20474 27.D	06/17/2016	16:32
	CCV 200-105857/28	20474 28.D	06/17/2016	16:45
	CCVL 200-106154/2	20570 02.D	06/23/2016	20:51
	LCS 200-106090/2-A	20570 09.D	06/23/2016	22:26
	MB 200-106090/1-A	20570 10.D	06/23/2016	22:40
	CCV 200-106154/14	20570 14.D	06/23/2016	23:34
	CCVL 200-106221/2	20593 02.D	06/24/2016	20:37
	480-101917-E-32-D MS	20593 10.D	06/24/2016	22:25
	480-101917-E-32-C MSD	20593 11.D	06/24/2016	22:38
	CCV 200-106221/13	20593 13.D	06/24/2016	23:05
MRC-SWFB-061316	240-65996-1	20593 15.D	06/24/2016	23:32
MRC-SW1A-061316	240-65996-2	20593 16.D	06/24/2016	23:45
MRC-SW2A-061316	240-65996-3	20593 17.D	06/24/2016	23:59

FORM V GC/MS SEMI VOA INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TestAme:	rica Burlington	Job No.: 240-659	94-1					
SDG No.:								
Lab File ID:		BFB Injection Da	te:					
Instrument ID:		BFB Injection Ti	me:					
Lab File ID:		DFTPP Injection	Date:					
Instrument ID:		DFTPP Injection Time:						
Analysis Batch No	.:							
M/E ION ABUN	DANCE CRITERIA		% RELATIVE ABUNDANCE					

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCV 200-106221/24	20593_24.D	06/25/2016	01:33

FORM VI

GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Burlington

SDG No.:

Instrument ID: CHS.i

GC Column: Rxi-5ms

ID: 0.25 (mm)

Heated Purge: (Y/N) N

Calibration ID: 34839

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 200-105200/8	20247 08.D
Level 2	IC 200-105200/7	20247 07.D
Level 3	IC 200-105200/6	20247 06.D
Level 4	ICIS 200-105200/5	20247 05.D
Level 5	IC 200-105200/4	20247 04.D
Level 6	IC 200-105200/3	20247 03.D
Level 7	IC 200-105200/2	20247 02.D

Calibration Start Date: 06/01/2016 12:52 Calibration End Date: 06/01/2016 14:13

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD	#	MAX	R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2					%RSD	OR COD	OR COD
1,4-Dioxane	0.5850 0.6358		0.5567	0.5785	0.5757	Ave		0.5991			0.0500	5.7		15.0		0.990
1,4-Dioxane-d8 (Surr)	0.5502	0.5478 0.5710	0.5635	0.5442	0.5514	Ave		0.5601				3.1		15.0		0.990

Note: The m1 coefficient is the same as Ave RRF for an Ave curve type.

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Lab Sample ID: <u>ICV 200-105200/9</u> Calibration Date: 06/01/2016 14:26

Instrument ID: CHS.i Calib Start Date: 06/01/2016 12:52

GC Column: Rxi-5ms ID: 0.25 (mm) Calib End Date: 06/01/2016 14:13

Lab File ID: 20247_09.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5991	0.6292	0.0500	210	200	5.0	20.0

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVL 200-105857/2 Calibration Date: 06/17/2016 10:56

Instrument ID: CHS.i Calib Start Date: 06/01/2016 12:52

GC Column: Rxi-5ms ID: 0.25 (mm) Calib End Date: 0.6/01/2016 14:13

Lab File ID: 20474_02.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5991	0.7389	0.0500	12.3	10.0	23.3	50.0
1,4-Dioxane-d8 (Surr)	Ave	0.5601	0.6933	0.0500	619	500	23.8	50.0

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Lab Sample ID: <u>CCV 200-105857/15</u> Calibration Date: <u>06/17/2016 13:50</u>

Instrument ID: CHS.i Calib Start Date: 06/01/2016 12:52

GC Column: Rxi-5ms ID: 0.25 (mm) Calib End Date: 06/01/2016 14:13

Lab File ID: 20474_15.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5991	0.6665	0.0500	111	100	11.3	30.0
1,4-Dioxane-d8 (Surr)	Ave	0.5601	0.6648	0.0500	593	500	18.7	30.0

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Lab Sample ID: (CCV) 200-105857/26 Calibration Date: 06/17/2016 16:18

Instrument ID: CHS.i Calib Start Date: 06/01/2016 12:52

GC Column: Rxi-5ms ID: 0.25(mm) Calib End Date: 06/01/2016 14:13

Lab File ID: 20474_26.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5991	0.6693	0.0500	894	800	11.7	30.0
1,4-Dioxane-d8 (Surr)	Ave	0.5601	0.6753	0.0500	603	500	20.6	30.0

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Lab Sample ID: <u>CCV 200-105857/28</u> Calibration Date: <u>06/17/2016 16:45</u>

Instrument ID: CHS.i Calib Start Date: 06/01/2016 12:52

GC Column: Rxi-5ms ID: 0.25 (mm) Calib End Date: 06/01/2016 14:13

Lab File ID: 20474_28.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5991	0.6569	0.0500	110	100	9.6	30.0
1,4-Dioxane-d8 (Surr)	Ave	0.5601	0.6582	0.0500	587	500	17.5	30.0

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVL 200-106154/2 Calibration Date: 06/23/2016 20:51

Instrument ID: CHS.i Calib Start Date: 06/01/2016 12:52

GC Column: Rxi-5ms ID: D.25(mm) Calib End Date: D6/01/2016 14:13

Lab File ID: 20570_02.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5991	0.5277	0.0500	8.81	10.0	-11.9	50.0
1,4-Dioxane-d8 (Surr)	Ave	0.5601	0.6275	0.0500	560	500	12.0	50.0

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCV 200-106154/14 Calibration Date: 06/23/2016 23:34

Instrument ID: CHS.i Calib Start Date: 06/01/2016 12:52

GC Column: Rxi-5ms ID: 0.25 (mm) Calib End Date: 06/01/2016 14:13

Lab File ID: 20570_14.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5991	0.6390	0.0500	107	100	6.7	30.0
1,4-Dioxane-d8 (Surr)	Ave	0.5601	0.6328	0.0500	565	500	13.0	30.0

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Lab Sample ID: <u>CCVL 200-106221/2</u> Calibration Date: <u>06/24/2016 20:37</u>

Instrument ID: CHS.i Calib Start Date: 06/01/2016 12:52

GC Column: Rxi-5ms ID: D.25(mm) Calib End Date: D6/01/2016 14:13

Lab File ID: 20593_02.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5991	0.7496	0.0500	12.5	10.0	25.1	50.0
1,4-Dioxane-d8 (Surr)	Ave	0.5601	0.6885	0.0500	615	500	22.9	50.0

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCV 200-106221/13 Calibration Date: 06/24/2016 23:05

Instrument ID: CHS.i Calib Start Date: 06/01/2016 12:52

GC Column: Rxi-5ms ID: 0.25 (mm) Calib End Date: 06/01/2016 14:13

Lab File ID: 20593_13.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5991	0.6774	0.0500	113	100	13.1	30.0
1,4-Dioxane-d8 (Surr)	Ave	0.5601	0.6482	0.0500	579	500	15.7	30.0

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Lab Sample ID: <u>CCV 200-106221/24</u> Calibration Date: <u>06/25/2016</u> 01:33

Instrument ID: CHS.i Calib Start Date: 06/01/2016 12:52

GC Column: Rxi-5ms ID: 0.25(mm) Calib End Date: 06/01/2016 14:13

Lab File ID: 20593_24.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5991	0.7081	0.0500	946	800	18.2	30.0
1,4-Dioxane-d8 (Surr)	Ave	0.5601	0.5975	0.0500	533	500	6.7	30.0

Lab Name: TestAmerica Burlington	Job No.: 240-65994-1
SDG No.:	
Lab File ID: 20474_04.D	Lab Sample ID: MB 200-105835/1-A
Matrix: Water	Date Extracted: 06/16/2016 18:26
Instrument ID: CHS.i	Date Analyzed: 06/17/2016 11:22
Level: (Low/Med) Low	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 200-105835/2-A	20474_03.D	06/17/2016 11:09
	660-74368-A-3-B MSD	20474_17.D	06/17/2016 14:17
	660-74368-A-3-C MS	20474_18.D	06/17/2016 14:31
MRC-SWDUP1-061316	240-65994-12	20474_27.D	06/17/2016 16:32

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Tes	tAmerica Burlington	Job	Job No.: 240-65994-1							
SDG No.:										
Client Sample	e ID:	Lab	Lab Sample ID: MB 200-105835/1-A							
Matrix: Water		Lak	File ID: 2	0474_04	.D					
Analysis Meth	nod: 522 MOD	Dat	Date Collected:							
Extract. Method: 3535A			te Extracted	l: <u>06/16</u>	/20	16 18:2	26			
Sample wt/vol: 100(mL)			Date Analyzed: 06/17/2016 11:22							
Con. Extract Vol.: 2000(uL)			Dilution Factor: 1							
Injection Vol	ume: 2(uL)	Lev	Level: (low/med) Low							
% Moisture: _		GPC	GPC Cleanup:(Y/N) N							
Analysis Bato	th No.: 105857	Uni	Units: ug/L							
CAS NO.	COMPOUND NAME		RESULT	Q		RL	MDL			
123-91-1	1,4-Dioxane		0.20	U		0.20	0.057			
						ı				
CAS NO	SIIRROGATE	!		%RE(٦	0	TITMTTS			

110

70-130

17647-74-4

1,4-Dioxane-d8 (Surr)

Lab Name: TestAmerica Burlington	Job No.: <u>240-65994-1</u>
SDG No.:	
Lab File ID: 20570_10.D	Lab Sample ID: MB 200-106090/1-A
Matrix: Water	Date Extracted: 06/22/2016 18:02
Instrument ID: CHS.i	Date Analyzed: 06/23/2016 22:40
Level:(Low/Med) Low	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 200-106090/2-A	20570_09.D	06/23/2016 22:26
	480-101917-E-32-D MS	20593_10.D	06/24/2016 22:25
	480-101917-E-32-C MSD	20593_11.D	06/24/2016 22:38
MRC-SWFB-061316	240-65996-1	20593_15.D	06/24/2016 23:32
MRC-SW1A-061316	240-65996-2	20593_16.D	06/24/2016 23:45
MRC-SW2A-061316	240-65996-3	20593_17.D	06/24/2016 23:59

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Tes	tAmerica Burlington	Job	Job No.: 240-65994-1						
SDG No.:									
Client Sample	e ID:	Lab Sample ID: MB 200-106090/1-A							
Matrix: Water		Lab File ID: 20570_10.D							
Analysis Meth	od: 522 MOD	Dat	Date Collected:						
Extract. Method: 3535A			e Extracted	: 06/22	/2016 18:	02			
Sample wt/vol: 100(mL)			Date Analyzed: 06/23/2016 22:40						
Con. Extract Vol.: 2000(uL)			Dilution Factor: 1						
Injection Vol	ume: 2(uL)	Lev	Level: (low/med) Low						
% Moisture: _		GPC	GPC Cleanup: (Y/N) N						
Analysis Bato	th No.: 106154	Uni	Units: ug/L						
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL			
123-91-1	1,4-Dioxane		0.20	U	0.20	0.057			
			<u>-</u>						
CAS NO.	SURROGATE			%RE(C Q	LIMITS			

91

70-130

17647-74-4

1,4-Dioxane-d8 (Surr)

FORM II GC/MS SEMI VOA SURROGATE RECOVERY

Lab	Name:	TestAmerica Burlington	Job No.:	240-65994-1
SDG	No.:		•	

Matrix: Water Level: Low

GC Column (1): Rxi-5ms ID: 0.25(mm)

Client Sample ID	Lab Sample ID	DXE #
MRC-SWDUP1-061316	240-65994-12	105
MRC-SWFB-061316	240-65996-1	95
MRC-SW1A-061316	240-65996-2	92
MRC-SW2A-061316	240-65996-3	97
	MB 200-105835/1-A	110
	MB 200-106090/1-A	91
	LCS 200-105835/2-A	99
	LCS 200-106090/2-A	99
	660-74368-A-3-C MS	97
	480-101917-E-32- D MS	103
	660-74368-A-3-B MSD	91
	480-101917-E-32- C MSD	102

 $\frac{\text{QC LIMITS}}{70-130}$

DXE = 1,4-Dioxane-d8 (Surr)

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

FORM II 522 MOD

FORM III GC/MS SEMI VOA LAB CONTROL SAMPLE RECOVERY

Lab Name: <u>TestAmerica Bu</u>	rlington	Job No.: 240-6	55994-1		
SDG No.:					
Matrix: Water	Level: Low	Lab File ID: 2	20474_03.D		
Lab ID: LCS 200-105835/2	-A	Client ID:			
	SPIKE	LC	s LCS	OC	
	ADDED	CONCENT		LIMITS	#
COMPOUND	(ug/L)	(ug/	'L) REC	REC	
1.4-Dioxane		.00	8.12 101	70-130	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 522 MOD

FORM III GC/MS SEMI VOA LAB CONTROL SAMPLE RECOVERY

Lab Name: TestAmerica Burling	gton Job	No.: 240-65994-1			
SDG No.:					
Matrix: Water Le	evel: Low Lab	File ID: 20570_09.D			
Lab ID: LCS 200-106090/2-A	Cli	ent ID:			
	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
1 /-Diovano	2 00	1 05	9.8	70-130	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 522 MOD

FORM III GC/MS SEMI VOA MATRIX SPIKE RECOVERY

Lab Name	e: TestAmerica Burl	ington		Job No.: 2	40-65994-1			
SDG No.:								
Matrix:	Water	Level:	Low	Lab File I	D: 20474_18.D			
Lab ID:	660-74368-A-3-C MS			Client ID:				
			SPIKE	SAMPLE	MS	MS	QC	
			ADDED	CONCENTRATION	CONCENTRATION	용	LIMITS	#
	COMPOUND		(ug/L)	(ug/L)	(ug/L)	REC	REC	
1,4-Dic	oxane		2.00	3.5	5.46	99	70-130	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 522 MOD

FORM III GC/MS SEMI VOA MATRIX SPIKE RECOVERY

Lab Name: TestAmerica Burlington		lington	Job No.: 2	240-65994-1					
SDG No.	:								
Matrix:	Water	Level: Low	Lab File I	D: <u>20593_</u> 10.D					
Lab ID:	480-101917-E-32-D	MS	Client ID:						
		SPIKE	SAMPLE	MS	MS	QC	ш		
	COMPOLIND	ADDED (ug/L)	CONCENTRATION	CONCENTRATION	REC	LIMITS	#		

2.00

3.32

70-130

1,4-Dioxane

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 522 MOD

FORM III GC/MS SEMI VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Burlington	ı	Job No.: 2	40-65	994-1			
SDG No.:							
Matrix: Water Level	Low	Lab File I	D: <u>20</u>	474_1	7.D		
Lab ID: 660-74368-A-3-B MSD		Client ID:					
	SPIKE	MSD	MSD		QC L	IMITS	
	ADDED	CONCENTRATION	용	용		1	#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	
1,4-Dioxane	2.00	4.97	75	9	30	70-130	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 522 MOD

FORM III GC/MS SEMI VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: <u>TestAmerica Bu</u>	rlington	Job No.: 2	40-65	994-1			
SDG No.:							
Matrix: Water	Level: Low	Lab File I	D: 20	593_1	1.D		
Lab ID: 480-101917-E-32-	C MSD	Client ID:					
	SPIKE	MSD	MSD		QC L	IMITS	
	ADDED	CONCENTRATION	용	용		1	#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	
1,4-Dioxane	2.00	3.56	104	7	30	70-130	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 522 MOD

FORM VIII

GC/MS SEMI VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TestAmerica Burlington	Job No.: 240-65994-1
SDG No.:	
Sample No.: ICIS 200-105200/5	Date Analyzed: 06/01/2016 13:32
Instrument ID: CHS.i	GC Column: Rxi-5ms ID: 0.25(mm)
Lab File ID (Standard): 20247_05.D	Heated Purge: (Y/N) N

Calibration ID: 34839

		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION M	ID-POINT	361147	3.08				
UPPER LIMIT		541721	3.58				
LOWER LIMIT		180574	2.58				
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICV 200-105200/9		334566	3.07				
CCVL 200-105857/2		344275	3.12				
LCS 200-105835/2-A		392530	3.11				
MB 200-105835/1-A		360040	3.11				
CCV 200-105857/15		336524	3.11				
660-74368-A-3-B MSD		375717	3.10				
660-74368-A-3-C MS		380078	3.10				
CCV 200-105857/26		336842	3.10				-
240-65994-12	MRC-SWDUP1-061316	374633	3.11				-
CCV 200-105857/28		332938	3.11				
CCVL 200-106154/2		329535	3.10				
LCS 200-106090/2-A		291429	3.09				
MB 200-106090/1-A		325171	3.10				
CCV 200-106154/14		340665	3.11				
CCVL 200-106221/2		349171	3.13				
480-101917-E-32-D MS		364283	3.11				
480-101917-E-32-C MSD		359007	3.11				
CCV 200-106221/13		314090	3.11				
240-65996-1	MRC-SWFB-061316	341279	3.10				
240-65996-2	MRC-SW1A-061316	340502	3.10				
240-65996-3	MRC-SW2A-061316	345460	3.10				
CCV 200-106221/24		304270	3.10				

= Tetrahydrofuran-d8

Area Limit = 50%-150% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

FORM VIII 522 MOD

Lab Name: TestAmerica Burlington	Job No.: 240-65994-1
SDG No.:	
Instrument ID: CHS.i	Start Date: 06/01/2016 12:42
Analysis Batch Number: 105200	End Date: 06/01/2016 21:00

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 200-105200/1		06/01/2016 12:42	1	20247_01.D	Rxi-5ms 0.25(mm)
IC 200-105200/2		06/01/2016 12:52	1	20247_02.D	Rxi-5ms 0.25(mm)
IC 200-105200/3		06/01/2016 13:05	1	20247_03.D	Rxi-5ms 0.25(mm)
IC 200-105200/4		06/01/2016 13:19	1	20247_04.D	Rxi-5ms 0.25(mm)
ICIS 200-105200/5		06/01/2016 13:32	1	20247_05.D	Rxi-5ms 0.25(mm)
IC 200-105200/6		06/01/2016 13:46	1	20247_06.D	Rxi-5ms 0.25(mm)
IC 200-105200/7		06/01/2016 13:59	1	20247_07.D	Rxi-5ms 0.25(mm)
IC 200-105200/8		06/01/2016 14:13	1	20247_08.D	Rxi-5ms 0.25(mm)
ICV 200-105200/9		06/01/2016 14:26	1	20247_09.D	Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 14:42	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 14:56	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 15:09	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 15:22	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 15:36	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 15:49	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 16:03	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 16:16	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 16:30	1		Rxi-5ms 0.25(mm)
CCV 200-105200/19		06/01/2016 16:43	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 16:57	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 17:11	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 17:24	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 17:37	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 17:51	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 18:04	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 18:18	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 18:31	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 18:45	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 18:58	1		Rxi-5ms 0.25(mm)
CCV 200-105200/30		06/01/2016 19:12	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 19:25	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 19:39	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 19:52	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 20:06	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 20:19	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 20:33	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 20:46	10		Rxi-5ms 0.25(mm)
CCV 200-105200/38		06/01/2016 21:00	1		Rxi-5ms 0.25(mm)

Lab Name: TestAmerica Burlington	Job No.: 240-65994-1
SDG No.:	
Instrument ID: CHS.i	Start Date: 06/17/2016 10:43
Analysis Batch Number: 105857	End Date: 06/17/2016 16:45

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
ZZZZZ		06/17/2016 10:43	1		Rxi-5ms 0.25(mm)
CCVL 200-105857/2		06/17/2016 10:56	1	20474_02.D	Rxi-5ms 0.25(mm)
LCS 200-105835/2-A		06/17/2016 11:09	1	20474_03.D	Rxi-5ms 0.25(mm)
MB 200-105835/1-A		06/17/2016 11:22	1	20474_04.D	Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 11:36	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 11:49	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 12:03	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 12:16	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 12:29	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 12:43	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 12:56	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 13:10	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 13:23	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 13:37	1		Rxi-5ms 0.25(mm)
CCV 200-105857/15		06/17/2016 13:50	1	20474_15.D	Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 14:04	1		Rxi-5ms 0.25(mm)
660-74368-A-3-B MSD		06/17/2016 14:17	1	20474_17.D	Rxi-5ms 0.25(mm)
660-74368-A-3-C MS		06/17/2016 14:31	1	20474_18.D	Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 14:44	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 14:57	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 15:11	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 15:24	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 15:38	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 15:51	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 16:05	1		Rxi-5ms 0.25(mm)
CCV 200-105857/26		06/17/2016 16:18	1	20474_26.D	Rxi-5ms 0.25(mm)
240-65994-12		06/17/2016 16:32	1	20474_27.D	Rxi-5ms 0.25(mm)
CCV 200-105857/28		06/17/2016 16:45	1	20474 28.D	Rxi-5ms 0.25(mm)

Lab Name:	TestAmerica Burlington	JOD NO.: 240-65994-1
SDG No.:		
Instrumen	t ID: CHS.i	Start Date: 06/23/2016 20:38

Analysis Batch Number: 106154 End Date: 06/24/2016 09:26

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
ZZZZZ		06/23/2016 20:38	1		Rxi-5ms 0.25(mm)
CCVL 200-106154/2		06/23/2016 20:51	1	20570_02.D	Rxi-5ms 0.25(mm)
ZZZZZ		06/23/2016 21:05	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/23/2016 21:19	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/23/2016 21:32	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/23/2016 21:46	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/23/2016 21:59	2.5		Rxi-5ms 0.25(mm)
ZZZZZ		06/23/2016 22:13	2.5		Rxi-5ms 0.25(mm)
LCS 200-106090/2-A		06/23/2016 22:26	1	20570_09.D	Rxi-5ms 0.25(mm)
MB 200-106090/1-A		06/23/2016 22:40	1	20570_10.D	Rxi-5ms 0.25(mm)
ZZZZZ		06/23/2016 22:53	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/23/2016 23:07	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/23/2016 23:20	1		Rxi-5ms 0.25(mm)
CCV 200-106154/14		06/23/2016 23:34	1	20570_14.D	Rxi-5ms 0.25(mm)
ZZZZZ		06/23/2016 23:47	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 00:01	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 00:14	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 00:27	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 00:41	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 00:54	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 01:08	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 01:21	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 01:35	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 01:48	1		Rxi-5ms 0.25(mm)
CCV 200-106154/25		06/24/2016 02:02	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 02:15	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 02:29	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 02:42	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 02:56	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 03:09	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 03:23	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 03:36	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 03:49	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 04:03	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 04:16	1		Rxi-5ms 0.25(mm)
CCV 200-106154/38		06/24/2016 04:30	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 04:43	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 04:57	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 05:10	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 05:24	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 05:37	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 05:51	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 06:04	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 06:17	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 06:31	1		Rxi-5ms 0.25(mm)

Lab Name: TestAmerica Burlington	Job No.: <u>240-65994-1</u>
SDG No.:	
Instrument ID: CHS.i	Start Date: 06/23/2016 20:38
Analysis Batch Number: 106154	End Date: 06/24/2016 09:26

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
ZZZZZ		06/24/2016 06:44	1		Rxi-5ms 0.25(mm)
CCV 200-106154/49		06/24/2016 06:58	1		Rxi-5ms 0.25 (mm)
ZZZZZ		06/24/2016 07:11	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 07:25	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 07:38	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 07:52	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 08:05	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 08:18	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 08:32	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 08:45	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 08:59	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 09:12	1		Rxi-5ms 0.25(mm)
CCV 200-106154/60		06/24/2016 09:26	1		Rxi-5ms 0.25(mm)

Lab	Name:	TestAmerica	Burlington	Job No.:	240-65994-1
SDG	No.:				

Instrument ID: CHS.i Start Date: 06/24/2016 20:23

Analysis Batch Number: 106221 End Date: 06/25/2016 06:29

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
ZZZZZ		06/24/2016 20:23	1		Rxi-5ms 0.25(mm)
CCVL 200-106221/2		06/24/2016 20:37	1	20593_02.D	Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 20:50	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 21:04	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 21:17	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 21:31	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 21:44	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 21:58	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 22:11	1		Rxi-5ms 0.25(mm)
480-101917-E-32-D MS		06/24/2016 22:25	1	20593_10.D	Rxi-5ms 0.25(mm)
480-101917-E-32-C		06/24/2016 22:38	1	20593 11.D	Rxi-5ms 0.25(mm)
MSD		06/04/0016 00 50	1	<u> </u>	D ' 5 0 .05 ()
ZZZZZ		06/24/2016 22:52	1	00502 12 5	Rxi-5ms 0.25(mm)
CCV 200-106221/13		06/24/2016 23:05	1	20593_13.D	Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 23:18	1		Rxi-5ms 0.25(mm)
240-65996-1		06/24/2016 23:32	1	20593_15.D	Rxi-5ms 0.25(mm)
240-65996-2		06/24/2016 23:45	1	20593_16.D	Rxi-5ms 0.25(mm)
240-65996-3		06/24/2016 23:59	1	20593_17.D	Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 00:12	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 00:26	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 00:39	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 00:53	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 01:06	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 01:20	1		Rxi-5ms 0.25(mm)
CCV 200-106221/24		06/25/2016 01:33	1	20593_24.D	Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 01:47	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 02:00	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 02:14	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 02:27	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 02:41	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 02:54	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 03:08	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 03:21	5		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 03:34	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 03:48	5		Rxi-5ms 0.25(mm)
CCV 200-106221/35		06/25/2016 04:01	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 04:15	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 04:28	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 04:42	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 04:55	2		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 05:09	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 05:22	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 05:36	2		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 05:49	1		Rxi-5ms 0.25(mm)
44444		00/23/2010 03.43			IXI JIIIS U.ZJ (IIIII)

Lab Name: TestAmer	Job N	Job No.: 240-65994-1				
SDG No.:						
Instrument ID: CHS	.i	Start	Date:	06/24/2016 20	:23	
Analysis Batch Num	ber: 106221	End I	End Date: 06/25/2016 06:29			
LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION	LAB FILE ID	COLUMN ID	
			FACTOR			
ZZZZZ		06/25/2016 06:16	1		Rxi-5ms 0.25(mm)	
CCV 200-106221/46		06/25/2016 06:29	1		Rxi-5ms 0.25(mm)	

GC/MS SEMI VOA BATCH WORKSHEET

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Batch Number: 105835 Batch Start Date: 06/16/16 18:26 Batch Analyst: Bourdeau, Timothy P

Batch Method: 3535A Batch End Date: 06/16/16 20:17

Lab Sample ID	Client Sample ID	Method	Chain	Basis	InitialAmount	FinalAmount	EX522SPi 00011	EX522SUi 00018	
MB 200-105835/1		3535A, MOD	522		100 mL	2000 uL		100 uL	
LCS 200-105835/2		3535A, MOD	522		100 mL	2000 uL	400 uL	100 uL	
660-74368-A-3 MSD		3535A, MOD	522	Т	100 mL	2000 uL	100 uL	100 uL	
660-74368-A-3 MS		3535A, MOD	522	Т	100 mL	2000 uL	100 uL	100 uL	
240-65994-A-12	MRC-SWDUP1-06131	3535A, MOD	522	Т	100 mL	2000 uL		100 uL	

Batch Notes				
Acid ID	936696			
Acid Name	HC1			
First End time	1950			
Solvent Lot #	935927			
Solvent Name	MeC12			
SPE Cartridge ID	7332203			
First Start time	1903			

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

GC/MS SEMI VOA BATCH WORKSHEET

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Batch Number: 106090 Batch Start Date: 06/22/16 18:02 Batch Analyst: Bourdeau, Timothy P

Batch Method: 3535A Batch End Date: 06/22/16 20:51

Lab Sample ID	Client Sample ID	Method C	hain	Basis	InitialAmount	FinalAmount	EX522SPi 00011	EX522SUi 00018	AnalysisComment	
MB 200-106090/1		3535A, 52 MOD	22		100 mL	2000 uL		100 uL		
LCS 200-106090/2		3535A, 52 MOD	22		100 mL	2000 uL	100 uL	100 uL		
480-101917-E-32 MSD		3535A, 52 MOD	22	Т	100 mL	2000 uL	100 uL	100 uL	Containers D and E used to generate sample	
480-101917-E-32 MS		3535A, 52 MOD	22	Т	100 mL	2000 uL	100 uL	100 uL	Containers D and E used to generate sample	
240-65996-E-1	MRC-SWFB-061316	3535A, 52 MOD	22	Т	100 mL	2000 uL		100 uL		
240-65996-D-2	MRC-SW1A-061316	3535A, 52 MOD	22	Т	100 mL	2000 uL		100 uL		
240-65996-D-3	MRC-SW2A-061316	3535A, 52 MOD	22	Т	100 mL	2000 uL		100 uL		

Batch Notes				
Acid ID	936696			
Acid Name	HCl			
First End time	1925			
Analyst ID - Reagent Drop Witness	BDL			
Solvent Lot #	942210			
Solvent Name	Methylene Chloride			
SPE Cartridge ID	7463302			
First Start time	1855			

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Method 680

Polychlorinated Biphenyls (PCBs) (GC/MS) by Method 680

FORM V GC/MS SEMI VOA INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Lab File ID: Xd2402.D DFTPP Injection Date: 04/24/2016

Instrument ID: CMSX DFTPP Injection Time: 14:32

Analysis Batch No.: 430367

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE					
127	40 - 60 % of mass 198	47.8					
197	Less than 1 % of mass 198	0.6					
198	Base peak, 100 % Relative abundance	100.0					
199	5 - 9 % of mass 198	6.4					
275	10 - 30% of mass 198	25.7					
365	Greater than 1% of mass 198	3.3					
441	Present but less than mass 443	11.4 (6	4.3) 2				
442	Greater than 40% of mass 198	92.8					
443	17 - 23% of mass 442	17.7 (1	9.1) 1				

1-Value is % mass 442

2-Value is % mass 443

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	ICISAV 680-430367/4	Xd2404.D	04/24/2016	15:41
	IC 680-430367/25	Xd2405.D	04/24/2016	16:10
	IC 680-430367/26	Xd2406.D	04/24/2016	16:38
	IC 680-430367/27	Xd2407.D	04/24/2016	17:07
	IC 680-430367/28	Xd2408.D	04/24/2016	17:35
	ICV 680-430367/30	Xd2409.D	04/24/2016	18:04

FORM V GC/MS SEMI VOA INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Lab File ID: Xf2002a.D DFTPP Injection Date: 06/20/2016

Instrument ID: CMSX DFTPP Injection Time: 08:48

Analysis Batch No.: 438006

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE					
127	40 - 60 % of mass 198	50.7					
197	Less than 1 % of mass 198	0.0					
198	Base peak, 100 % Relative abundance	100.0					
199	5 - 9 % of mass 198	6.2					
275	10 - 30% of mass 198	26.0					
365	Greater than 1% of mass 198	3.6					
441	Present but less than mass 443	10.4	(66.9) 2				
442	Greater than 40% of mass 198	83.8					
443	17 - 23% of mass 442	15.6	(18.6) 1				

1-Value is % mass 442

2-Value is % mass 443

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	WDM 680-438006/3	Xf2003.D	06/20/2016	09:19
	CCVIS 680-438006/4	Xf2004.D	06/20/2016	09:49
	MB 680-437585/15-A	Xf2014.D	06/20/2016	14:35
	LCS 680-437585/16-A	Xf2015.D	06/20/2016	15:04
MRC-SW5A1-061316 MS	240-65994-1 MS	Xf2016.D	06/20/2016	15:33
MRC-SW5A1-061316	240-65994-1	Xf2018.D	06/20/2016	16:30
	CCV 680-438006/20	Xf2020.D	06/20/2016	17:28

FORM V GC/MS SEMI VOA INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Lab File ID: Xf2102.D DFTPP Injection Date: 06/21/2016

Instrument ID: CMSX DFTPP Injection Time: 20:10

Analysis Batch No.: 438264

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE					
127	40 - 60 % of mass 198	55.5					
197	Less than 1 % of mass 198	1.0					
198	Base peak, 100 % Relative abundance	100.0					
199	5 - 9 % of mass 198	6.5					
275	10 - 30% of mass 198	26.1					
365	Greater than 1% of mass 198	3.0					
441	Present but less than mass 443	4.4	(32.2) 2				
442	Greater than 40% of mass 198	68.5					
443	17 - 23% of mass 442	13.8	(20.2) 1				

1-Value is % mass 442

2-Value is % mass 443

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	WDM 680-438264/3	Xf2103.D	06/21/2016	20:41
	CCVIS 680-438264/4	Xf2104.D	06/21/2016	21:12
MRC-SW5A1-061316 MSD	240-65994-1 MSD	Xf2110.D	06/22/2016	00:04
MRC-SW5A2-061316	240-65994-2	Xf2112.D	06/22/2016	01:01
MRC-SW5B-061316	240-65994-3	Xf2113.D	06/22/2016	01:30
MRC-SW6A-061316	240-65994-4	Xf2114.D	06/22/2016	01:59
MRC-SW6B-061316	240-65994-5	Xf2115.D	06/22/2016	02:27
MRC-SW7A-061316	240-65994-6	Xf2116.D	06/22/2016	02:56
MRC-SW7B-061316	240-65994-7	Xf2117.D	06/22/2016	03:25
MRC-SW8A-061316	240-65994-8	Xf2118.D	06/22/2016	03:54
MRC-SW8B-061316	240-65994-9	Xf2119.D	06/22/2016	04:22
MRC-SW9A-061316	240-65994-10	Xf2120.D	06/22/2016	04:51
MRC-SW9B-061316	240-65994-11	Xf2121.D	06/22/2016	05:20
MRC-SWFB-061316	240-65996-1	Xf2122.D	06/22/2016	05:48
MRC-SWDUP2-061316	240-65996-5	Xf2123.D	06/22/2016	06:17
	CCV 680-438264/24	Xf2124.D	06/22/2016	06:45

FORM VI

GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Savannah Job No.: 240-65994-1 Analy Batch No.: 430367

SDG No.:

Instrument ID: CMSX GC Column: DB-5MS ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/24/2016 15:41 Calibration End Date: 04/24/2016 17:35 Calibration ID: 45292

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 680-430367/28	Xd2408.D
Level 2	IC 680-430367/27	Xd2407.D
Level 3	ICISAV 680-430367/4	Xd2404.D
Level 4	IC 680-430367/26	Xd2406.D
Level 5	IC 680-430367/25	Xd2405.D

ANALYTE	RRF			CURVE	"		MIN RRF	%RSD	# M		R^2	#	MIN R^2			
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%R	SD	OR COD		OR COD
Monochlorobiphenyl	0.9409	0.9877	0.9866	1.0018	1.0386	Ave		0.9911			3.5	2	0.0			
Dichlorobiphenyl	0.6430	0.6782	0.6962	0.6962	0.7337	Ave		0.6895			4.8	2	0.0			
Trichlorobiphenyl	0.4097	0.4114	0.4253	0.4324	0.4604	Ave		0.4278			4.8	2	0.0			
PCB-104			0.2443			Ave		0.2443				3	0.0			
Tetrachlorobiphenyl	0.2470	0.2621	0.2562	0.2680	0.2810	Ave		0.2629			4.9	2	0.0			
Pentachlorobiphenyl	0.1465	0.1582	0.1680	0.1763	0.1852	Ave		0.1668			9.1	2	0.0			
PCB-77			0.3640			Ave		0.3640				3	0.0			
Hexachlorobiphenyl	0.1338	0.1411	0.1498	0.1546	0.1625	Ave		0.1484			7.6	2	0.0			
Heptachlorobiphenyl	0.1015	0.1109	0.1179	0.1228	0.1323	Ave		0.1171			10.0	2	0.0			
Octachlorobiphenyl	0.0938	0.1067	0.1105	0.1195	0.1284	Ave		0.1118			11.7	2	0.0			
PCB-208			0.0500			Ave		0.0500				3	0.0			
Nonachlorobiphenyl			0.0409			Ave		0.0380			14.1	2	0.0			
DCB Decachlorobiphenyl	0.0297	0.0366	0.0390	0.0413	0.0437	Ave		0.0380			14.1	2	0.0			
Decachlorobiphenyl-13C12	0.0248	0.0311	0.0307	0.0339	0.0354	Ave		0.0312			13.1	2	0.0			

Note: The ml coefficient is the same as Ave RRF for an Ave curve type.

FORM VI RESOLUTION CHECK SUMMARY

Lab Name: TestAmerica Savannah

SDG No.:

Lab Sample ID (1): ICISAV 680-430367/4

GC Column (1): DB-5MS

ID: 0.25 (mm)

Date Analyzed (1): 04/24/2016 15:41

ANALYTE	RT	RESOLUTION (%)
Monochlorobiphenyl	8.82	100.0
Dichlorobiphenyl	10.58	100.0
Trichlorobiphenyl	12.25	100.0
Tetrachlorobiphenyl	13.75	100.0
Pentachlorobiphenyl	15.16	100.0
Hexachlorobiphenyl	16.45	100.0
Heptachlorobiphenyl	17.59	100.0
Octachlorobiphenyl	18.69	100.0
Nonachlorobiphenyl	19.75	100.0
DCB Decachlorobiphenyl	20.76	100.0

FORM VI RESOLUTION CHECK SUMMARY

Lab Name: TestAmerica Savannah

SDG No.:

Lab Sample ID (1): CCVIS 680-438006/4

GC Column (1): DB-5MS

ID: 0.25 (mm)

Date Analyzed (1): 06/20/2016 09:49

ANALYTE	RT	RESOLUTION (%)
Monochlorobiphenyl	8.48	100.0
Dichlorobiphenyl	10.23	100.0
Trichlorobiphenyl	11.87	100.0
Tetrachlorobiphenyl	13.37	100.0
Pentachlorobiphenyl	14.77	100.0
Hexachlorobiphenyl	16.07	100.0
Heptachlorobiphenyl	17.20	100.0
Octachlorobiphenyl	18.29	100.0
DCB Decachlorobiphenyl	20.34	100.0

FORM VI RESOLUTION CHECK SUMMARY

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Lab Sample ID (1): CCVIS 680-438264/4 Instrument ID (1): CMSX

GC Column (1): DB-5MS ID: 0.25 (mm) Date Analyzed (1): 06/21/2016 21:12

ANALYTE	RT	RESOLUTION (%)
Monochlorobiphenyl	8.48	100.0
Dichlorobiphenyl	10.23	100.0
Trichlorobiphenyl	11.87	100.0
Tetrachlorobiphenyl	13.37	100.0
Pentachlorobiphenyl	14.77	100.0
Hexachlorobiphenyl	16.07	100.0
Heptachlorobiphenyl	17.20	100.0
Octachlorobiphenyl	18.29	100.0
DCB Decachlorobiphenyl	20.36	100.0

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Lab Sample ID: <u>ICV</u> 680-430367/30 Calibration Date: <u>04/24/2016</u> 18:04

Instrument ID: CMSX Calib Start Date: 04/24/2016 15:41

GC Column: DB-5MS ID: 0.25 (mm) Calib End Date: 04/24/2016 17:35

Lab File ID: Xd2409.D Conc. Units: ug/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Monochlorobiphenyl	Ave	0.9911	0.997		1.01	1.00	0.6	20.0
Dichlorobiphenyl	Ave	0.6895	0.6585		0.955	1.00	-4.5	20.0
Trichlorobiphenyl	Ave	0.4278	0.4548		1.06	1.00	6.3	20.0
Tetrachlorobiphenyl	Ave	0.2629	0.2724		2.07	2.00	3.6	20.0
Pentachlorobiphenyl	Ave	0.1668	0.1718		2.06	2.00	3.0	20.0
Hexachlorobiphenyl	Ave	0.1484	0.1534		2.07	2.00	3.4	20.0
Heptachlorobiphenyl	Ave	0.1171	0.1249		3.20	3.00	6.7	20.0
Octachlorobiphenyl	Ave	0.1118	0.1197		3.21	3.00	7.1	20.0
Nonachlorobiphenyl	Ave	0.0409	0.0557		5.86	4.00	36.3*	20.0
DCB Decachlorobiphenyl	Ave	0.0380	0.0408		5.36	5.00	7.2	20.0
Decachlorobiphenyl-13C12	Ave	0.0312	0.0325		5.21	5.00	4.2	20.0

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVIS 680-438006/4 Calibration Date: 06/20/2016 09:49

Instrument ID: CMSX Calib Start Date: 04/24/2016 15:41

GC Column: DB-5MS ID: 0.25 (mm) Calib End Date: 04/24/2016 17:35

Lab File ID: Xf2004.D Conc. Units: ug/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Monochlorobiphenyl	Ave	0.9911	0.9317		0.940	1.00	-6.0	20.0
Dichlorobiphenyl	Ave	0.6895	0.6668		0.967	1.00	-3.3	20.0
Trichlorobiphenyl	Ave	0.4278	0.4318		1.01	1.00	0.9	20.0
Tetrachlorobiphenyl	Ave	0.2629	0.2655		2.02	2.00	1.0	20.0
Pentachlorobiphenyl	Ave	0.1668	0.1804		2.16	2.00	8.1	20.0
Hexachlorobiphenyl	Ave	0.1484	0.1566		2.11	2.00	5.5	20.0
Heptachlorobiphenyl	Ave	0.1171	0.1236		3.17	3.00	5.6	20.0
Octachlorobiphenyl	Ave	0.1118	0.1167		3.13	3.00	4.4	20.0
DCB Decachlorobiphenyl	Ave	0.0380	0.0322		4.24	5.00	-15.3	20.0
Decachlorobiphenyl-13C12	Ave	0.0312	0.0292		4.68	5.00	-6.4	20.0

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCV 680-438006/20 Calibration Date: 06/20/2016 17:28

Instrument ID: CMSX Calib Start Date: 04/24/2016 15:41

GC Column: DB-5MS ID: 0.25 (mm) Calib End Date: 04/24/2016 17:35

Lab File ID: Xf2020.D Conc. Units: ug/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Monochlorobiphenyl	Ave	0.9911	0.9482		0.957	1.00	-4.3	20.0
Dichlorobiphenyl	Ave	0.6895	0.6651		0.965	1.00	-3.5	20.0
Trichlorobiphenyl	Ave	0.4278	0.4229		0.989	1.00	-1.1	20.0
Tetrachlorobiphenyl	Ave	0.2629	0.2577		1.96	2.00	-2.0	20.0
Pentachlorobiphenyl	Ave	0.1668	0.1721		2.06	2.00	3.2	20.0
Hexachlorobiphenyl	Ave	0.1484	0.1457		1.96	2.00	-1.8	20.0
Heptachlorobiphenyl	Ave	0.1171	0.1142		2.93	3.00	-2.4	20.0
Octachlorobiphenyl	Ave	0.1118	0.1077		2.89	3.00	-3.7	20.0
DCB Decachlorobiphenyl	Ave	0.0380	0.0293		3.86	5.00	-22.9*	20.0
Decachlorobiphenyl-13C12	Ave	0.0312	0.0268		4.29	5.00	-14.1	20.0

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVIS 80-438264/4 Calibration Date: 06/21/2016 21:12

Instrument ID: CMSX Calib Start Date: 04/24/2016 15:41

GC Column: DB-5MS ID: 0.25 (mm) Calib End Date: 0.4/24/2016 17:35

Lab File ID: Xf2104.D Conc. Units: ug/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Monochlorobiphenyl	Ave	0.9911	0.9780		0.987	1.00	-1.3	20.0
Dichlorobiphenyl	Ave	0.6895	0.6920		1.00	1.00	0.4	20.0
Trichlorobiphenyl	Ave	0.4278	0.4442		1.04	1.00	3.8	20.0
Tetrachlorobiphenyl	Ave	0.2629	0.2761		2.10	2.00	5.0	20.0
Pentachlorobiphenyl	Ave	0.1668	0.1807		2.17	2.00	8.3	20.0
Hexachlorobiphenyl	Ave	0.1484	0.1593		2.15	2.00	7.3	20.0
Heptachlorobiphenyl	Ave	0.1171	0.1242		3.18	3.00	6.1	20.0
Octachlorobiphenyl	Ave	0.1118	0.1197		3.21	3.00	7.1	20.0
DCB Decachlorobiphenyl	Ave	0.0380	0.0338		4.45	5.00	-11.1	20.0
Decachlorobiphenyl-13C12	Ave	0.0312	0.0312		5.00	5.00	0.0	20.0

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCV 680-438264/24 Calibration Date: 06/22/2016 06:45

Instrument ID: CMSX Calib Start Date: 04/24/2016 15:41

GC Column: DB-5MS ID: 0.25 (mm) Calib End Date: 04/24/2016 17:35

Lab File ID: Xf2124.D Conc. Units: ug/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Monochlorobiphenyl	Ave	0.9911	1.015		1.02	1.00	2.4	20.0
Dichlorobiphenyl	Ave	0.6895	0.7260		1.05	1.00	5.3	20.0
Trichlorobiphenyl	Ave	0.4278	0.4529		1.06	1.00	5.9	20.0
Tetrachlorobiphenyl	Ave	0.2629	0.2801		2.13	2.00	6.5	20.0
Pentachlorobiphenyl	Ave	0.1668	0.1900		2.28	2.00	13.9	20.0
Hexachlorobiphenyl	Ave	0.1484	0.1674		2.26	2.00	12.8	20.0
Heptachlorobiphenyl	Ave	0.1171	0.1285		3.29	3.00	9.8	20.0
Octachlorobiphenyl	Ave	0.1118	0.1223		3.28	3.00	9.4	20.0
DCB Decachlorobiphenyl	Ave	0.0380	0.0345		4.54	5.00	-9.3	20.0
Decachlorobiphenyl-13C12	Ave	0.0312	0.0309		4.96	5.00	-0.8	20.0

Lab Name: TestAmerica Savannah	Job No.: 240-65994-1
SDG No.:	
Lab File ID: Xf2014.D	Lab Sample ID: MB 680-437585/15-A
Matrix: Water	Date Extracted: 06/16/2016 13:29
Instrument ID: CMSX	Date Analyzed: 06/20/2016 14:35
Level: (Low/Med) Low	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 680-437585/16-A	Xf2015.D	06/20/2016 15:04
MRC-SW5A1-061316 MS	240-65994-1 MS	Xf2016.D	06/20/2016 15:33
MRC-SW5A1-061316	240-65994-1	Xf2018.D	06/20/2016 16:30
MRC-SW5A1-061316 MSD	240-65994-1 MSD	Xf2110.D	06/22/2016 00:04
MRC-SW5A2-061316	240-65994-2	Xf2112.D	06/22/2016 01:01
MRC-SW5B-061316	240-65994-3	Xf2113.D	06/22/2016 01:30
MRC-SW6A-061316	240-65994-4	Xf2114.D	06/22/2016 01:59
MRC-SW6B-061316	240-65994-5	Xf2115.D	06/22/2016 02:27
MRC-SW7A-061316	240-65994-6	Xf2116.D	06/22/2016 02:56
MRC-SW7B-061316	240-65994-7	Xf2117.D	06/22/2016 03:25
MRC-SW8A-061316	240-65994-8	Xf2118.D	06/22/2016 03:54
MRC-SW8B-061316	240-65994-9	Xf2119.D	06/22/2016 04:22
MRC-SW9A-061316	240-65994-10	Xf2120.D	06/22/2016 04:51
MRC-SW9B-061316	240-65994-11	Xf2121.D	06/22/2016 05:20
MRC-SWFB-061316	240-65996-1	Xf2122.D	06/22/2016 05:48
MRC-SWDUP2-061316	240-65996-5	Xf2123.D	06/22/2016 06:17

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah	Job No.: 240-65994-1
SDG No.:	
Client Sample ID:	Lab Sample ID: MB 680-437585/15-A
Matrix: Water	Lab File ID: Xf2014.D
Analysis Method: 680	Date Collected:
Extract. Method: 680	Date Extracted: 06/16/2016 13:29
Sample wt/vol: 1000(mL)	Date Analyzed: 06/20/2016 14:35
Con. Extract Vol.: 1 (mL)	Dilution Factor: 1
Injection Volume: 2(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup: (Y/N) N
Analysis Batch No.: 438006	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.30	U	0.30	0.030
26601-64-9	Hexachlorobiphenyl	0.20	U	0.20	0.015
53742-07-7	Nonachlorobiphenyl	0.50	U	0.50	0.049
55722-26-4	Octachlorobiphenyl	0.30	U	0.30	0.038
27323-18-8	Monochlorobiphenyl	0.10	U	0.10	0.0056
2051-24-3	DCB Decachlorobiphenyl	0.50	U	0.50	0.070
25512-42-9	Dichlorobiphenyl	0.10	U	0.10	0.0054
25429-29-2	Pentachlorobiphenyl	0.20	U	0.20	0.014
26914-33-0	Tetrachlorobiphenyl	0.20	U	0.20	0.013
25323-68-6	Trichlorobiphenyl	0.10	U	0.10	0.0065

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12		*	25-113

FORM II GC/MS SEMI VOA SURROGATE RECOVERY

Lab	Name:	TestAmerica	Savannah	Job	No.:	240-65994-1

SDG No.:

Matrix: Water Level: Low

Client Sample ID	Lab Sample ID	13DCB	#
MRC-SW5A1-061316	240-65994-1	48	*
MRC-SW5A2-061316	240-65994-2	83	
MRC-SW5B-061316	240-65994-3	71	
MRC-SW6A-061316	240-65994-4	74	*
MRC-SW6B-061316	240-65994-5	71	*
MRC-SW7A-061316	240-65994-6	68	
MRC-SW7B-061316	240-65994-7	78	*
MRC-SW8A-061316	240-65994-8	72	*
MRC-SW8B-061316	240-65994-9	67	*
MRC-SW9A-061316	240-65994-10	74	
MRC-SW9B-061316	240-65994-11	68	
MRC-SWFB-061316	240-65996-1	81	*
MRC-SWDUP2-061316	240-65996-5	78	
	MB 680-437585/15-A	75	*
	LCS 680-437585/16-A	64	*
MRC-SW5A1-061316 MS	240-65994-1 MS	63	*
MRC-SW5A1-061316 MSD	240-65994-1 MSD	60	

 $\frac{QC \text{ LIMITS}}{25-113}$

13DCB = Decachlorobiphenyl-13C12

FORM III GC/MS SEMI VOA LAB CONTROL SAMPLE RECOVERY

Lab Name	e: <u>TestAmerica Sava</u>	annah	Job No.: 240-65994-1
SDG No.	:		
Matrix:	Water	Level: Low	Lab File ID: Xf2015.D
Lab ID:	LCS 680-437585/16-	-A	Client ID:

	SPIKE	LCS	LCS	QC	и
	ADDED	CONCENTRATION	ુ	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
Heptachlorobiphenyl	6.00	4.42	74	62-130	*
Hexachlorobiphenyl	4.00	2.88	72	62-130	*
Nonachlorobiphenyl	10.0	9.09	91	70-195	*
Octachlorobiphenyl	6.00	4.50	75	64-130	*
Monochlorobiphenyl	2.00	1.20	60	42-130	*
DCB Decachlorobiphenyl	10.0	5.98	60	59-130	*
Dichlorobiphenyl	2.00	1.28	64	49-130	*
Pentachlorobiphenyl	4.00	2.94	74	63-130	*
Tetrachlorobiphenyl	4.00	2.72	68	54-130	*
Trichlorobiphenyl	2.00	1.37	68	51-130	*

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 680

FORM III GC/MS SEMI VOA MATRIX SPIKE RECOVERY

Lab	Name:	TestAmerica	Savannah	Job No.:	240-65994-1
SDG	No ·				

Matrix: Water Level: Low Lab File ID: Xf2016.D

Lab ID: 240-65994-1 MS Client ID: MRC-SW5A1-061316 MS

	SPIKE ADDED	SAMPLE CONCENTRATION	MS CONCENTRATION	MS %	QC LIMITS	#
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC	REC	
Heptachlorobiphenyl	5.98	0.30 U	4.66	78	62-130	*
Hexachlorobiphenyl	3.99	0.20 U	3.07	77	62-130	*
Nonachlorobiphenyl	9.97	0.50 U	9.73	98	70-195	*
Octachlorobiphenyl	5.98	0.30 U	4.86	81	64-130	*
Monochlorobiphenyl	1.99	0.099 U	0.976	49	42-130	*
DCB Decachlorobiphenyl	9.97	0.50 U	6.48	65	59-130	*
Dichlorobiphenyl	1.99	0.099 U	1.16	58	49-130	*
Pentachlorobiphenyl	3.99	0.20 U	4.75	119	63-130	*
Tetrachlorobiphenyl	3.99	0.20 U	2.61	65	54-130	*
Trichlorobiphenyl	1.99	0.099 U	1.32	66	51-130	*

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 680

FORM III GC/MS SEMI VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Savannah		annah	Job No.: 240-65994-1		
SDG No.	:				
Matrix:	Water	Level: Low	Lab File ID: Xf2110.D		
Lab ID:	240-65994-1 MSD		Client ID: MRC-SW5A1-061316 MSD		

	SPIKE ADDED	MSD CONCENTRATION	MSD	olc .	QC L	IMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	1 #
						_	
Heptachlorobiphenyl	5.78	4.01	69	15	40	62-130	
Hexachlorobiphenyl	3.86	2.55	66	18	40	62-130	
Nonachlorobiphenyl	9.64	8.14	84	18	40	70-195	
Octachlorobiphenyl	5.78	4.15	72	16	40	64-130	
Monochlorobiphenyl	1.93	0.918	48	6	40	42-130	
DCB Decachlorobiphenyl	9.64	5.61	58	14	40	59-130	F1
Dichlorobiphenyl	1.93	1.06	55	9	40	49-130	
Pentachlorobiphenyl	3.86	4.12	107	14	40	63-130	
Tetrachlorobiphenyl	3.86	2.28	59	13	40	54-130	
Trichlorobiphenyl	1.93	1.16	60	13	40	51-130	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 680

FORM VIII GC/MS SEMI VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Instrument ID: CMSX Calibration Start Date: 04/24/2016 15:41

Calibration ID: 45292

		PHN		CRY			
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION N	MEAN AREA AND MEAN RT	50088	11.38	42340	17.58		
UPPER LIMIT		75132	11.88	63510	18.08		-
LOWER LIMIT		25044	10.88	21170	17.08		
LAB SAMPLE ID	CLIENT SAMPLE ID						
CCVIS 680-438006/4		70060	11.00	48548	17.18		
MB 680-437585/15-A		81212*	11.01	52624	17.18		-
LCS 680-437585/16-A		81077*	11.01	54298	17.18		
240-65994-1 MS	MRC-SW5A1-061316 MS	89943*	11.00	67009*	17.18		
240-65994-1	MRC-SW5A1-061316	89042*	11.00	63930*	17.18		-
CCV 680-438006/20		72492	11.00	49012	17.18		-
CCVIS 680-438264/4		38876	11.01	29902	17.18		-
240-65994-1 MSD	MRC-SW5A1-061316 MSD	60632	11.01	46821	17.18		-
240-65994-2	MRC-SW5A2-061316	49231	11.01	36697	17.18		
240-65994-3	MRC-SW5B-061316	55078	11.01	43310	17.18		
240-65994-4	MRC-SW6A-061316	61380*	11.01	48888*	17.18		
240-65994-5	MRC-SW6B-061316	70730*	11.01	55487*	17.18		
240-65994-6	MRC-SW7A-061316	58171	11.01	45678*	17.18		
240-65994-7	MRC-SW7B-061316	63478*	11.00	49763*	17.18		
240-65994-8	MRC-SW8A-061316	65299*	11.01	52331*	17.18		
240-65994-9	MRC-SW8B-061316	61876*	11.01	46997*	17.18		-
240-65994-10	MRC-SW9A-061316	54250	11.00	43462	17.18		
240-65994-11	MRC-SW9B-061316	57973	11.01	44013	17.18		
240-65996-1	MRC-SWFB-061316	65480*	11.01	51756*	17.18		
240-65996-5	MRC-SWDUP2-061316	51793	11.01	42507	17.18		
CCV 680-438264/24		39470	11.01	29231	17.18		

ok, samples within limits for IC or CCVIS

PHN = Phenanthrene-d10 CRY = Chrysene-d12

Area Limit = 50%-150% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

FORM VIII 680

FORM VIII GC/MS SEMI VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TestAmerica Savannah	Job No.: 240-65994-1				
SDG No.:					
Sample No.: CCVIS 680-438006/4	Date Analyzed: 06/20/2016	09:49			
Instrument ID: CMSX	GC Column: DB-5MS	ID: 0.25(mm)			

Lab File ID (Standard): Xf2004.D Heated Purge: (Y/N) N

Calibration ID: 45292

		PHN		CRY			
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		70060	11.00	48548	17.18		
UPPER LIMIT		91078	11.50	63112	17.68		
LOWER LIMIT		49042	10.50	33984	16.68		
LAB SAMPLE ID	CLIENT SAMPLE ID						
MB 680-437585/15-A		81212*	11.01	52624	17.18		
LCS 680-437585/16-A		81077*	11.01	54298	17.18		
240-65994-1 MS	MRC-SW5A1-061316 MS	89943*	11.00	67009*	17.18		
240-65994-1	MRC-SW5A1-061316	89042*	11.00	63930*	17.18		
CCV 680-438006/20		72492	11.00	49012	17.18		

ok, samples within limits for IC or CCVIS

PHN = Phenanthrene-d10 CRY = Chrysene-d12

Area Limit = 70%-130% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

FORM VIII 680

FORM VIII GC/MS SEMI VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Sample No.: CCVIS 680-438264/4 Date Analyzed: 06/21/2016 21:12

Instrument ID: CMSX GC Column: DB-5MS ID: 0.25(mm)

Lab File ID (Standard): Xf2104.D Heated Purge: (Y/N) N

Calibration ID: 45292

		PHN		CRY			
		AREA #	RT #	AREA #	RT #	AREA #	RT :
12/24 HOUR STD		38876	11.01	29902	17.18		
UPPER LIMIT		50539	11.51	38873	17.68		
LOWER LIMIT		27213	10.51	20931	16.68		
LAB SAMPLE ID	CLIENT SAMPLE ID						
240-65994-1 MSD	MRC-SW5A1-061316 MSD	60632	11.01	46821	17.18		
240-65994-2	MRC-SW5A2-061316	49231	11.01	36697	17.18		
240-65994-3	MRC-SW5B-061316	55078	11.01	43310	17.18		
240-65994-4	MRC-SW6A-061316	61380*	11.01	48888*	17.18		
240-65994-5	MRC-SW6B-061316	70730*	11.01	55487*	17.18		
240-65994-6	MRC-SW7A-061316	58171	11.01	45678*	17.18		
240-65994-7	MRC-SW7B-061316	63478*	11.00	49763*	17.18		
240-65994-8	MRC-SW8A-061316	65299*	11.01	52331*	17.18		
240-65994-9	MRC-SW8B-061316	61876*	11.01	46997*	17.18		
240-65994-10	MRC-SW9A-061316	54250	11.00	43462	17.18		
240-65994-11	MRC-SW9B-061316	57973	11.01	44013	17.18		
240-65996-1	MRC-SWFB-061316	65480*	11.01	51756*	17.18		
240-65996-5	MRC-SWDUP2-061316	51793	11.01	42507	17.18		
CCV 680-438264/24		39470	11.01	29231	17.18		

PHN = Phenanthrene-d10 CRY = Chrysene-d12

Area Limit = 70%-130% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Column used to flag values outside QC limits

FORM VIII 680

GC/MS SEMI VOA ANALYSIS RUN LOG

Lab Name: TestAmerica Savannah	Job No.: 240-65994-1
SDG No.:	
Instrument ID: CMSX	Start Date: 04/24/2016 14:32
Analysis Batch Number: 430367	End Date: 04/24/2016 22:50

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
			FACTOR		
DFTPP 680-430367/2		04/24/2016 14:32	1	Xd2402.D	DB-5MS 0.25(mm)
WDM 680-430367/3		04/24/2016 15:03	1		DB-5MS 0.25(mm)
ICISAV 680-430367/4		04/24/2016 15:41	1	Xd2404.D	DB-5MS 0.25(mm)
IC 680-430367/25		04/24/2016 16:10	1	Xd2405.D	DB-5MS 0.25(mm)
IC 680-430367/26		04/24/2016 16:38	1	Xd2406.D	DB-5MS 0.25(mm)
IC 680-430367/27		04/24/2016 17:07	1	Xd2407.D	DB-5MS 0.25(mm)
IC 680-430367/28		04/24/2016 17:35	1	Xd2408.D	DB-5MS 0.25(mm)
ICV 680-430367/30		04/24/2016 18:04	1	Xd2409.D	DB-5MS 0.25(mm)
ZZZZZ		04/24/2016 19:01	1		DB-5MS 0.25(mm)
ZZZZZ		04/24/2016 19:30	1		DB-5MS 0.25(mm)
ZZZZZ		04/24/2016 19:58	1		DB-5MS 0.25(mm)
ZZZZZ		04/24/2016 20:27	1		DB-5MS 0.25(mm)
ZZZZZ		04/24/2016 20:55	1		DB-5MS 0.25(mm)
ZZZZZ		04/24/2016 21:24	1		DB-5MS 0.25(mm)
ZZZZZ		04/24/2016 21:53	1		DB-5MS 0.25(mm)
ZZZZZ		04/24/2016 22:21	1		DB-5MS 0.25(mm)
CCVC 680-430367/24		04/24/2016 22:50	1		DB-5MS 0.25 (mm)

GC/MS SEMI VOA ANALYSIS RUN LOG

Lab Name: TestAmerica Savannah	Job No.: 240-65994-1			
SDG No.:				
Instrument ID: CMSX	Start Date: 06/20/2016 08:48			
Analysis Batch Number: 438006	End Date: 06/20/2016 17:28			

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
DFTPP 680-438006/2		06/20/2016 08:48	1	Xf2002a.D	DB-5MS 0.25 (mm)
WDM 680-438006/3		06/20/2016 09:19	1	Xf2003.D	DB-5MS 0.25 (mm)
CCVIS 680-438006/4		06/20/2016 09:49	1	Xf2004.D	DB-5MS 0.25 (mm)
ZZZZZ		06/20/2016 10:18	1		DB-5MS 0.25 (mm)
ZZZZZ		06/20/2016 10:46	1		DB-5MS 0.25 (mm)
ZZZZZ		06/20/2016 12:41	1		DB-5MS 0.25 (mm)
ZZZZZ		06/20/2016 14:07	1		DB-5MS 0.25 (mm)
MB 680-437585/15-A		06/20/2016 14:35	1	Xf2014.D	DB-5MS 0.25 (mm)
LCS 680-437585/16-A		06/20/2016 15:04	1	Xf2015.D	DB-5MS 0.25 (mm)
240-65994-1 MS		06/20/2016 15:33	1	Xf2016.D	DB-5MS 0.25 (mm)
240-65994-1		06/20/2016 16:30	1	Xf2018.D	DB-5MS 0.25 (mm)
ZZZZZ		06/20/2016 16:59	1		DB-5MS 0.25 (mm)
CCV 680-438006/20		06/20/2016 17:28	1	Xf2020.D	DB-5MS 0.25 (mm)

GC/MS SEMI VOA ANALYSIS RUN LOG

Lab Name: TestAmerica Savannah	Job No.: <u>240-65994-1</u>
SDG No.:	
Instrument ID: CMSX	Start Date: 06/21/2016 20:10
Analysis Batch Number: 438264	End Date: 06/22/2016 06:45

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
DFTPP 680-438264/2		06/21/2016 20:10	1	Xf2102.D	DB-5MS 0.25 (mm)
WDM 680-438264/3		06/21/2016 20:41	1	Xf2103.D	DB-5MS 0.25(mm)
CCVIS 680-438264/4		06/21/2016 21:12	1	Xf2104.D	DB-5MS 0.25 (mm)
ZZZZZ		06/21/2016 21:40	1		DB-5MS 0.25 (mm)
ZZZZZ		06/21/2016 22:09	1		DB-5MS 0.25(mm)
ZZZZZ		06/21/2016 22:38	1		DB-5MS 0.25 (mm)
ZZZZZ		06/21/2016 23:35	1		DB-5MS 0.25 (mm)
240-65994-1 MSD		06/22/2016 00:04	1	Xf2110.D	DB-5MS 0.25 (mm)
240-65994-2		06/22/2016 01:01	1	Xf2112.D	DB-5MS 0.25 (mm)
240-65994-3		06/22/2016 01:30	1	Xf2113.D	DB-5MS 0.25 (mm)
240-65994-4		06/22/2016 01:59	1	Xf2114.D	DB-5MS 0.25 (mm)
240-65994-5		06/22/2016 02:27	1	Xf2115.D	DB-5MS 0.25 (mm)
240-65994-6		06/22/2016 02:56	1	Xf2116.D	DB-5MS 0.25 (mm)
240-65994-7		06/22/2016 03:25	1	Xf2117.D	DB-5MS 0.25 (mm)
240-65994-8		06/22/2016 03:54	1	Xf2118.D	DB-5MS 0.25 (mm)
240-65994-9		06/22/2016 04:22	1	Xf2119.D	DB-5MS 0.25 (mm)
240-65994-10		06/22/2016 04:51	1	Xf2120.D	DB-5MS 0.25(mm)
240-65994-11		06/22/2016 05:20	1	Xf2121.D	DB-5MS 0.25 (mm)
240-65996-1		06/22/2016 05:48	1	Xf2122.D	DB-5MS 0.25 (mm)
240-65996-5		06/22/2016 06:17	1	Xf2123.D	DB-5MS 0.25 (mm)
CCV 680-438264/24		06/22/2016 06:45	1	Xf2124.D	DB-5MS 0.25 (mm)

GC/MS SEMI VOA BATCH WORKSHEET

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Batch Number: 437585 Batch Start Date: 06/16/16 13:29 Batch Analyst: Simmons, Richard B

Batch Method: 680 Batch End Date: 06/17/16 07:29

Lab Sample ID	Client Sample ID	Method Chain	Basis	GrossWeight	TareWeight	InitialAmount	FinalAmount	ReceivedpH	ResidualChloChe ck
240-65994-E-1	MRC-SW5A1-061316	680, 680	Т			504.4 mL	.5 mL	8 SU	N
240-65994-D-2	MRC-SW5A2-061316	680, 680	Т			509.9 mL	.5 mL	8 SU	N
240-65994-E-3	MRC-SW5B-061316	680, 680	Т	1548.5 g	510.9 g	1037.6 mL	1 mL	8 SU	N
240-65994-E-4	MRC-SW6A-061316	680, 680	Т	1548.0 g	510.4 g	1037.6 mL	1 mL	8 SU	N
240-65994-E-5	MRC-SW6B-061316	680, 680	Т	1552.1 g	509.7 g	1042.4 mL	1 mL	8 SU	N
240-65994-D-6	MRC-SW7A-061316	680, 680	Т			501.9 mL	.5 mL	8 SU	N
240-65994-E-7	MRC-SW7B-061316	680, 680	Т	1522.7 g	509.8 g	1012.9 mL	1 mL	8 SU	N
240-65994-D-8	MRC-SW8A-061316	680, 680	Т	1551.0 g	511.6 g	1039.4 mL	1 mL	8 SU	N
240-65994-D-9	MRC-SW8B-061316	680, 680	Т	1518.1 g	509.8 g	1008.3 mL	1 mL	8 SU	N
240-65994-D-10	MRC-SW9A-061316	680, 680	Т	1550.6 g	511.0 g	1039.6 mL	1 mL	8 SU	N
240-65994-E-11	MRC-SW9B-061316	680, 680	Т	1549.1 g	510.8 g	1038.3 mL	1 mL	8 SU	N
240-65996-G-1	MRC-SWFB-061316	680, 680	Т	1523.7 g	512.4 g	1011.3 mL	1 mL	7 SU	N
240-65996-E-5	MRC-SWDUP2-06131	680, 680	Т	1547.6 g	512.0 g	1035.6 mL	1 mL	8 SU	N
MB 680-437585/15		680, 680				1000 mL	1 mL	7 SU	N
LCS 680-437585/16		680, 680				1000 mL	1 mL	7 SU	N
240-65994-D-1 MS	MRC-SW5A1-061316	680, 680	Т			501.4 mL	.5 mL	8 SU	N
240-65994-D-1 MSD	MRC-SW5A1-061316	680, 680	Т	1029.3 g	510.6 g	518.7 mL	.5 mL	8 SU	N

Lab Sample ID	Client Sample ID	Method Chain	Basis	680wkSPIKE	680wkSURR 00112	680wkSURR 00113		
				00096				
240-65994-E-1	MRC-SW5A1-061316	680, 680	Т		0.5 mL			
240-65994-D-2	MRC-SW5A2-061316	680, 680	Т		0.5 mL			
240-65994-E-3	MRC-SW5B-061316	680, 680	Т		1 mL			
240-65994-E-4	MRC-SW6A-061316	680, 680	Т		1 mL			
240-65994-E-5	MRC-SW6B-061316	680, 680	Т		1 mL			
240-65994-D-6	MRC-SW7A-061316	680, 680	Т		0.5 mL			
240-65994-E-7	MRC-SW7B-061316	680, 680	Т		1 mL			
240-65994-D-8	MRC-SW8A-061316	680, 680	Т		1 mL			

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

GC/MS SEMI VOA BATCH WORKSHEET

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Batch Number: 437585 Batch Start Date: 06/16/16 13:29 Batch Analyst: Simmons, Richard B

Batch Method: 680 Batch End Date: 06/17/16 07:29

Lab Sample ID	Client Sample ID	Method Chain	Basis		680wkSURR 00112	680wkSURR 00113		
				00096				
240-65994-D-9	MRC-SW8B-061316	680, 680	Т		1 mL			
240-65994-D-10	MRC-SW9A-061316	680, 680	Т		1 mL			
240-65994-E-11	MRC-SW9B-061316	680, 680	Т		1 mL			
240-65996-G-1	MRC-SWFB-061316	680, 680	Т		1 mL			
240-65996-E-5	MRC-SWDUP2-06131	680, 680	T		1 mL			
MB 680-437585/15		680, 680				1 mL		
LCS 680-437585/16		680, 680		1 mL		1 mL		
240-65994-D-1 MS	MRC-SW5A1-061316	680, 680	Т	0.5 mL		0.5 mL		
240-65994-D-1 MSD	MRC-SW5A1-061316	680, 680	Т	0.5 mL		0.5 mL		

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

GC/MS SEMI VOA BATCH WORKSHEET

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Batch Number: 437585 Batch Start Date: 06/16/16 13:29 Batch Analyst: Simmons, Richard B

Batch Method: 680 Batch End Date: 06/17/16 07:29

	Batch Notes
Balance ID	23
Batch Comment	680 box M680-71
Concentration End Time	1059
Concentration Start Time	1012
Analyst ID - Concentration	CLP
Exchange Solvent ID	4526383
Exchange Solvent Name	Hexanes
Exchange Solvent Volume Used	10 mL
Extraction 1 End Time	0729
Extraction 1 Start Time	1329
pH Paper ID	4505419 4452485 4481609
Pipette ID	AA06G
Prep Solvent ID	4585720
Prep Solvent Name	MeCL2
Prep Solvent Volume Used	70 mL
Person's name who did the prep	RBS/CEW
Analyst ID - Reagent Drop Witness	CEW/RBS
Residual Chlorine Indicator ID	4577997
Analyst ID - Spike Analyst	RBS
Analyst ID - Spike Witness Analyst	CEW
Sufficient volume for MS/MSD?	Yes
Syringe ID	33814752
Vial ID	74552

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

SAMPLE IDENTIFICATION	MRC-SW6B-061316
COMPOUND	TRICHLOROETHENE
COMPOUND AREA	13232
INTERNAL STANDARD AMOUNT (ng)	10
DILUTION FACTOR	1
INTERNAL STANDARD AREA	968710
AVERAGE RRF	0.2761
13232 x 10 x 1 / 968710 x 0.2761	0.49 ug/L

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

 SDG No.:
 Client Sample ID: MRC-SW6B-061316
 Lab Sample ID: 240-65994-5

 Matrix: Water
 Lab File ID: UXJ5614.D

 Analysis Method: 8260C
 Date Collected: 06/13/2016 12:52

 Sample wt/vol: 5 (mL)
 Date Analyzed: 06/20/2016 14:43

Soil Aliquot Vol: _____ Dilution Factor: 1_____

Lab Name: TestAmerica Canton Job No.: 240-65994-1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u>

% Moisture: _____ Level: (low/med) <u>Low</u>

Analysis Batch No.: 235154 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	0.49	J	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	110		80-120
1868-53-7	Dibromofluoromethane (Surr)	113		79-120
460-00-4	4-Bromofluorobenzene (Surr)	104		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	115		78-125

Report Date: 21-Jun-2016 10:08:50 Chrom Revision: 2.2 20-Apr-2016 13:59:46

TestAmerica Canton
Target Compound Quantitation Report

Data File: \ChromNA\Canton\ChromData\A3UX11\20160620-55569.b\UXJ5614.D

Lims ID: 240-65994-B-5 Client ID: MRC-SW6B-061316

Sample Type: Client

Inject. Date: 20-Jun-2016 14:43:30 ALS Bottle#: 14 Worklist Smp#: 42

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 240-0055569-042

Misc. Info.: J60620A,8260LLUX11,,43582

Operator ID: 43582 Instrument ID: A3UX11

Method: \\ChromNA\Canton\ChromData\A3UX11\20160620-55569.b\8260_11.m

Limit Group: MSV 8260C ICAL

Last Update:21-Jun-2016 10:07:57Calib Date:28-May-2016 13:41:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Canton\ChromData\A3UX11\20160528-54939.b\UXJ4951.D

Column 1 : DB-624 (0.18 mm) Det: MS SCAN

Process Host: XAWRK033

First Level Reviewer: evansle Date: 21-Jun-2016 09:55:14

First Level Reviewer: evansle			Da	ate:		21-Jun-2016 09:55:14			
		RT	Exp RT	Dlt RT			OnCol Amt		
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	Flags	
* 1 Elyarahan zana	07	Г 11Г	Г 11Г	0.000	00 (0/0710	10.0		
* 1 Fluorobenzene	96	5.115	5.115	0.000	99 <		10.0		
* 2 Chlorobenzene-d5	117	7.777	7.777	0.000	85	656984	10.0		
* 3 1,4-Dichlorobenzene-d4	152	10.026	10.026	0.000	94	237604	10.0		
\$ 4 Dibromofluoromethane (Surr	113	4.547	4.547	0.000	97	290819	13.5		
\$ 51,2-Dichloroethane-d4 (Sur	65	4.831	4.831	0.000	98	333773	13.8		
\$ 6 Toluene-d8 (Surr)	98	6.476	6.476	0.000	92	1224701	13.1		
\$ 7 4-Bromofluorobenzene (Surr	95	8.890	8.890	0.000	92	349842	12.4		
9 Dichlorodifluoromethane	85		1.506				ND		
10 Chloromethane	50		1.636				ND		
12 Vinyl chloride	62		1.731				ND		
15 Bromomethane	94		2.015				ND		
16 Chloroethane	64		2.110				ND		
18 Trichlorofluoromethane	101		2.311				ND		
21 1,1-Dichloroethene	96		2.737				ND		
22 1,1,2-Trichloro-1,2,2-trif	151		2.749				ND		
23 Acetone	43		2.760				ND		
26 Carbon disulfide	76		2.938				ND		
29 Methyl acetate	43		3.033				ND		
30 Methylene Chloride	84		3.115				ND		
33 Methyl tert-butyl ether	73		3.340				ND		
34 trans-1,2-Dichloroethene	96		3.352				ND		
36 1,1-Dichloroethane	63		3.683				ND		
41 cis-1,2-Dichloroethene	96		4.157				ND		
42 2-Butanone (MEK)	43		4.157				ND		
49 Chloroform	83		4.417				ND		
50 1,1,1-Trichloroethane	97		4.583				ND		
51 Cyclohexane	56		4.642				ND		
53 Carbon tetrachloride	117		4.725				ND		
55 Benzene	78		4.890				ND		
56 1,2-Dichloroethane	62		4.890				ND		
60 Trichloroethene	130	5.423	5.423	0.000	96	13232	0.4948		

FORM VI GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Canton Job No.: 240-65994-1 Analy Batch No.: 232366

SDG No.:

Instrument ID: $\underline{\text{A3UX11}}$ GC Column: $\underline{\text{DB-624}}$ ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 05/28/2016 09:12 Calibration End Date: 05/28/2016 11:03 Calibration ID: 34632

ANALYTE			RRF			CURVE		COEFFICI	CIENT		MIN RRF	%RSD		R^2	# MIN R^2
	LVL 1	LVL 1 LVL 2 LVL 3 LVL 4 I		LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR COD	
	LVL 6														
Isobutyl alcohol	0.0062	0.0059	0.0063	0.0071	0.0058	Ave		0.0060				14.3	20.0		
	0.0045														
1,2-Dichloroethane	0.2981	0.2707	0.2764	0.2862	0.2852	Ave		0.2815			0.1000	3.7	20.0		
	0.2726														
Benzene	1.0915	1.0274	1.0168	1.0745	1.0726	Ave		1.0572			0.5000	2.8	20.0		
	1.0604	0.0637	0.0501	0.0519	0.0539			0.0587				1 7 0	0.0.0		
n-Heptane	0.0767 0.0562	0.0637	0.0501	0.0519	0.0539	Ave		0.0587				17.0	20.0		
Trichloroethene	0.2904	0.2627	0 2610	0.2746	0.2860	70		0.2761	$\overline{}$		0.1500	4.3	20.0		
Trichioroethene	0.2807	0.2027	0.2019	0.2/40	0.2000	Ave		0.2701			0.1300	4.3	20.0		
Methylcyclohexane	0.3899	0.3438	0 3048	0.3065	0.3225	Ave		0.3306			0.1000	9.8	20.0		
The engley elone name	0.3159	0.0100	0.3010	0.3003	0.3223	1100		0.3300			0.1000	3.0	20.0		
1,2-Dichloropropane	0.2636	0.2477	0.2418	0.2504	0.2626	Ave		0.2533			0.1000	3.4	20.0		
,	0.2540														
Dibromomethane	0.1260	0.1267	0.1228	0.1240	0.1303	Ave		0.1259				2.0	20.0		
	0.1258														
1,4-Dioxane	0.0010	0.0013	0.0014	0.0016	0.0017	Lin1	-0.017	0.0017						0.9990	0.9900
	+++++														
Dichlorobromomethane	0.2938	0.2907	0.2723	0.2880	0.3112	Ave		0.2929			0.1500	4.5	20.0		
	0.3017														
2-Chloroethyl vinyl ether	0.1384	0.1484	0.1416	0.1458	0.1535	Ave		0.1454				3.6	20.0		
	0.1445	0.000	0 0000	0 1005		_		0.000			0.4500				
cis-1,3-Dichloropropene	0.3776	0.3788	0.3775	0.4025	0.4308	Ave		0.3977			0.1500	5.9	20.0		
A Mathail O mantanana (MTDIA)	0.4191	0.1670	0 1624	0.1645	0.1729	7		0.1675			0.0500	4.5	20.0		
4-Methyl-2-pentanone (MIBK)	0.1794	0.1070	0.1034	0.1643	0.1729	Ave		0.10/3			0.0300	4.5	20.0		
Toluene	1.6592	1.5809	1 5586	1.6505	1.6591	Δττο		1.6133			0.4000	3.0	20.0		
TOTACHE	1.5713	1.5005	1.3300	1.0505	1.0001	2100		1.0133			0.1000	3.0	20.0		
trans-1,3-Dichloropropene	0.4368	0.4583	0.4669	0.5112	0.5324	Ave		0.4831			0.1000	7.4	20.0		
, , , , , , , , , , , , , , , , , , , ,	0.4929											-			
Ethyl methacrylate	0.4247	0.4124	0.4087	0.4397	0.4428	Ave		0.4217				4.0	20.0		
	0.4021														
1,1,2-Trichloroethane	0.2779	0.2893	0.2905	0.2951	0.3013	Ave		0.2874			0.1000	4.0	20.0		
	0.2701														
Tetrachloroethene	0.3260	0.2891	0.2964	0.3117	0.3178	Ave		0.3065			0.1500	4.6	20.0		
	0.2981														
1,3-Dichloropropane	0.5178	0.5274	0.5141	0.5435	0.5440	Ave		0.5237				3.6	20.0		
	0.4955	0 1000	0.4565	0.406=	0.403=			0.4500			0.0500		0.0.2		
2-Hexanone	0.1845	0.1883	0.1732	0.1827	0.1815	Ave		0.1780			0.0500	6.2	20.0		
	0.1578					1									

Note: The ml coefficient is the same as Ave RRF for an Ave curve type.

SAMPLE IDENTIFICATION	MRC-SW1A-061316
COMPOUND	1,4-dioxane
COMPOUND AREA	2630
INTERNAL STANDARD AMOUNT (ng)	0.5
DILUTION FACTOR	1
INTERNAL STANDARD AREA	340502
AVERAGE RRF	0.5991
2630 x 0.5 x 1 / 340502 x 0.5991	0.0064 ng
SAMPLE VOLUME (ml)	100
VOLUME EXTRACT (ml)	2
VOLUME INJECTED (μl)	1
conversion	1000

0.13 ug/L

0.00644624438424636 x 2 / (100 x 1) x 1000

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW1A-061316 Lab Sample ID: 240-65996-2

Matrix: Water Lab File ID: 20593_16.D

Analysis Method: 522 MOD Date Collected: 06/13/2016 11:51

Extract. Method: 3535A Date Extracted: 06/22/2016 18:02

Sample wt/vol: 100(mL) Date Analyzed: 06/24/2016 23:45

Con. Extract Vol.: 2000(uL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 106221 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	0.13	J	0.20	0.057

CAS NO.	SURROGATE	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8 (Surr)	92		70-130

Report Date: 27-Jun-2016 14:09:08 Chrom Revision: 2.2 04-Mar-2016 14:36:24

TestAmerica Burlington
Target Compound Quantitation Report

Data File: \\ChromNA\Burlington\ChromData\CHS.i\20160624-20593.b\20593_16.D \\Lims ID: 240-65996-D-2-A \\Lab Sample ID: 200-65996-2

Client ID: MRC-SW1A-061316

Sample Type: Client

Inject. Date: 24-Jun-2016 23:45:30 ALS Bottle#: 16 Worklist Smp#: 16

Injection Vol: 2.0 uL Dil. Factor: 1.0000

Sample Info: 200-0020593-016

Operator ID: jpd Instrument ID: CHS.i

Method: \ChromNA\Burlington\ChromData\CHS.i\20160624-20593.b\522_MOD_2016.m

Limit Group: SV_522_Limits

Last Update: 27-Jun-2016 14:09:04 Calib Date: 01-Jun-2016 14:13:30

Integrator:RTEID Type:RT Order IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Burlington\ChromData\CHS.i\20160601-20247.b\20247_08.D

Column 1: Rxi-5ms (0.25 mm) Det: MS SCAN

Process Host: XAWRK027

First Level Reviewer: maheseep Date: 27-Jun-2016 08:40:31

Compound	Sig	RT (min.)	Exp RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt ng/ul	Flags
* 1 Tetrahydrofuran-d8 \$ 2 1,4-Dioxane-d8 (Surr)	46 64	3.103 4.044	3.112 4.048	-0.009 -0.004	87 100	340502 35169	0.5000	
3 1,4-Dioxane	58	4.088	4.088	0.000	100	2630	0.006446	М

\$ 4 BFB

QC Flag Legend

Review Flags

M - Manually Integrated

Reagents:

SV522ISi_00029 Amount Added: 4.00 Units: uL Run Reagent

FORM VI

GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

 Lab Name: TestAmerica Burlington
 Job No.: 240-65994-1
 Analy Batch No.: 105200

 SDG No.:
 Instrument ID: CHS.i
 GC Column: Rxi-5ms ID: 0.25 (mm)
 Heated Purge: (Y/N) N

 Calibration Start Date: 06/01/2016 12:52
 Calibration End Date: 06/01/2016 14:13
 Calibration ID: 34839

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 200-105200/8	20247 08.D
Level 2	IC 200-105200/7	20247 07.D
Level 3	IC 200-105200/6	20247 06.D
Level 4	ICIS 200-105200/5	20247 05.D
Level 5	IC 200-105200/4	20247 04.D
Level 6	IC 200-105200/3	20247 03.D
Level 7	IC 200-105200/2	20247 02.D

ANALYTE	RRF			CURVE COEFFICIENT			#	MIN RRF	%RSD	#	MAX			N R^2			
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2					%RSD	OR COD	OF	R COD
	LVL 6	LVL 7															
1,4-Dioxane	0.5850	0.6144	0.5567	0.5785	0.5757	Ave		0.5991			0.0500	5.7		15.0		0	.9900
	0.6358	0.6477															
1,4-Dioxane-d8 (Surr)	0.5502	0.5478	0.5635	0.5442	0.5514	Ave		0.5601				3.1		15.0		0	.9900
	0.5927	0.5710															

Page 238 of 320

Note: The m1 coefficient is the same as Ave RRF for an Ave curve type.

SAMPLE IDENTIFICATION

MRC-SW6B-061316

COMPOUND	Pentachlorobiphenyl
COMPOUND AREA	591
INTERNAL STANDARD AMOUNT (ng)	0.75
DILUTION FACTOR	1
INTERNAL STANDARD AREA	70730
AVERAGE RRF	0.1668
591 x 0.75 x 1 / 70730 x 0.1668	0.0376 ng/ml
SAMPLE VOLUME (ml)	1042.4
VOLUME EXTRACT (ml)	1
VOLUME INJECTED (μΙ)	1
conversion	1000
0.037570678647242 x 1 / (1042.4 x 1) x 1000	0.036 ug/L

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW6B-061316 Lab Sample ID: 240-65994-5

Matrix: Water Lab File ID: Xf2115.D

Analysis Method: 680 Date Collected: 06/13/2016 12:52

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 1042.4 (mL) Date Analyzed: 06/22/2016 02:27

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 438264 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.29	U *	0.29	0.029
26601-64-9	Hexachlorobiphenyl	0.19	U *	0.19	0.014
53742-07-7	Nonachlorobiphenyl	0.48	U *	0.48	0.047
55722-26-4	Octachlorobiphenyl	0.29	Π *	0.29	0.036
27323-18-8	Monochlorobiphenyl	0.096	Π *	0.096	0.0054
2051-24-3	DCB Decachlorobiphenyl	0.48	Π *	0.48	0.067
25512-42-9	Dichlorobiphenyl	0.096	Π *	0.096	0.0052
25429-29-2	Pentachlorobiphenyl	0.036	J *	0.19	0.013
26914-33-0	Tetrachlorobiphenyl	0.19	U *	0.19	0.012
25323-68-6	Trichlorobiphenyl	0.096	Π *	0.096	0.0062

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	71	*	25-113

Report Date: 24-Jun-2016 10:24:24 Chrom Revision: 2.2 20-Apr-2016 13:59:46

TestAmerica Savannah
Target Compound Quantitation Report

Data File: \\ChromNA\Savannah\ChromData\CMSX\20160621-30741.b\Xf2115.D

Lims ID: 240-65994-E-5-A Client ID: MRC-SW6B-061316

Sample Type: Client

Inject. Date: 22-Jun-2016 02:27:30 ALS Bottle#: 14 Worklist Smp#: 15

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 240-65994-E-5-A Misc. Info.: 680-0030741-015

Operator ID: Instrument ID: CMSX

Method: \ChromNA\Savannah\ChromData\CMSX\20160621-30741.b\680_CMSX.m

Limit Group: 680

Last Update: 24-Jun-2016 10:24:07 Calib Date: 24-Apr-2016 17:35:30

Integrator:RTEID Type:RT Order IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Savannah\ChromData\CMSX\20160424-29094.b\Xd2408.D

Column 1: Det: MS SCAN

Process Host: XAWRK013

First Level Reviewer: davisn Date: 22-Jun-2016 11:05:26

Compound	Sig	RT	EXP RT	DLT RT	Q	Response	On-Col Amt ug/ml	Flags
* 5 Phenanthrene-d10	188	11.010	11.010	0.0	98	70730	0.7500	 S
A 27 Total Pentachlorobiphenyls	326	14.771	12.923 -	-16.619	0	591	0.0376	
* 15 Chrysene-d12	240	17.177	17.177	0.0	100	55487	0.7500	5
\$ 22 Decachlorobiphenyl-13C12	510	20.334	20.334	0.0	42	5217	1.77	

QC Flag Legend

Processing Flags

s - Failed ISTD Recovery Test

Reagents:

SM-680istd_00036 Amount Added: 30.00 Units: uL Run Reagent

Report Date: 24-Jun-2016 10:24:24 Chrom Revision: 2.2 20-Apr-2016 13:59:46

Data File:

WorkSheet Quantitation Report

Sig	RT	Lower RT	Upper RT	Q	Response	On-Col Amt ug/ml	Ratio Range	Ratio	Flags
* 5 P 188 189		rene-d10 11.010 11.010	0.0	98	70730 10911	0.7500	5.9- 7.5	6.5	S
A 27 326 324 254	Total Per 12.949 12.931 12.966	ntachlord 12.923 -		ls 29	591 394 1343	0.0376	1.4- 1.8 41.9- 121.9	1.5 0.3	
* 15 (240 241		e-d12 17.177 17.177	0.0	100	55487 11035	0.7500	4.3- 5.9	5.0	S
\$ 22 I 510 512		orobipher 20.334 20.355	0.0	2 42	5217 4359	1.77	0.9- 1.3	1.2	

OC Flag Legend Processing Flags

s - Failed ISTD Recovery Test

Reagents:

SM-680istd_00036 Amount Added: 30.00 Units: uL Run Reagent

FORM VI

GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Savannah Job No.: 240-65994-1 Analy Batch No.: 430367

SDG No.:

Instrument ID: CMSX GC Column: DB-5MS ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/24/2016 15:41 Calibration End Date: 04/24/2016 17:35 Calibration ID: 45292

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 680-430367/28	Xd2408.D
Level 2	IC 680-430367/27	Xd2407.D
Level 3	ICISAV 680-430367/4	Xd2404.D
Level 4	IC 680-430367/26	Xd2406.D
Level 5	IC 680-430367/25	Xd2405.D

ANALYTE			RRF			CURVE		COEFFICIE	IT #	MIN RRF	%RSD	#	MAX	R^2	#	MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD		OR COD
Monochlorobiphenyl	0.9409	0.9877	0.9866	1.0018	1.0386	Ave		0.9911			3.5		20.0			
Dichlorobiphenyl	0.6430	0.6782	0.6962	0.6962	0.7337	Ave		0.6895			4.8		20.0			
Trichlorobiphenyl	0.4097	0.4114	0.4253	0.4324	0.4604	Ave		0.4278			4.8		20.0			
PCB-104			0.2443			Ave		0.2443					30.0			
Tetrachlorobiphenyl	0.2470	0.2621	0.2562	0.2680	0.2810	Ave		0.2629			4.9		20.0			
Pentachlorobiphenyl	0.1465	0.1582	0.1680	0.1763	0.1852	Ave		0.1668			9.1		20.0			
PCB-77			0.3640			Ave		0.3640					30.0			
Hexachlorobiphenyl	0.1338	0.1411	0.1498	0.1546	0.1625	Ave		0.1484			7.6		20.0			
Heptachlorobiphenyl	0.1015	0.1109	0.1179	0.1228	0.1323	Ave		0.1171			10.0		20.0			
Octachlorobiphenyl	0.0938	0.1067	0.1105	0.1195	0.1284	Ave		0.1118			11.7		20.0			
PCB-208			0.0500			Ave		0.0500					30.0			
Nonachlorobiphenyl			0.0409			Ave		0.0380			14.1		20.0			
DCB Decachlorobiphenyl	0.0297	0.0366	0.0390	0.0413	0.0437	Ave		0.0380			14.1		20.0			
Decachlorobiphenyl-13C12	0.0248	0.0311	0.0307	0.0339	0.0354	Ave		0.0312			13.1		20.0			

Note: The ml coefficient is the same as Ave RRF for an Ave curve type.

MRC SW WATER DATA 240-65994-1

				_		
FRACTION	CHEMICAL	MRC-SW6A-061316	UNITS	MRC-SWDUP2-061316	RPD	D
OV	TRICHLOROETHENE	0.26 J	UG/L	0.25 J	3.92	0.01

Current RPD Quality Control Limit: 30 %.
Shaded cells indicate RPDs that exceed the applicable quality control limit.

Friday, July 29, 2016 Page 1 of 1

INTERNAL CORRESPONDENCE

TO: T. APANAVAGE DATE: NOVEMBER 14, 2016

FROM: L. GANSER COPIES: DV FILE

SUBJECT: DATA VALIDATION - VOC

LOCKHEED MARTIN CORPORATION (LMC) - MIDDLE RIVER COMPLEX (MRC)

SDG 240-70040-1

SAMPLES: 15/Aqueous/

MRC-SW1A-092716 MRC-SW2A-092716 MRC-SW5A1-092716 MRC-SW5B-092716 MRC-SW6A-092716 MRC-SW6B-092716 MRC-SW7A-092716 MRC-SW7B-092716 MRC-SW8A-092716 MRC-SW8B-092716 MRC-SW9A-092716

MRC-SW9B-092716 MRC-SWDUP-092716 TB-092716

Overview

The sample set for LMC-MRC, SDG 240-70040-1 consisted of fourteen (14) aqueous environmental samples and one (1) trip blank. The samples were analyzed for volatile organic compounds (VOC). One field duplicate sample pair was included in this SDG: MRC-SWDUP-092716 / MRC-SW5B-092716.

The samples were collected by Tetra Tech, Inc. on September 27, 2016 and analyzed by TestAmerica, Inc. All analyses were conducted in accordance with SW-846 Method 8260C for VOC analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters: data completeness, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method/preparation blanks, surrogate spike recoveries, laboratory control sample results, internal standard areas and recoveries, chromatographic resolution, field duplicate precision, analyte identification, analyte quantitation, and detection limits. Areas of concern are listed below.

Major

No major issues were noted.

Minor

- Continuing calibration percent difference (%D) greater than 20 percent was noted for dichlorodifluoromethane, bromomethane, chloroethane, trichlorofluoromethane, 1,1,2-trichlorotrifluoroethane, acetone, 2,2-dichloropropane, 2-butanone, 1,1,1-trichloroethane, carbon tetrachloride, 1,1,1,2-tetrachloroethane, and naphthalene on 10/08/2016 at 10:30 on instrument A3UX15 affecting all samples. Detected and nondetected results for these parameters were qualified as estimated, (J) and (UJ), respectively.
- Detected results reported below the Reporting Limit (RL) limit but above the Method Detection Limit (MDL) were qualified as estimated, (J).

Notes

VOC laboratory control sample (LCS) percent recoveries were greater than QC limits for 2,2-dichloropropane and trichlorofluoromethane affecting all samples. No action was necessary as all results for 2,2-dichloropropane and trichlorofluoromethane were nondetect.

TO: T. APANAVAGE PAGE 2 SDG: 240-70040-1

Nondetected results were reported at the MDL.

Executive Summary

Laboratory Performance: Calibration exceedances of %D criterion were noted for select VOCs. LCS noncompliances were noted for select VOCs.

Other Factors Affecting Data Quality: None.

The data for these analyses were reviewed with reference to "National Functional Guidelines for Organic Review" (September 2016). The text of this report has been formulated to address only those areas affecting data quality.

Tetra Tech, Inc. Leanne Ganser

Environmental Scientist/Data Validator

canne M. Da

Tetra Tech, Inc. Joseph A. Samchuck Data Validation Manager

Attachments:

Appendix A – Qualified Analytical Results

Appendix B – Results as Reported by the Laboratory

Appendix C – Support Documentation

Appendix A

Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = ICP PDS Recovery Noncompliance; MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 standard deviations is greater than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

Z2 = Tentatively Identified Compound column bleed

Z3 = Tentatively Identified Compound aldol condensate

Z4 = Sample activity is less than the at uncertainty at 3 standard deviations and greater than the MDC

Z5 = Sample activity is less than the at uncertainty at 3 standard deviations and less than the MDC

PROJ_NO: 07776	NSAMPLE	MRC-SW1A-09	92716		MRC-SW2A-0	92716		MRC-SW5A1-	092716		MRC-SW5A2-	092716		
SDG: 240-70040-1	LAB_ID	240-70040-1			240-70040-2			240-70040-3			240-70040-4			
FRACTION: OV	SAMP_DATE	9/27/2016			9/27/2016			9/27/2016			9/27/2016			
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM			
	UNITS	UG/L			UG/L			UG/L			UG/L			
	PCT_SOLIDS	0.0			0.0			0.0			0.0			
	DUP_OF													
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
1,1,1,2-TETRACHLOROE	ΓHANE	0.28	UJ	С	0.28	UJ	С	0.28	UJ	С	0.28	UJ	С	
1,1,1-TRICHLOROETHAN	E	0.44	UJ	С	0.44	UJ	С	0.44	UJ	С	0.44	UJ	С	
1,1,2,2-TETRACHLOROE	ΓHANE	0.22	U		0.22	U		0.22	U		0.22	U		
1,1,2-TRICHLOROTRIFLU	OROETHANE	0.45	UJ	С	0.45	UJ	С	0.45	UJ	С	0.45	UJ	С	
1,1-DICHLOROETHANE		0.3	U		0.3	U		0.3	U		0.3	U		
1,1-DICHLOROETHENE		0.45	U		0.45	U		0.45	U		0.45	U		
1,1-DICHLOROPROPENE		0.42	U		0.42	U		0.42	U		0.42	U		
1,2,3-TRICHLOROBENZE	NE	0.37	U		0.37	U		0.37	U		0.37	U		
1,2,3-TRICHLOROPROPA	NE	0.44	U		0.44	U		0.44	U		0.44	U		
1,2,3-TRIMETHYLBENZEN	NE	0.47	U		0.47	U		0.47	U		0.47	U		
1,2,4-TRICHLOROBENZE	NE	0.32	U		0.32	U		0.32	U		0.32	U		
1,2,4-TRIMETHYLBENZEN	NE	0.41	U		0.41	U		0.41	U		0.41	U		
1,2-DIBROMO-3-CHLORO	PROPANE	0.82	U		0.82	U		0.82	U		0.82	U		
1,2-DIBROMOETHANE		0.32	U		0.32	U		0.32	U		0.32	U		
1,2-DICHLOROBENZENE		0.25	U		0.25	U		0.25	U		0.25	U		
1,2-DICHLOROETHANE		0.23	U		0.23	U		0.23	U		0.23	U		
1,2-DICHLOROPROPANE		0.25	U		0.25	U		0.25	U		0.25	U		
1,3-DICHLOROBENZENE		0.19	U		0.19	U		0.19	U		0.19	U		
1,3-DICHLOROPROPANE		0.19	U		0.19	U		0.19	U		0.19	U		
1,4-DICHLOROBENZENE		0.27	U		0.27	U		0.27	U		0.27	U		
2,2-DICHLOROPROPANE		0.26	UJ	С	0.26	UJ	С	0.26	UJ	С	0.26	UJ	С	
2-BUTANONE		5.1	J	CP	0.92	J	СР	0.53	UJ	С	0.53	UJ	С	
2-CHLOROETHYL VINYL	ETHER	0.59	U		0.59	U		0.59	U		0.59	U		
2-CHLOROTOLUENE		0.4	U		0.4	U		0.4	U		0.4	U		
2-HEXANONE		0.55	J	Р	0.48	U		0.48	U		0.48	U		
4-CHLOROTOLUENE		0.29	U		0.29	U		0.29	U		0.29	U		
4-ISOPROPYLTOLUENE		0.43	U		0.43	U		0.43	U		0.43	U		
4-METHYL-2-PENTANON	E	0.99	U		0.99	U		0.99	U		0.99	U		
ACETONE		7.7	J	СР	0.94	UJ	С	0.94	UJ	С	0.94	UJ	С	
BENZENE		0.35	U		0.35	U		0.35	U		0.35	U		
BROMOBENZENE		0.35	U		0.35	U		0.35	U		0.35	U		
BROMOCHLOROMETHAN	NE	0.5	U		0.5	U		0.5	U		0.5	U		
BROMODICHLOROMETH	ANE	0.29	U		0.29	U		0.29	U		0.29	U		
BROMOFORM		0.56	U		0.56	U		0.56	U		0.56	U		
BROMOMETHANE		0.44	UJ	С	0.44	UJ	С	0.44	UJ	С	0.44	UJ	С	

PROJ_NO: 07776	NSAMPLE	MRC-SW5B-09	92716		MRC-SW6A-0	92716		MRC-SW6B-09	92716		MRC-SW7A-0	92716	
SDG: 240-70040-1	LAB_ID	240-70040-5			240-70040-6			240-70040-7			240-70040-8		
FRACTION: OV	SAMP_DATE	9/27/2016			9/27/2016			9/27/2016			9/27/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0		0.0			0.0			
	DUP_OF												
PARAMETER	-1	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1,2-TETRACHLOROE	THANE	0.28	UJ	С	0.28	UJ	С	0.28	UJ	С	0.28	UJ	С
1,1,1-TRICHLOROETHAN	IE	0.44	UJ	С	0.44	UJ	С	0.44	UJ	С	0.44	UJ	С
1,1,2,2-TETRACHLOROE	THANE	0.22	U		0.22	U		0.22	U		0.22	U	
1,1,2-TRICHLOROTRIFLU	JOROETHANE	0.45	UJ	С	0.45	UJ	С	0.45	UJ	С	0.45	UJ	С
1,1-DICHLOROETHANE		0.3	U		0.3	U		0.3	U		0.3	U	
1,1-DICHLOROETHENE		0.45	U		0.45	U		0.45	U		0.45	U	
1,1-DICHLOROPROPENE		0.42	U		0.42	U		0.42	U		0.42	U	
1,2,3-TRICHLOROBENZE	NE	0.37	U		0.37	U		0.37	U		0.37	U	
1,2,3-TRICHLOROPROPA	ANE	0.44	U		0.44	U		0.44	U		0.44	U	
1,2,3-TRIMETHYLBENZE	NE	0.47	U		0.47	U		0.47	U		0.47	U	
1,2,4-TRICHLOROBENZE	NE	0.32	U		0.32	U		0.32	U		0.32	U	
1,2,4-TRIMETHYLBENZE	NE	0.41	U		0.41	U		0.41	U		0.41	U	
1,2-DIBROMO-3-CHLORO	PROPANE	0.82	U		0.82	U		0.82	U		0.82	U	
1,2-DIBROMOETHANE		0.32	U		0.32	U		0.32	U		0.32	U	
1,2-DICHLOROBENZENE		0.25	U		0.25	U		0.25	U		0.25	U	
1,2-DICHLOROETHANE		0.23	U		0.23	U		0.23	U		0.23	U	
1,2-DICHLOROPROPANE		0.25	U		0.25	U		0.25	U		0.25	U	
1,3-DICHLOROBENZENE		0.19	U		0.19	U		0.19	U		0.19	U	
1,3-DICHLOROPROPANE		0.19	U		0.19	U		0.19	U		0.19	U	
1,4-DICHLOROBENZENE		0.27	U		0.27	U		0.27	U		0.27	U	
2,2-DICHLOROPROPANE		0.26	UJ	С	0.26	UJ	С	0.26	UJ	С	0.26	UJ	С
2-BUTANONE		0.53	UJ	С	0.53	UJ	С	0.53	UJ	С	0.53	UJ	С
2-CHLOROETHYL VINYL	ETHER	0.59	U		0.59	U		0.59	U		0.59	U	
2-CHLOROTOLUENE		0.4	U		0.4	U		0.4	U		0.4	U	
2-HEXANONE		0.48	U		0.48	U		0.48	U		0.48	U	
4-CHLOROTOLUENE		0.29	U		0.29	U		0.29	U		0.29	U	
4-ISOPROPYLTOLUENE		0.43	U		0.43	U		0.43	U		0.43	U	
4-METHYL-2-PENTANON	E	0.99	U		0.99	U		0.99	U		0.99	U	
ACETONE		0.94	UJ	С	0.94	UJ	С	0.94	UJ	С	0.94	UJ	С
BENZENE		0.35	U		0.35	U		0.35	U		0.35	U	
BROMOBENZENE		0.35	U		0.35	U		0.35	U		0.35	U	
BROMOCHLOROMETHA	NE	0.5	U		0.5	U		0.5	U		0.5	U	
BROMODICHLOROMETH	IANE	0.29	U		0.29	U		0.29	U		0.29	U	
BROMOFORM		0.56	U		0.56	U		0.56	U		0.56	U	
BROMOMETHANE	<u> </u>	0.44	UJ	С	0.44	UJ	С	0.44	UJ	С	0.44	UJ	С

PROJ_NO: 07776	NSAMPLE	MRC-SW7B-0	92716		MRC-SW8A-0	92716		MRC-SW8B-0	92716		MRC-SW9A-0	92716	
SDG: 240-70040-1	LAB_ID	240-70040-9			240-70040-10			240-70040-11			240-70040-12		
FRACTION: OV	SAMP_DATE	9/27/2016			9/27/2016			9/27/2016			9/27/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1,2-TETRACHLOROE	THANE	0.28	UJ	С	0.28	UJ	С	0.28	UJ	С	0.28	UJ	С
1,1,1-TRICHLOROETHAN	E	0.44	UJ	С	0.44	UJ	С	0.44	UJ	С	0.44	UJ	С
1,1,2,2-TETRACHLOROE	THANE	0.22	U		0.22	U		0.22	U		0.22	U	
1,1,2-TRICHLOROTRIFLU	IOROETHANE	0.45	UJ	С	0.45	UJ	С	0.45	UJ	С	0.45	UJ	С
1,1-DICHLOROETHANE		0.3	U		0.3	U		0.3	U		0.3	U	
1,1-DICHLOROETHENE		0.45	U		0.45	U		0.45	U		0.45	U	
1,1-DICHLOROPROPENE		0.42	U		0.42	U		0.42	U		0.42	U	
1,2,3-TRICHLOROBENZE	NE	0.37	U		0.37	U		0.37	U		0.37	U	
1,2,3-TRICHLOROPROPA	NE	0.44	U		0.44	U		0.44	U		0.44	U	
1,2,3-TRIMETHYLBENZEN	NE	0.47	U		0.47	U		0.47	U		0.47	U	
1,2,4-TRICHLOROBENZE	NE	0.32	U		0.32	U		0.32	U		0.32	U	
1,2,4-TRIMETHYLBENZEN	NE	0.41	U		0.41	U		0.41	U		0.41	U	
1,2-DIBROMO-3-CHLORO	PROPANE	0.82	U		0.82	U		0.82	U		0.82	U	
1,2-DIBROMOETHANE		0.32	U		0.32	U		0.32	U		0.32	U	
1,2-DICHLOROBENZENE		0.25	U		0.25	U		0.25	U		0.25	U	
1,2-DICHLOROETHANE		0.23	U		0.23	U		0.23	U		0.23	U	
1,2-DICHLOROPROPANE		0.25	U		0.25	U		0.25	U		0.25	U	
1,3-DICHLOROBENZENE		0.19	U		0.19	U		0.19	U		0.19	U	
1,3-DICHLOROPROPANE		0.19	U		0.19	U		0.19	U		0.19	U	
1,4-DICHLOROBENZENE		0.27	U		0.27	U		0.27	U		0.27	U	
2,2-DICHLOROPROPANE		0.26	UJ	С	0.26	UJ	С	0.26	UJ	С	0.26	UJ	С
2-BUTANONE		0.53	UJ	С	0.53	UJ	С	0.53	UJ	С	0.53	UJ	С
2-CHLOROETHYL VINYL	ETHER	0.59	U		0.59	U		0.59	U		0.59	U	
2-CHLOROTOLUENE		0.4	U		0.4	U		0.4	U		0.4	U	
2-HEXANONE		0.48	U		0.48	U		0.48	U		0.48	U	
4-CHLOROTOLUENE		0.29	U		0.29	U		0.29	U		0.29	U	
4-ISOPROPYLTOLUENE		0.43	U		0.43	U		0.43	U		0.43	U	
4-METHYL-2-PENTANON	E	0.99	U		0.99	U		0.99	U		0.99	U	
ACETONE		0.94	UJ	С	0.94	UJ	С	0.94	UJ	С	0.94	UJ	С
BENZENE		0.35	U		0.35	U		0.35	U		0.35	U	
BROMOBENZENE		0.35	U		0.35	U		0.35	U		0.35	U	
BROMOCHLOROMETHAN	NE	0.5	U		0.5	U		0.5	U		0.5	U	
BROMODICHLOROMETH	IANE	0.29	U		0.29	U		0.29	U		0.29	U	
BROMOFORM		0.56	U		0.56	U		0.56	U		0.56	U	
BROMOMETHANE		0.44	UJ	С	0.44	UJ	С	0.44	UJ	С	0.44	UJ	С

PROJ_NO: 07776	NSAMPLE	MRC-SW9B-09		MRC-SWDUP	-092716		TB-092716					
SDG: 240-70040-1	LAB_ID	240-70040-13			240-70040-15			240-70040-14				
FRACTION: OV	SAMP_DATE	9/27/2016			9/27/2016			9/27/2016				
MEDIA: WATER	QC_TYPE	NM			NM			NM				
	UNITS	UG/L			UG/L			UG/L				
	PCT_SOLIDS	0.0			0.0			0.0				
	DUP_OF				MRC-SW5B-0	92716						
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD		
1,1,1,2-TETRACHLOROET	HANE	0.28	UJ	С	0.28	UJ	С	0.28	UJ	С		
1,1,1-TRICHLOROETHANE		0.44	UJ	С	0.44	UJ	С	0.44	UJ	С		
1,1,2,2-TETRACHLOROET	HANE	0.22	U		0.22	U		0.22	U			
1,1,2-TRICHLOROTRIFLUC	DROETHANE	0.45	UJ	С	0.45	UJ	С	0.45	UJ	С		
1,1-DICHLOROETHANE		0.3	U		0.3	U		0.3	U			
1,1-DICHLOROETHENE		0.45	U		0.45	U		0.45	U			
1,1-DICHLOROPROPENE		0.42	U		0.42	U		0.42	U			
1,2,3-TRICHLOROBENZEN	IE	0.37	U		0.37	U		0.37	U			
1,2,3-TRICHLOROPROPAN	NE	0.44	U		0.44	U		0.44	U			
1,2,3-TRIMETHYLBENZEN	E	0.47	U		0.47	U		0.47	U			
1,2,4-TRICHLOROBENZEN	IE	0.32	U		0.32	U		0.32	U			
1,2,4-TRIMETHYLBENZEN	E	0.41	U		0.41	U		0.41	U			
1,2-DIBROMO-3-CHLOROF	PROPANE	0.82	U		0.82	U		0.82	U			
1,2-DIBROMOETHANE		0.32	U		0.32	U		0.32	U			
1,2-DICHLOROBENZENE		0.25	U		0.25	U		0.25	U			
1,2-DICHLOROETHANE		0.23	U		0.23	U		0.23	U			
1,2-DICHLOROPROPANE		0.25	U		0.25	U		0.25	U			
1,3-DICHLOROBENZENE		0.19	U		0.19	U		0.19	U			
1,3-DICHLOROPROPANE		0.19	U		0.19	U		0.19	U			
1,4-DICHLOROBENZENE		0.27	U		0.27	U		0.27	U			
2,2-DICHLOROPROPANE		0.26	UJ	С	0.26	UJ	С	0.26	UJ	С		
2-BUTANONE		0.53	UJ	С	0.53	UJ	С	0.53	UJ	С		
2-CHLOROETHYL VINYL E	THER	0.59	U		0.59	U		0.59	U			
2-CHLOROTOLUENE		0.4	U		0.4	U		0.4	U			
2-HEXANONE		0.48	U		0.48	U		0.48	U			
4-CHLOROTOLUENE		0.29	U		0.29	U		0.29	U			
4-ISOPROPYLTOLUENE		0.43	U		0.43	U		0.43	U			
4-METHYL-2-PENTANONE		0.99			0.99	U		0.99	U			
ACETONE		0.94	UJ	С	0.94	UJ	С	0.94	UJ	С		
BENZENE		0.35	U		0.35	U		0.35				
BROMOBENZENE	ROMOBENZENE		U		0.35	U		0.35	U			
BROMOCHLOROMETHAN	ROMOCHLOROMETHANE		U		0.5	U		0.5				
BROMODICHLOROMETHANE		0.29	U		0.29	U		0.29	U			
BROMOFORM	0.56	U		0.56	U		0.56	U				
BROMOMETHANE		0.44	UJ	С	0.44	UJ	С	0.44	UJ	С		

PROJ_NO: 07776	NSAMPLE	MRC-SW1A-09	92716		MRC-SW2A-0	92716		MRC-SW5A1-	092716		MRC-SW5A2-	092716		
SDG: 240-70040-1	LAB_ID	240-70040-1			240-70040-2			240-70040-3			240-70040-4			
FRACTION: OV	SAMP_DATE	9/27/2016			9/27/2016			9/27/2016			9/27/2016			
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM			
	UNITS	UG/L			UG/L			UG/L			UG/L			
	PCT_SOLIDS	0.0			0.0			0.0			0.0			
	DUP_OF													
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
CARBON DISULFIDE		0.38	U		0.38	U		0.38	U		0.38	U		
CARBON TETRACHLORIE	DE	0.43	UJ	С	0.43	UJ	С	0.43	UJ	С	0.43		С	
CHLOROBENZENE		0.25	U		0.25	U		0.25	U		0.25	U		
CHLORODIBROMOMETH.	ANE	0.43	U		0.43	U		0.43	U		0.43	U		
CHLOROETHANE		0.32	UJ	С	0.32	UJ	С	0.32	UJ	С	0.32	UJ	С	
CHLOROFORM		0.25	U		0.25	U		0.25	U		0.25			
CHLOROMETHANE		0.44	U		0.44	U		0.44	U		0.44	U		
CIS-1,2-DICHLOROETHEN	NE	0.26	U		0.26	U		0.26	U		0.26	U		
CIS-1,3-DICHLOROPROPI	ENE	0.46	U		0.46	U		0.46	U		0.46	U		
DIBROMOMETHANE		0.42	U		0.42	U		0.42	U		0.42			
DICHLORODIFLUOROME	THANE	0.32	UJ	С	0.32	UJ	С	0.32	UJ	С	0.32	UJ	С	
DIISOPROPYL ETHER		0.5	U		0.5	U		0.5	U		0.5	U		
ETHYL TERT-BUTYL ETH	ER	0.23			0.23	U		0.23	U		0.23			
ETHYLBENZENE		0.25	U		0.25	U		0.25	U		0.25			
HEXACHLOROBUTADIEN	E	0.35	U		0.35			0.35	U		0.35	U		
ISOPROPYLBENZENE		0.35	U		0.35	U		0.35	U		0.35	U		
METHYL TERT-BUTYL ET	HER	0.2	U		0.2	U		0.2	U		0.2	U		
METHYLENE CHLORIDE		0.33			0.33			0.33			0.33			
NAPHTHALENE		0.45		С	0.45	UJ	С	0.45		С	0.45	UJ	С	
N-BUTYLBENZENE		0.31	U		0.31	U		0.31	U		0.31	U		
N-PROPYLBENZENE		0.4	U		0.4			0.4	U		0.4	U		
SEC-BUTYLBENZENE		0.48	U		0.48			0.48	U		0.48	U		
STYRENE		0.45	U		0.45	U		0.45	U		0.45	U		
TERT-AMYL METHYL ETH	IER	0.3	U		0.3			0.3	U		0.3	U		
TERT-BUTYLBENZENE		0.41	U		0.41			0.41			0.41			
TERTIARY-BUTYL ALCOH	IOL	4.9	U		4.9	U		4.9	U		4.9	U		
TETRACHLOROETHENE		0.31	U		0.31			0.31	U		0.31	U		
TOLUENE		0.23	U		0.23	U		0.23	U		0.23	U		
TOTAL XYLENES		0.52			0.52			0.52			0.52			
TRANS-1,2-DICHLOROET	HENE	0.3			0.3			0.3			0.3	_		
TRANS-1,3-DICHLOROPR	OPENE	0.56	U		0.56			0.56	U		0.56	U		
TRICHLOROETHENE		0.27		Р	0.22			0.22			0.22			
TRICHLOROFLUOROMET	HANE	0.49	UJ	С	0.49		С	0.49	UJ	С	0.49		С	
VINYL ACETATE		0.41			0.41	U		0.41	U		0.41	U		
VINYL CHLORIDE		0.29	U		0.29	U		0.29	U		0.29	U		

PROJ_NO: 07776	NSAMPLE	MRC-SW5B-0	92716		MRC-SW6A-0	92716		MRC-SW6B-0	92716		MRC-SW7A-0	92716	
SDG: 240-70040-1	LAB_ID	240-70040-5	240-70040-5		240-70040-6			240-70040-7		240-70040-8			
FRACTION: OV	SAMP_DATE	9/27/2016			9/27/2016			9/27/2016			9/27/2016		
MEDIA: WATER	QC_TYPE	YPE NM		NM		NM			NM				
	UNITS	UG/L			UG/L		UG/L			UG/L			
	PCT_SOLIDS	0.0			0.0		0.0	0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
CARBON DISULFIDE		0.38	U		0.38	U		0.38	U		0.38	U	
CARBON TETRACHLORI	DE	0.43	UJ	С	0.43	UJ	С	0.43	UJ	С	0.43	UJ	С
CHLOROBENZENE		0.25	U		0.25	U		0.25	U		0.25	U	
CHLORODIBROMOMETH	IANE	0.43	U		0.43	U		0.43	U		0.43	U	
CHLOROETHANE		0.32	UJ	С	0.32	UJ	С	0.32	UJ	С	0.32	UJ	С
CHLOROFORM		0.25	U		0.25	U		0.25	U		0.25	U	
CHLOROMETHANE		0.44	U		0.44	U		0.44	U		0.44	U	
CIS-1,2-DICHLOROETHE	NE	0.26	U		0.26			0.26	U		0.26	U	
CIS-1,3-DICHLOROPROP	PENE	0.46	U		0.46	U		0.46	U		0.46	U	
DIBROMOMETHANE		0.42	U		0.42	U		0.42	U		0.42	U	
DICHLORODIFLUOROME	THANE	0.32	UJ	С	0.32	UJ	С	0.32	UJ	С	0.32	UJ	С
DIISOPROPYL ETHER		0.5	U		0.5	U		0.5	U		0.5	U	
ETHYL TERT-BUTYL ETH	IER	0.23	U		0.23	U		0.23	U		0.23	U	
ETHYLBENZENE		0.25	U		0.25	U		0.25	U		0.25	U	
HEXACHLOROBUTADIEN	NE	0.35	U		0.35	U		0.35	U		0.35	U	
ISOPROPYLBENZENE		0.35	U		0.35	U		0.35	U		0.35	U	
METHYL TERT-BUTYL E	THER	0.2	U		0.2			0.2	U		0.2	U	
METHYLENE CHLORIDE		0.33	U		0.33	U		0.33	U		0.33	U	
NAPHTHALENE		0.45	UJ	С	0.45	UJ	С	0.45	UJ	С	0.45	UJ	С
N-BUTYLBENZENE		0.31	U		0.31	U		0.31	U		0.31	U	
N-PROPYLBENZENE		0.4	U		0.4	U		0.4	U		0.4	U	
SEC-BUTYLBENZENE		0.48	U		0.48	U		0.48	U		0.48	U	
STYRENE		0.45	U		0.45	U		0.45	U		0.45		
TERT-AMYL METHYL ET	HER	0.3	U		0.3			0.3	U		0.3	U	
TERT-BUTYLBENZENE		0.41	U		0.41			0.41	U		0.41	U	
TERTIARY-BUTYL ALCO	HOL	4.9	U		4.9			4.9	U		4.9	U	
TETRACHLOROETHENE		0.31	U		0.31	U		0.31	U		0.31	U	
TOLUENE		0.23	U		0.23	U		0.23	U		0.23	U	
TOTAL XYLENES		0.52	U		0.52	U		0.52	U		0.52	U	
TRANS-1,2-DICHLOROE	THENE	0.3	U		0.3			0.3			0.3		
TRANS-1,3-DICHLOROPF	ROPENE	0.56	U		0.56	U		0.56	U		0.56	U	
TRICHLOROETHENE		0.22	J	Р	0.59	J	Р	0.62	J	Р	0.56	J	Р
TRICHLOROFLUOROME	THANE	0.49	UJ	С	0.49		С	0.49	UJ	С	0.49	UJ	С
VINYL ACETATE		0.41	U		0.41			0.41			0.41		
VINYL CHLORIDE		0.29	U		0.29	U		0.29	U		0.29	U	

PROJ_NO: 07776	NSAMPLE	MRC-SW7B-09	92716		MRC-SW8A-0	92716		MRC-SW8B-09	92716		MRC-SW9A-0	92716	
SDG: 240-70040-1	LAB_ID	240-70040-9			240-70040-10			240-70040-11			240-70040-12		
FRACTION: OV	SAMP_DATE	9/27/2016			9/27/2016			9/27/2016			9/27/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L		UG/L			UG/L			
	PCT_SOLIDS	0.0	0.0		0.0		0.0			0.0			
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
CARBON DISULFIDE		0.38	U		0.38	U		0.38	U		0.38	U	
CARBON TETRACHLORII	DE	0.43	UJ	С	0.43	UJ	С	0.43	UJ	С	0.43		С
CHLOROBENZENE		0.25	U		0.25	U		0.25	U		0.25	U	
CHLORODIBROMOMETH	ANE	0.43	U		0.43	U		0.43	U		0.43	U	
CHLOROETHANE		0.32	UJ	С	0.32	UJ	С	0.32	UJ	С	0.32	UJ	С
CHLOROFORM		0.25	U		0.25	U		0.25	U		0.25		
CHLOROMETHANE		0.44	U		0.44	U		0.44	U		0.44	U	
CIS-1,2-DICHLOROETHEI	NE	0.26	U		0.26	U		0.26	U		0.26	U	
CIS-1,3-DICHLOROPROP	ENE	0.46	U		0.46	U		0.46	U		0.46	U	
DIBROMOMETHANE		0.42	U		0.42	U		0.42	U		0.42	U	
DICHLORODIFLUOROME	THANE	0.32	UJ	С	0.32		С	0.32	UJ	С	0.32	UJ	С
DIISOPROPYL ETHER		0.5	U		0.5	U		0.5	U		0.5	U	
ETHYL TERT-BUTYL ETH	ER	0.23	U		0.23	U		0.23	U		0.23	U	
ETHYLBENZENE		0.25	U		0.25	U		0.25	U		0.25	U	
HEXACHLOROBUTADIEN	IE	0.35	U		0.35			0.35	U		0.35	U	
ISOPROPYLBENZENE		0.35	U		0.35	U		0.35	U		0.35	U	
METHYL TERT-BUTYL ET	HER	0.2	U		0.2	U		0.2	U		0.2	U	
METHYLENE CHLORIDE		0.33			0.33			0.33			0.33		
NAPHTHALENE		0.45	UJ	С	0.45	UJ	С	0.45	UJ	С	0.45	UJ	С
N-BUTYLBENZENE		0.31	U		0.31	U		0.31	U		0.31	U	
N-PROPYLBENZENE		0.4	U		0.4	U		0.4	U		0.4	U	
SEC-BUTYLBENZENE		0.48	U		0.48			0.48	U		0.48	U	
STYRENE		0.45	U		0.45	U		0.45	U		0.45	U	
TERT-AMYL METHYL ETH	HER	0.3	U		0.3	U		0.3			0.3	U	
TERT-BUTYLBENZENE		0.41	U		0.41			0.41			0.41		
TERTIARY-BUTYL ALCOH	HOL	4.9	U		4.9	U		4.9			4.9	U	
TETRACHLOROETHENE		0.31	U		0.31			0.31	U		0.31	U	
TOLUENE		0.23	U		0.23	U		0.23	U		0.23	U	
TOTAL XYLENES		0.52			0.52			0.52			0.52		
TRANS-1,2-DICHLOROET	HENE	0.3			0.3			0.3			0.3	-	
TRANS-1,3-DICHLOROPE	ROPENE	0.56	U		0.56	U		0.56	U		0.56	U	
TRICHLOROETHENE		0.58		Р	0.61	J	Р	0.62		Р	0.52	J	Р
TRICHLOROFLUOROMET	THANE	0.49	UJ	С	0.49		С	0.49	UJ	С	0.49	UJ	С
VINYL ACETATE		0.41			0.41	U		0.41	U		0.41	U	
VINYL CHLORIDE		0.29	U		0.29	U		0.29	U		0.29	U	

PROJ_NO: 07776	NSAMPLE	MRC-SW9B-092716			MRC-SWDUP-092716			TB-092716			
SDG: 240-70040-1	LAB_ID	240-70040-13			240-70040-15			240-70040-14			
FRACTION: OV	SAMP_DATE	9/27/2016	9/27/2016			9/27/2016					
MEDIA: WATER	QC_TYPE	NM NM			NM						
	UNITS	UG/L			UG/L			UG/L			
	PCT_SOLIDS	0.0			0.0			0.0			
	DUP_OF				MRC-SW5B-0	W5B-092716					
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
CARBON DISULFIDE		0.38	U		0.38	U		0.38	U		
CARBON TETRACHLORID	E	0.43	UJ	С	0.43	UJ	С	0.43	UJ	С	
CHLOROBENZENE		0.25	U		0.25	U		0.25	U		
CHLORODIBROMOMETHA	ANE	0.43	U		0.43	U		0.43	U		
CHLOROETHANE		0.32	UJ	С	0.32	UJ	С	0.32	UJ	С	
CHLOROFORM		0.25	U		0.25	U		0.25	U		
CHLOROMETHANE		0.44	U		0.44	U		0.44	U		
CIS-1,2-DICHLOROETHEN	IE	0.26	U		0.26	U		0.26	U		
CIS-1,3-DICHLOROPROPE	NE	0.46	U		0.46	U		0.46	U		
DIBROMOMETHANE		0.42	U		0.42	U		0.42	U		
DICHLORODIFLUOROMET	ΓHANE	0.32	UJ	С	0.32		С	0.32	UJ	С	
DIISOPROPYL ETHER		0.5	U		0.5	U		0.5	U		
ETHYL TERT-BUTYL ETHE	ER	0.23	U		0.23	U		0.23	U		
ETHYLBENZENE		0.25	U		0.25	U		0.25	U		
HEXACHLOROBUTADIEN	E	0.35	U		0.35			0.35	U		
ISOPROPYLBENZENE		0.35	U		0.35	U		0.35	U		
METHYL TERT-BUTYL ETI	HER	0.2	U		0.2	U		0.2	U		
METHYLENE CHLORIDE		0.33	U		0.33	U		0.33	U		
NAPHTHALENE		0.45	UJ	С	0.45	UJ	С	0.45		С	
N-BUTYLBENZENE		0.31	U		0.31	U		0.31			
N-PROPYLBENZENE		0.4	U		0.4	U		0.4			
SEC-BUTYLBENZENE		0.48			0.48	-		0.48			
STYRENE		0.45			0.45	-		0.45			
TERT-AMYL METHYL ETH	ER	0.3			0.3	-		0.3			
TERT-BUTYLBENZENE		0.41			0.41	_		0.41			
TERTIARY-BUTYL ALCOH	OL	4.9			4.9	-		4.9			
TETRACHLOROETHENE		0.31			0.31	U		0.31			
TOLUENE		0.23		ļ	0.23			0.23			
TOTAL XYLENES		0.52		ļ	0.52			0.52			
TRANS-1,2-DICHLOROETH		0.3		ļ	0.3			0.3			
TRANS-1,3-DICHLOROPRO	OPENE	0.56		ļ	0.56			0.56			
TRICHLOROETHENE		0.62		Р	0.22			0.22			
TRICHLOROFLUOROMET	HANE	0.49		С	0.49		С	0.49		С	
VINYL ACETATE		0.41			0.41			0.41			
VINYL CHLORIDE		0.29	U	<u> </u>	0.29	U		0.29	U		

Appendix B

Results as Reported by the Laboratory

Lab Name: TestAmerica Canton	Job No.: 240-70040-1
SDG No.:	
Client Sample ID: MRC-SW1A-092716	Lab Sample ID: 240-70040-1
Matrix: Water	Lab File ID: UXC8760.D
Analysis Method: 8260B	Date Collected: 09/27/2016 10:02
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 12:24
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 250454	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	7.7	J	10	0.94
630-20-6	1,1,1,2-Tetrachloroethane	0.28	U	1.0	0.28
71-43-2	Benzene	0.35	U	1.0	0.35
75-27-4	Bromodichloromethane	0.29	U	1.0	0.29
75-25-2	Bromoform	0.56	U	1.0	0.56
74-83-9	Bromomethane	0.44	U	1.0	0.44
78-93-3	2-Butanone (MEK)	5.1	J	10	0.53
75-15-0	Carbon disulfide	0.38	U	1.0	0.38
56-23-5	Carbon tetrachloride	0.43	U	1.0	0.43
108-90-7	Chlorobenzene	0.25	U	1.0	0.25
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.25	U	1.0	0.25
563-58-6	1,1-Dichloropropene	0.42	U	1.0	0.42
74-87-3	Chloromethane	0.44	U	1.0	0.44
75-34-3	1,1-Dichloroethane	0.30	U	1.0	0.30
87-61-6	1,2,3-Trichlorobenzene	0.37	U	1.0	0.37
96-18-4	1,2,3-Trichloropropane	0.44	U	1.0	0.44
107-06-2	1,2-Dichloroethane	0.23	U	1.0	0.23
75-35-4	1,1-Dichloroethene	0.45	U	1.0	0.45
526-73-8	1,2,3-Trimethylbenzene	0.47	U	5.0	0.47
78-87-5	1,2-Dichloropropane	0.25	U	1.0	0.25
95-63-6	1,2,4-Trimethylbenzene	0.41	U	1.0	0.41
10061-01-5	cis-1,3-Dichloropropene	0.46	U	1.0	0.46
10061-02-6	trans-1,3-Dichloropropene	0.56	U	1.0	0.56
100-41-4	Ethylbenzene	0.25	U	1.0	0.25
591-78-6	2-Hexanone	0.55	J	10	0.48
75-09-2	Methylene Chloride	0.33	U	1.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	0.99	U	10	0.99
100-42-5	Styrene	0.45	U	1.0	0.45
79-34-5	1,1,2,2-Tetrachloroethane	0.22	U	1.0	0.22
127-18-4	Tetrachloroethene	0.31	U	1.0	0.31
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	0.27	J	1.0	0.22
75-01-4	Vinyl chloride	0.29	U	1.0	0.29
1330-20-7	Xylenes, Total	0.52	U	2.0	0.52
71-55-6	1,1,1-Trichloroethane	0.44	U	1.0	0.44

Lab Name: TestAmerica Canton	Job No.: 240-70040-1
SDG No.:	
Client Sample ID: MRC-SW1A-092716	Lab Sample ID: 240-70040-1
Matrix: Water	Lab File ID: UXC8760.D
Analysis Method: 8260B	Date Collected: 09/27/2016 10:02
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 12:24
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 250454	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.19	U	1.0	0.19
96-12-8	1,2-Dibromo-3-Chloropropane	0.82	U	2.0	0.82
106-93-4	1,2-Dibromoethane	0.32	U	1.0	0.32
75-71-8	Dichlorodifluoromethane	0.32	U	1.0	0.32
156-59-2	cis-1,2-Dichloroethene	0.26	U	1.0	0.26
156-60-5	trans-1,2-Dichloroethene	0.30	U	1.0	0.30
98-82-8	Isopropylbenzene	0.35	U	1.0	0.35
1634-04-4	Methyl tert-butyl ether	0.20	U	1.0	0.20
76-13-1	1,1,2-Trichlorotrifluoroethane	0.45	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	0.32	U	1.0	0.32
594-20-7	2,2-Dichloropropane	0.26	U *	1.0	0.26
95-50-1	1,2-Dichlorobenzene	0.25	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	0.19	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	0.27	U	1.0	0.27
110-75-8	2-Chloroethyl vinyl ether	0.59	U	10	0.59
75-69-4	Trichlorofluoromethane	0.49	U *	1.0	0.49
95-49-8	2-Chlorotoluene	0.40	U	1.0	0.40
124-48-1	Chlorodibromomethane	0.43	U	1.0	0.43
108-86-1	Bromobenzene	0.35	U	1.0	0.35
74-97-5	Bromochloromethane	0.50	U	1.0	0.50
106-43-4	4-Chlorotoluene	0.29	U	1.0	0.29
99-87-6	4-Isopropyltoluene	0.43	U	1.0	0.43
87-68-3	Hexachlorobutadiene	0.35	U	1.0	0.35
74-95-3	Dibromomethane	0.42	U	1.0	0.42
108-20-3	Diisopropyl ether	0.50	U	10	0.50
91-20-3	Naphthalene	0.45	U	1.0	0.45
104-51-8	n-Butylbenzene	0.31	U	1.0	0.31
103-65-1	N-Propylbenzene	0.40	U	1.0	0.40
135-98-8	sec-Butylbenzene	0.48	U	1.0	0.48
994-05-8	Tert-amyl methyl ether	0.30	U	5.0	0.30
637-92-3	Ethyl tert-butyl ether	0.23	U	5.0	0.23
98-06-6	tert-Butylbenzene	0.41	U	1.0	0.41
108-05-4	Vinyl acetate	0.41	U	2.0	0.41
75-65-0	tert-Butyl alcohol	4.9	U	50	4.9

 Lab Name: TestAmerica Canton
 Job No.: 240-70040-1

 SDG No.:
 Client Sample ID: MRC-SW1A-092716
 Lab Sample ID: 240-70040-1

 Matrix: Water
 Lab File ID: UXC8760.D

 Analysis Method: 8260B
 Date Collected: 09/27/2016 10:02

 Sample wt/vol: 5(mL)
 Date Analyzed: 10/08/2016 12:24

 Soil Aliquot Vol:
 Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: DB-624
 ID: 0.18 (mm)

 % Moisture:
 Level: (low/med) Low

 Analysis Batch No.: 250454
 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		63-132
460-00-4	4-Bromofluorobenzene (Surr)	115		73-120
2037-26-5	Toluene-d8 (Surr)	105		73-124
1868-53-7	Dibromofluoromethane (Surr)	107		80-120

Lab Name: TestAmerica Canton	Job No.: 240-70040-1					
SDG No.:						
Client Sample ID: MRC-SW2A-092716	Lab Sample ID: 240-70040-2					
Matrix: Water	Lab File ID: UXC8761.D					
Analysis Method: 8260B	Date Collected: 09/27/2016 10:10					
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 12:49					
Soil Aliquot Vol:	Dilution Factor: 1					
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18 (mm)					
% Moisture:	Level: (low/med) Low					
Analysis Batch No.: 250454	Units: ug/L					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	0.94	U	10	0.94
630-20-6	1,1,1,2-Tetrachloroethane	0.28	U	1.0	0.28
71-43-2	Benzene	0.35	U	1.0	0.35
75-27-4	Bromodichloromethane	0.29	U	1.0	0.29
75-25-2	Bromoform	0.56	U	1.0	0.56
74-83-9	Bromomethane	0.44	U	1.0	0.44
78-93-3	2-Butanone (MEK)	0.92	J	10	0.53
75-15-0	Carbon disulfide	0.38	U	1.0	0.38
56-23-5	Carbon tetrachloride	0.43	U	1.0	0.43
108-90-7	Chlorobenzene	0.25	U	1.0	0.25
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.25	U	1.0	0.25
563-58-6	1,1-Dichloropropene	0.42	U	1.0	0.42
74-87-3	Chloromethane	0.44	U	1.0	0.44
75-34-3	1,1-Dichloroethane	0.30	U	1.0	0.30
87-61-6	1,2,3-Trichlorobenzene	0.37	U	1.0	0.37
96-18-4	1,2,3-Trichloropropane	0.44	U	1.0	0.44
107-06-2	1,2-Dichloroethane	0.23	U	1.0	0.23
75-35-4	1,1-Dichloroethene	0.45	U	1.0	0.45
526-73-8	1,2,3-Trimethylbenzene	0.47	U	5.0	0.47
78-87-5	1,2-Dichloropropane	0.25	U	1.0	0.25
95-63-6	1,2,4-Trimethylbenzene	0.41	U	1.0	0.41
10061-01-5	cis-1,3-Dichloropropene	0.46	U	1.0	0.46
10061-02-6	trans-1,3-Dichloropropene	0.56	U	1.0	0.56
100-41-4	Ethylbenzene	0.25	U	1.0	0.25
591-78-6	2-Hexanone	0.48	U	10	0.48
75-09-2	Methylene Chloride	0.33	U	1.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	0.99	U	10	0.99
100-42-5	Styrene	0.45	U	1.0	0.45
79-34-5	1,1,2,2-Tetrachloroethane	0.22	U	1.0	0.22
127-18-4	Tetrachloroethene	0.31	U	1.0	0.31
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	0.22	U	1.0	0.22
75-01-4	Vinyl chloride	0.29	U	1.0	0.29
1330-20-7	Xylenes, Total	0.52	U	2.0	0.52
71-55-6	1,1,1-Trichloroethane	0.44	U	1.0	0.44

Lab Name: TestAmerica Canton	Job No.: 240-70040-1
SDG No.:	
Client Sample ID: MRC-SW2A-092716	Lab Sample ID: 240-70040-2
Matrix: Water	Lab File ID: UXC8761.D
Analysis Method: 8260B	Date Collected: 09/27/2016 10:10
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 12:49
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 250454	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.19	Ū	1.0	0.19
96-12-8	1,2-Dibromo-3-Chloropropane	0.82	U	2.0	0.82
106-93-4	1,2-Dibromoethane	0.32	U	1.0	0.32
75-71-8	Dichlorodifluoromethane	0.32	U	1.0	0.32
156-59-2	cis-1,2-Dichloroethene	0.26	U	1.0	0.26
156-60-5	trans-1,2-Dichloroethene	0.30	U	1.0	0.30
98-82-8	Isopropylbenzene	0.35	U	1.0	0.35
1634-04-4	Methyl tert-butyl ether	0.20	U	1.0	0.20
76-13-1	1,1,2-Trichlorotrifluoroethane	0.45	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	0.32	U	1.0	0.32
594-20-7	2,2-Dichloropropane	0.26	Π *	1.0	0.26
95-50-1	1,2-Dichlorobenzene	0.25	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	0.19	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	0.27	U	1.0	0.27
110-75-8	2-Chloroethyl vinyl ether	0.59	U	10	0.59
75-69-4	Trichlorofluoromethane	0.49	Π *	1.0	0.49
95-49-8	2-Chlorotoluene	0.40	U	1.0	0.40
124-48-1	Chlorodibromomethane	0.43	U	1.0	0.43
108-86-1	Bromobenzene	0.35	U	1.0	0.35
74-97-5	Bromochloromethane	0.50	U	1.0	0.50
106-43-4	4-Chlorotoluene	0.29	U	1.0	0.29
99-87-6	4-Isopropyltoluene	0.43	U	1.0	0.43
87-68-3	Hexachlorobutadiene	0.35	U	1.0	0.35
74-95-3	Dibromomethane	0.42	U	1.0	0.42
108-20-3	Diisopropyl ether	0.50	U	10	0.50
91-20-3	Naphthalene	0.45	U	1.0	0.45
104-51-8	n-Butylbenzene	0.31	U	1.0	0.31
103-65-1	N-Propylbenzene	0.40	U	1.0	0.40
135-98-8	sec-Butylbenzene	0.48	U	1.0	0.48
994-05-8	Tert-amyl methyl ether	0.30	U	5.0	0.30
637-92-3	Ethyl tert-butyl ether	0.23	U	5.0	0.23
98-06-6	tert-Butylbenzene	0.41	U	1.0	0.41
108-05-4	Vinyl acetate	0.41	U	2.0	0.41
75-65-0	tert-Butyl alcohol	4.9	U	50	4.9

 Lab Name: TestAmerica Canton
 Job No.: 240-70040-1

 SDG No.:
 Client Sample ID: MRC-SW2A-092716
 Lab Sample ID: 240-70040-2

 Matrix: Water
 Lab File ID: UXC8761.D

 Analysis Method: 8260B
 Date Collected: 09/27/2016 10:10

 Sample wt/vol: 5(mL)
 Date Analyzed: 10/08/2016 12:49

 Soil Aliquot Vol:
 Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: DB-624 ID: 0.18 (mm)

 % Moisture:
 Level: (low/med) Low

 Analysis Batch No.: 250454
 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		63-132
460-00-4	4-Bromofluorobenzene (Surr)	113		73-120
2037-26-5	Toluene-d8 (Surr)	106		73-124
1868-53-7	Dibromofluoromethane (Surr)	104		80-120

Lab Name: TestAmerica Canton			
SDG No.:			
Client Sample ID: MRC-SW5A1-092716	Lab Sample ID: 240-70040-3		
Matrix: Water	Lab File ID: UXC8762.D		
Analysis Method: 8260B	Date Collected: 09/27/2016 11:00		
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 13:12		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 250454	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	0.94	Ŭ	10	0.94
630-20-6	1,1,1,2-Tetrachloroethane	0.28	U	1.0	0.28
71-43-2	Benzene	0.35	U	1.0	0.35
75-27-4	Bromodichloromethane	0.29	U	1.0	0.29
75-25-2	Bromoform	0.56	U	1.0	0.56
74-83-9	Bromomethane	0.44	U	1.0	0.44
78-93-3	2-Butanone (MEK)	0.53	U	10	0.53
75-15-0	Carbon disulfide	0.38	U	1.0	0.38
56-23-5	Carbon tetrachloride	0.43	U	1.0	0.43
108-90-7	Chlorobenzene	0.25	U	1.0	0.25
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.25	U	1.0	0.25
563-58-6	1,1-Dichloropropene	0.42	U	1.0	0.42
74-87-3	Chloromethane	0.44	U	1.0	0.44
75-34-3	1,1-Dichloroethane	0.30	U	1.0	0.30
87-61-6	1,2,3-Trichlorobenzene	0.37	U	1.0	0.37
96-18-4	1,2,3-Trichloropropane	0.44	U	1.0	0.44
107-06-2	1,2-Dichloroethane	0.23	U	1.0	0.23
75-35-4	1,1-Dichloroethene	0.45	U	1.0	0.45
526-73-8	1,2,3-Trimethylbenzene	0.47	U	5.0	0.47
78-87-5	1,2-Dichloropropane	0.25	U	1.0	0.25
95-63-6	1,2,4-Trimethylbenzene	0.41	U	1.0	0.41
10061-01-5	cis-1,3-Dichloropropene	0.46	U	1.0	0.46
10061-02-6	trans-1,3-Dichloropropene	0.56	U	1.0	0.56
100-41-4	Ethylbenzene	0.25	U	1.0	0.25
591-78-6	2-Hexanone	0.48	U	10	0.48
75-09-2	Methylene Chloride	0.33	U	1.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	0.99	U	10	0.99
100-42-5	Styrene	0.45	U	1.0	0.45
79-34-5	1,1,2,2-Tetrachloroethane	0.22	U	1.0	0.22
127-18-4	Tetrachloroethene	0.31	U	1.0	0.31
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	0.22	U	1.0	0.22
75-01-4	Vinyl chloride	0.29	U	1.0	0.29
1330-20-7	Xylenes, Total	0.52	U	2.0	0.52
71-55-6	1,1,1-Trichloroethane	0.44	IJ	1.0	0.44

Lab Name: TestAmerica Canton	Job No.: <u>240-70040-1</u>			
SDG No.:				
Client Sample ID: MRC-SW5A1-092716	Lab Sample ID: 240-70040-	3		
Matrix: Water	Lab File ID: UXC8762.D	Lab File ID: UXC8762.D		
Analysis Method: 8260B	Date Collected: 09/27/201	Date Collected: 09/27/2016 11:00		
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016	Date Analyzed: 10/08/2016 13:12		
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 250454	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.19	U	1.0	0.19
96-12-8	1,2-Dibromo-3-Chloropropane	0.82	U	2.0	0.82
106-93-4	1,2-Dibromoethane	0.32	U	1.0	0.32
75-71-8	Dichlorodifluoromethane	0.32	U	1.0	0.32
156-59-2	cis-1,2-Dichloroethene	0.26	U	1.0	0.26
156-60-5	trans-1,2-Dichloroethene	0.30	U	1.0	0.30
98-82-8	Isopropylbenzene	0.35	U	1.0	0.35
1634-04-4	Methyl tert-butyl ether	0.20	U	1.0	0.20
76-13-1	1,1,2-Trichlorotrifluoroethane	0.45	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	0.32	U	1.0	0.32
594-20-7	2,2-Dichloropropane	0.26	U *	1.0	0.26
95-50-1	1,2-Dichlorobenzene	0.25	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	0.19	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	0.27	U	1.0	0.27
110-75-8	2-Chloroethyl vinyl ether	0.59	U	10	0.59
75-69-4	Trichlorofluoromethane	0.49	U *	1.0	0.49
95-49-8	2-Chlorotoluene	0.40	U	1.0	0.40
124-48-1	Chlorodibromomethane	0.43	U	1.0	0.43
108-86-1	Bromobenzene	0.35	U	1.0	0.35
74-97-5	Bromochloromethane	0.50	U	1.0	0.50
106-43-4	4-Chlorotoluene	0.29	U	1.0	0.29
99-87-6	4-Isopropyltoluene	0.43	U	1.0	0.43
87-68-3	Hexachlorobutadiene	0.35	U	1.0	0.35
74-95-3	Dibromomethane	0.42	U	1.0	0.42
108-20-3	Diisopropyl ether	0.50	U	10	0.50
91-20-3	Naphthalene	0.45	U	1.0	0.45
104-51-8	n-Butylbenzene	0.31	U	1.0	0.31
103-65-1	N-Propylbenzene	0.40	U	1.0	0.40
135-98-8	sec-Butylbenzene	0.48	U	1.0	0.48
994-05-8	Tert-amyl methyl ether	0.30	U	5.0	0.30
637-92-3	Ethyl tert-butyl ether	0.23	U	5.0	0.23
98-06-6	tert-Butylbenzene	0.41	U	1.0	0.41
108-05-4	Vinyl acetate	0.41	U	2.0	0.41
75-65-0	tert-Butyl alcohol	4.9	U	50	4.9

Lab Name: TestAmerica Canton Job No.: 240-70040-1 SDG No.: Client Sample ID: MRC-SW5A1-092716 Lab Sample ID: 240-70040-3 Matrix: Water Lab File ID: UXC8762.D Analysis Method: 8260B Date Collected: 09/27/2016 11:00 Date Analyzed: 10/08/2016 13:12 Sample wt/vol: 5(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u> Level: (low/med) Low % Moisture: _____ Analysis Batch No.: 250454 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		63-132
460-00-4	4-Bromofluorobenzene (Surr)	109		73-120
2037-26-5	Toluene-d8 (Surr)	106		73-124
1868-53-7	Dibromofluoromethane (Surr)	101		80-120

Lab Name: TestAmerica Canton	Job No.: 240-70040-1		
SDG No.:			
Client Sample ID: MRC-SW5A2-092716	Lab Sample ID: 240-70040-4		
Matrix: Water	Lab File ID: UXC8763.D		
Analysis Method: 8260B	Date Collected: 09/27/2016 11:05		
Sample wt/vol: 5 (mL)	Date Analyzed: 10/08/2016 13:34		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 250454	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	0.94	U	10	0.94
630-20-6	1,1,1,2-Tetrachloroethane	0.28	U	1.0	0.28
71-43-2	Benzene	0.35	U	1.0	0.35
75-27-4	Bromodichloromethane	0.29	U	1.0	0.29
75-25-2	Bromoform	0.56	U	1.0	0.56
74-83-9	Bromomethane	0.44	U	1.0	0.44
78-93-3	2-Butanone (MEK)	0.53	U	10	0.53
75-15-0	Carbon disulfide	0.38	U	1.0	0.38
56-23-5	Carbon tetrachloride	0.43	U	1.0	0.43
108-90-7	Chlorobenzene	0.25	U	1.0	0.25
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.25	U	1.0	0.25
563-58-6	1,1-Dichloropropene	0.42	U	1.0	0.42
74-87-3	Chloromethane	0.44	U	1.0	0.44
75-34-3	1,1-Dichloroethane	0.30	U	1.0	0.30
87-61-6	1,2,3-Trichlorobenzene	0.37	U	1.0	0.37
96-18-4	1,2,3-Trichloropropane	0.44	U	1.0	0.44
107-06-2	1,2-Dichloroethane	0.23	U	1.0	0.23
75-35-4	1,1-Dichloroethene	0.45	U	1.0	0.45
526-73-8	1,2,3-Trimethylbenzene	0.47	U	5.0	0.47
78-87-5	1,2-Dichloropropane	0.25	U	1.0	0.25
95-63-6	1,2,4-Trimethylbenzene	0.41	U	1.0	0.41
10061-01-5	cis-1,3-Dichloropropene	0.46	U	1.0	0.46
10061-02-6	trans-1,3-Dichloropropene	0.56	U	1.0	0.56
100-41-4	Ethylbenzene	0.25	U	1.0	0.25
591-78-6	2-Hexanone	0.48	U	10	0.48
75-09-2	Methylene Chloride	0.33	U	1.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	0.99	U	10	0.99
100-42-5	Styrene	0.45	U	1.0	0.45
79-34-5	1,1,2,2-Tetrachloroethane	0.22	U	1.0	0.22
127-18-4	Tetrachloroethene	0.31	U	1.0	0.31
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	0.22	U	1.0	0.22
75-01-4	Vinyl chloride	0.29	U	1.0	0.29
1330-20-7	Xylenes, Total	0.52	U	2.0	0.52
71-55-6	1,1,1-Trichloroethane	0.44	U	1.0	0.44

Job No.: 240-70040-1		
Lab Sample ID: 240-70040-4		
Lab File ID: UXC8763.D		
Date Collected: 09/27/2016 11:05		
Date Analyzed: 10/08/2016 13:34		
Dilution Factor: 1		
GC Column: DB-624 ID: 0.18(mm)		
Level: (low/med) Low		
Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.19	U	1.0	0.19
96-12-8	1,2-Dibromo-3-Chloropropane	0.82	U	2.0	0.82
106-93-4	1,2-Dibromoethane	0.32	U	1.0	0.32
75-71-8	Dichlorodifluoromethane	0.32	U	1.0	0.32
156-59-2	cis-1,2-Dichloroethene	0.26	U	1.0	0.26
156-60-5	trans-1,2-Dichloroethene	0.30	U	1.0	0.30
98-82-8	Isopropylbenzene	0.35	U	1.0	0.35
1634-04-4	Methyl tert-butyl ether	0.20	U	1.0	0.20
76-13-1	1,1,2-Trichlorotrifluoroethane	0.45	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	0.32	U	1.0	0.32
594-20-7	2,2-Dichloropropane	0.26	U *	1.0	0.26
95-50-1	1,2-Dichlorobenzene	0.25	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	0.19	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	0.27	U	1.0	0.27
110-75-8	2-Chloroethyl vinyl ether	0.59	U	10	0.59
75-69-4	Trichlorofluoromethane	0.49	U *	1.0	0.49
95-49-8	2-Chlorotoluene	0.40	U	1.0	0.40
124-48-1	Chlorodibromomethane	0.43	U	1.0	0.43
108-86-1	Bromobenzene	0.35	U	1.0	0.35
74-97-5	Bromochloromethane	0.50	U	1.0	0.50
106-43-4	4-Chlorotoluene	0.29	U	1.0	0.29
99-87-6	4-Isopropyltoluene	0.43	U	1.0	0.43
87-68-3	Hexachlorobutadiene	0.35	U	1.0	0.35
74-95-3	Dibromomethane	0.42	U	1.0	0.42
108-20-3	Diisopropyl ether	0.50	U	10	0.50
91-20-3	Naphthalene	0.45	U	1.0	0.45
104-51-8	n-Butylbenzene	0.31	U	1.0	0.31
103-65-1	N-Propylbenzene	0.40	U	1.0	0.40
135-98-8	sec-Butylbenzene	0.48	U	1.0	0.48
994-05-8	Tert-amyl methyl ether	0.30	U	5.0	0.30
637-92-3	Ethyl tert-butyl ether	0.23	U	5.0	0.23
98-06-6	tert-Butylbenzene	0.41	U	1.0	0.41
108-05-4	Vinyl acetate	0.41	U	2.0	0.41
75-65-0	tert-Butyl alcohol	4.9	U	50	4.9

 Lab Name: TestAmerica Canton
 Job No.: 240-70040-1

 SDG No.:
 Client Sample ID: MRC-SW5A2-092716
 Lab Sample ID: 240-70040-4

 Matrix: Water
 Lab File ID: UXC8763.D

 Analysis Method: 8260B
 Date Collected: 09/27/2016 11:05

 Sample wt/vol: 5(mL)
 Date Analyzed: 10/08/2016 13:34

 Soil Aliquot Vol:
 Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: DB-624 ID: 0.18 (mm)

 % Moisture:
 Level: (low/med) Low

 Analysis Batch No.: 250454
 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96		63-132
460-00-4	4-Bromofluorobenzene (Surr)	109		73-120
2037-26-5	Toluene-d8 (Surr)	101		73-124
1868-53-7	Dibromofluoromethane (Surr)	103		80-120

Lab Name: TestAmerica Canton	Job No.: 240-70040-1		
SDG No.:			
Client Sample ID: MRC-SW5B-092716	Lab Sample ID: 240-70040-5		
Matrix: Water	Lab File ID: UXC8764.D		
Analysis Method: 8260B	Date Collected: 09/27/2016 10:55		
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 13:56		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 250454	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	0.94	U	10	0.94
630-20-6	1,1,1,2-Tetrachloroethane	0.28	U	1.0	0.28
71-43-2	Benzene	0.35	U	1.0	0.35
75-27-4	Bromodichloromethane	0.29	U	1.0	0.29
75-25-2	Bromoform	0.56	U	1.0	0.56
74-83-9	Bromomethane	0.44	U	1.0	0.44
78-93-3	2-Butanone (MEK)	0.53	U	10	0.53
75-15-0	Carbon disulfide	0.38	U	1.0	0.38
56-23-5	Carbon tetrachloride	0.43	U	1.0	0.43
108-90-7	Chlorobenzene	0.25	U	1.0	0.25
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.25	U	1.0	0.25
563-58-6	1,1-Dichloropropene	0.42	U	1.0	0.42
74-87-3	Chloromethane	0.44	U	1.0	0.44
75-34-3	1,1-Dichloroethane	0.30	U	1.0	0.30
87-61-6	1,2,3-Trichlorobenzene	0.37	U	1.0	0.37
96-18-4	1,2,3-Trichloropropane	0.44	U	1.0	0.44
107-06-2	1,2-Dichloroethane	0.23	U	1.0	0.23
75-35-4	1,1-Dichloroethene	0.45	U	1.0	0.45
526-73-8	1,2,3-Trimethylbenzene	0.47	U	5.0	0.47
78-87-5	1,2-Dichloropropane	0.25	U	1.0	0.25
95-63-6	1,2,4-Trimethylbenzene	0.41	U	1.0	0.41
10061-01-5	cis-1,3-Dichloropropene	0.46	U	1.0	0.46
10061-02-6	trans-1,3-Dichloropropene	0.56	U	1.0	0.56
100-41-4	Ethylbenzene	0.25	U	1.0	0.25
591-78-6	2-Hexanone	0.48	U	10	0.48
75-09-2	Methylene Chloride	0.33	U	1.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	0.99	U	10	0.99
100-42-5	Styrene	0.45	U	1.0	0.45
79-34-5	1,1,2,2-Tetrachloroethane	0.22	U	1.0	0.22
127-18-4	Tetrachloroethene	0.31	U	1.0	0.31
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	0.22	J	1.0	0.22
75-01-4	Vinyl chloride	0.29	U	1.0	0.29
1330-20-7	Xylenes, Total	0.52	U	2.0	0.52
71-55-6	1,1,1-Trichloroethane	0.44	U	1.0	0.44

Lab Name: TestAmerica Canton	Job No.: 240-70040-1			
SDG No.:				
Client Sample ID: MRC-SW5B-092716	Lab Sample ID: 240-70040-5			
Matrix: Water	Lab File ID: UXC8764.D			
Analysis Method: 8260B	Date Collected: 09/27/2016 10:55			
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 13:56			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 250454	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.19	U	1.0	0.19
96-12-8	1,2-Dibromo-3-Chloropropane	0.82	U	2.0	0.82
106-93-4	1,2-Dibromoethane	0.32	U	1.0	0.32
75-71-8	Dichlorodifluoromethane	0.32	U	1.0	0.32
156-59-2	cis-1,2-Dichloroethene	0.26	U	1.0	0.26
156-60-5	trans-1,2-Dichloroethene	0.30	U	1.0	0.30
98-82-8	Isopropylbenzene	0.35	U	1.0	0.35
1634-04-4	Methyl tert-butyl ether	0.20	U	1.0	0.20
76-13-1	1,1,2-Trichlorotrifluoroethane	0.45	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	0.32	U	1.0	0.32
594-20-7	2,2-Dichloropropane	0.26	U *	1.0	0.26
95-50-1	1,2-Dichlorobenzene	0.25	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	0.19	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	0.27	U	1.0	0.27
110-75-8	2-Chloroethyl vinyl ether	0.59	U	10	0.59
75-69-4	Trichlorofluoromethane	0.49	Π *	1.0	0.49
95-49-8	2-Chlorotoluene	0.40	U	1.0	0.40
124-48-1	Chlorodibromomethane	0.43	U	1.0	0.43
108-86-1	Bromobenzene	0.35	U	1.0	0.35
74-97-5	Bromochloromethane	0.50	U	1.0	0.50
106-43-4	4-Chlorotoluene	0.29	U	1.0	0.29
99-87-6	4-Isopropyltoluene	0.43	U	1.0	0.43
87-68-3	Hexachlorobutadiene	0.35	U	1.0	0.35
74-95-3	Dibromomethane	0.42	U	1.0	0.42
108-20-3	Diisopropyl ether	0.50	U	10	0.50
91-20-3	Naphthalene	0.45	U	1.0	0.45
104-51-8	n-Butylbenzene	0.31	U	1.0	0.31
103-65-1	N-Propylbenzene	0.40	U	1.0	0.40
135-98-8	sec-Butylbenzene	0.48	U	1.0	0.48
994-05-8	Tert-amyl methyl ether	0.30	U	5.0	0.30
637-92-3	Ethyl tert-butyl ether	0.23	U	5.0	0.23
98-06-6	tert-Butylbenzene	0.41	U	1.0	0.41
108-05-4	Vinyl acetate	0.41	U	2.0	0.41
75-65-0	tert-Butyl alcohol	4.9	U	50	4.9

Lab Name: TestAmerica Canton Job No.: 240-70040-1 SDG No.: Client Sample ID: MRC-SW5B-092716 Lab Sample ID: 240-70040-5 Matrix: Water Lab File ID: UXC8764.D Analysis Method: 8260B Date Collected: 09/27/2016 10:55 Date Analyzed: 10/08/2016 13:56 Sample wt/vol: 5(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u> Level: (low/med) Low % Moisture: Analysis Batch No.: 250454 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		63-132
460-00-4	4-Bromofluorobenzene (Surr)	111		73-120
2037-26-5	Toluene-d8 (Surr)	104		73-124
1868-53-7	Dibromofluoromethane (Surr)	103		80-120

Lab Name: TestAmerica Canton	Job No.: 240-70040-1			
SDG No.:				
Client Sample ID: MRC-SW6A-092716	Lab Sample ID: 240-70040-6			
Matrix: Water	Lab File ID: UXC8765.D			
Analysis Method: 8260B	Date Collected: 09/27/2016 10:38			
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 14:18			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18 (mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 250454	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	0.94	Ŭ	10	0.94
630-20-6	1,1,1,2-Tetrachloroethane	0.28	U	1.0	0.28
71-43-2	Benzene	0.35	U	1.0	0.35
75-27-4	Bromodichloromethane	0.29	U	1.0	0.29
75-25-2	Bromoform	0.56	U	1.0	0.56
74-83-9	Bromomethane	0.44	U	1.0	0.44
78-93-3	2-Butanone (MEK)	0.53	U	10	0.53
75-15-0	Carbon disulfide	0.38	U	1.0	0.38
56-23-5	Carbon tetrachloride	0.43	U	1.0	0.43
108-90-7	Chlorobenzene	0.25	U	1.0	0.25
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.25	U	1.0	0.25
563-58-6	1,1-Dichloropropene	0.42	U	1.0	0.42
74-87-3	Chloromethane	0.44	U	1.0	0.44
75-34-3	1,1-Dichloroethane	0.30	U	1.0	0.30
87-61-6	1,2,3-Trichlorobenzene	0.37	U	1.0	0.37
96-18-4	1,2,3-Trichloropropane	0.44	U	1.0	0.44
107-06-2	1,2-Dichloroethane	0.23	U	1.0	0.23
75-35-4	1,1-Dichloroethene	0.45	U	1.0	0.45
526-73-8	1,2,3-Trimethylbenzene	0.47	U	5.0	0.47
78-87-5	1,2-Dichloropropane	0.25	U	1.0	0.25
95-63-6	1,2,4-Trimethylbenzene	0.41	U	1.0	0.41
10061-01-5	cis-1,3-Dichloropropene	0.46	U	1.0	0.46
10061-02-6	trans-1,3-Dichloropropene	0.56	U	1.0	0.56
100-41-4	Ethylbenzene	0.25	U	1.0	0.25
591-78-6	2-Hexanone	0.48	U	10	0.48
75-09-2	Methylene Chloride	0.33	U	1.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	0.99	U	10	0.99
100-42-5	Styrene	0.45	U	1.0	0.45
79-34-5	1,1,2,2-Tetrachloroethane	0.22	U	1.0	0.22
127-18-4	Tetrachloroethene	0.31	U	1.0	0.31
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	0.59	J	1.0	0.22
75-01-4	Vinyl chloride	0.29	U	1.0	0.29
1330-20-7	Xylenes, Total	0.52	U	2.0	0.52
71-55-6	1,1,1-Trichloroethane	0.44	U	1.0	0.44

Lab Name: TestAmerica Canton	Job No.: <u>240-70040-1</u>
SDG No.:	
Client Sample ID: MRC-SW6A-092716	Lab Sample ID: 240-70040-6
Matrix: Water	Lab File ID: UXC8765.D
Analysis Method: 8260B	Date Collected: 09/27/2016 10:38
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 14:18
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 250454	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.19	U	1.0	0.19
96-12-8	1,2-Dibromo-3-Chloropropane	0.82	U	2.0	0.82
106-93-4	1,2-Dibromoethane	0.32	U	1.0	0.32
75-71-8	Dichlorodifluoromethane	0.32	U	1.0	0.32
156-59-2	cis-1,2-Dichloroethene	0.26	U	1.0	0.26
156-60-5	trans-1,2-Dichloroethene	0.30	U	1.0	0.30
98-82-8	Isopropylbenzene	0.35	U	1.0	0.35
1634-04-4	Methyl tert-butyl ether	0.20	U	1.0	0.20
76-13-1	1,1,2-Trichlorotrifluoroethane	0.45	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	0.32	U	1.0	0.32
594-20-7	2,2-Dichloropropane	0.26	U *	1.0	0.26
95-50-1	1,2-Dichlorobenzene	0.25	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	0.19	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	0.27	U	1.0	0.27
110-75-8	2-Chloroethyl vinyl ether	0.59	U	10	0.59
75-69-4	Trichlorofluoromethane	0.49	U *	1.0	0.49
95-49-8	2-Chlorotoluene	0.40	U	1.0	0.40
124-48-1	Chlorodibromomethane	0.43	U	1.0	0.43
108-86-1	Bromobenzene	0.35	U	1.0	0.35
74-97-5	Bromochloromethane	0.50	U	1.0	0.50
106-43-4	4-Chlorotoluene	0.29	U	1.0	0.29
99-87-6	4-Isopropyltoluene	0.43	U	1.0	0.43
87-68-3	Hexachlorobutadiene	0.35	U	1.0	0.35
74-95-3	Dibromomethane	0.42	U	1.0	0.42
108-20-3	Diisopropyl ether	0.50	U	10	0.50
91-20-3	Naphthalene	0.45	U	1.0	0.45
104-51-8	n-Butylbenzene	0.31	U	1.0	0.31
103-65-1	N-Propylbenzene	0.40	U	1.0	0.40
135-98-8	sec-Butylbenzene	0.48	U	1.0	0.48
994-05-8	Tert-amyl methyl ether	0.30	U	5.0	0.30
637-92-3	Ethyl tert-butyl ether	0.23	U	5.0	0.23
98-06-6	tert-Butylbenzene	0.41	U	1.0	0.41
108-05-4	Vinyl acetate	0.41	U	2.0	0.41
75-65-0	tert-Butyl alcohol	4.9	U	50	4.9

 Lab Name: TestAmerica Canton
 Job No.: 240-70040-1

 SDG No.:
 Client Sample ID: MRC-SW6A-092716
 Lab Sample ID: 240-70040-6

 Matrix: Water
 Lab File ID: UXC8765.D

 Analysis Method: 8260B
 Date Collected: 09/27/2016 10:38

 Sample wt/vol: 5(mL)
 Date Analyzed: 10/08/2016 14:18

 Soil Aliquot Vol:
 Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: DB-624 ID: 0.18 (mm)

 % Moisture:
 Level: (low/med) Low

 Analysis Batch No.: 250454
 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96		63-132
460-00-4	4-Bromofluorobenzene (Surr)	113		73-120
2037-26-5	Toluene-d8 (Surr)	104		73-124
1868-53-7	Dibromofluoromethane (Surr)	106		80-120

Lab Name: TestAmerica Canton	Job No.: 240-70040-1			
SDG No.:				
Client Sample ID: MRC-SW6B-092716	Lab Sample ID: 240-70040-7			
Matrix: Water	Lab File ID: UXC8766.D			
Analysis Method: 8260B	Date Collected: 09/27/2016 10:41			
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 14:41			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 250454	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	0.94	U	10	0.94
630-20-6	1,1,1,2-Tetrachloroethane	0.28	U	1.0	0.28
71-43-2	Benzene	0.35	U	1.0	0.35
75-27-4	Bromodichloromethane	0.29	U	1.0	0.29
75-25-2	Bromoform	0.56	U	1.0	0.56
74-83-9	Bromomethane	0.44	U	1.0	0.44
78-93-3	2-Butanone (MEK)	0.53	U	10	0.53
75-15-0	Carbon disulfide	0.38	U	1.0	0.38
56-23-5	Carbon tetrachloride	0.43	U	1.0	0.43
108-90-7	Chlorobenzene	0.25	U	1.0	0.25
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.25	U	1.0	0.25
563-58-6	1,1-Dichloropropene	0.42	U	1.0	0.42
74-87-3	Chloromethane	0.44	U	1.0	0.44
75-34-3	1,1-Dichloroethane	0.30	U	1.0	0.30
87-61-6	1,2,3-Trichlorobenzene	0.37	U	1.0	0.37
96-18-4	1,2,3-Trichloropropane	0.44	U	1.0	0.44
107-06-2	1,2-Dichloroethane	0.23	U	1.0	0.23
75-35-4	1,1-Dichloroethene	0.45	U	1.0	0.45
526-73-8	1,2,3-Trimethylbenzene	0.47	U	5.0	0.47
78-87-5	1,2-Dichloropropane	0.25	U	1.0	0.25
95-63-6	1,2,4-Trimethylbenzene	0.41	U	1.0	0.41
10061-01-5	cis-1,3-Dichloropropene	0.46	U	1.0	0.46
10061-02-6	trans-1,3-Dichloropropene	0.56	U	1.0	0.56
100-41-4	Ethylbenzene	0.25	U	1.0	0.25
591-78-6	2-Hexanone	0.48	U	10	0.48
75-09-2	Methylene Chloride	0.33	U	1.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	0.99	U	10	0.99
100-42-5	Styrene	0.45	U	1.0	0.45
79-34-5	1,1,2,2-Tetrachloroethane	0.22	U	1.0	0.22
127-18-4	Tetrachloroethene	0.31	U	1.0	0.31
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	0.62	J	1.0	0.22
75-01-4	Vinyl chloride	0.29	U	1.0	0.29
1330-20-7	Xylenes, Total	0.52	U	2.0	0.52
71-55-6	1,1,1-Trichloroethane	0.44	U	1.0	0.44

Lab Name: TestAmerica Canton	Job No.: <u>240-70040-1</u>
SDG No.:	
Client Sample ID: MRC-SW6B-092716	Lab Sample ID: 240-70040-7
Matrix: Water	Lab File ID: UXC8766.D
Analysis Method: 8260B	Date Collected: 09/27/2016 10:41
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 14:41
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 250454	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.19	U	1.0	0.19
96-12-8	1,2-Dibromo-3-Chloropropane	0.82	U	2.0	0.82
106-93-4	1,2-Dibromoethane	0.32	U	1.0	0.32
75-71-8	Dichlorodifluoromethane	0.32	U	1.0	0.32
156-59-2	cis-1,2-Dichloroethene	0.26	U	1.0	0.26
156-60-5	trans-1,2-Dichloroethene	0.30	U	1.0	0.30
98-82-8	Isopropylbenzene	0.35	U	1.0	0.35
1634-04-4	Methyl tert-butyl ether	0.20	U	1.0	0.20
76-13-1	1,1,2-Trichlorotrifluoroethane	0.45	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	0.32	U	1.0	0.32
594-20-7	2,2-Dichloropropane	0.26	U *	1.0	0.26
95-50-1	1,2-Dichlorobenzene	0.25	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	0.19	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	0.27	U	1.0	0.27
110-75-8	2-Chloroethyl vinyl ether	0.59	U	10	0.59
75-69-4	Trichlorofluoromethane	0.49	U *	1.0	0.49
95-49-8	2-Chlorotoluene	0.40	U	1.0	0.40
124-48-1	Chlorodibromomethane	0.43	U	1.0	0.43
108-86-1	Bromobenzene	0.35	U	1.0	0.35
74-97-5	Bromochloromethane	0.50	U	1.0	0.50
106-43-4	4-Chlorotoluene	0.29	U	1.0	0.29
99-87-6	4-Isopropyltoluene	0.43	U	1.0	0.43
87-68-3	Hexachlorobutadiene	0.35	U	1.0	0.35
74-95-3	Dibromomethane	0.42	U	1.0	0.42
108-20-3	Diisopropyl ether	0.50	U	10	0.50
91-20-3	Naphthalene	0.45	U	1.0	0.45
104-51-8	n-Butylbenzene	0.31	U	1.0	0.31
103-65-1	N-Propylbenzene	0.40	U	1.0	0.40
135-98-8	sec-Butylbenzene	0.48	U	1.0	0.48
994-05-8	Tert-amyl methyl ether	0.30	U	5.0	0.30
637-92-3	Ethyl tert-butyl ether	0.23	U	5.0	0.23
98-06-6	tert-Butylbenzene	0.41	U	1.0	0.41
108-05-4	Vinyl acetate	0.41	U	2.0	0.41
75-65-0	tert-Butyl alcohol	4.9	U	50	4.9

 Lab Name: TestAmerica Canton
 Job No.: 240-70040-1

 SDG No.:
 Client Sample ID: MRC-SW6B-092716
 Lab Sample ID: 240-70040-7

 Matrix: Water
 Lab File ID: UXC8766.D

 Analysis Method: 8260B
 Date Collected: 09/27/2016 10:41

 Sample wt/vol: 5(mL)
 Date Analyzed: 10/08/2016 14:41

 Soil Aliquot Vol:
 Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: DB-624 ID: 0.18 (mm)

 % Moisture:
 Level: (low/med) Low

 Analysis Batch No.: 250454
 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96		63-132
460-00-4	4-Bromofluorobenzene (Surr)	110		73-120
2037-26-5	Toluene-d8 (Surr)	101		73-124
1868-53-7	Dibromofluoromethane (Surr)	104		80-120

Lab Name: TestAmerica Canton	Job No.: 240-70040-1
SDG No.:	
Client Sample ID: MRC-SW7A-092716	Lab Sample ID: 240-70040-8
Matrix: Water	Lab File ID: UXC8767.D
Analysis Method: 8260B	Date Collected: 09/27/2016 10:21
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 15:03
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 250454	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	0.94	U	10	0.94
630-20-6	1,1,1,2-Tetrachloroethane	0.28	U	1.0	0.28
71-43-2	Benzene	0.35	U	1.0	0.35
75-27-4	Bromodichloromethane	0.29	U	1.0	0.29
75-25-2	Bromoform	0.56	U	1.0	0.56
74-83-9	Bromomethane	0.44	U	1.0	0.44
78-93-3	2-Butanone (MEK)	0.53	U	10	0.53
75-15-0	Carbon disulfide	0.38	U	1.0	0.38
56-23-5	Carbon tetrachloride	0.43	U	1.0	0.43
108-90-7	Chlorobenzene	0.25	U	1.0	0.25
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.25	U	1.0	0.25
563-58-6	1,1-Dichloropropene	0.42	U	1.0	0.42
74-87-3	Chloromethane	0.44	U	1.0	0.44
75-34-3	1,1-Dichloroethane	0.30	U	1.0	0.30
87-61-6	1,2,3-Trichlorobenzene	0.37	U	1.0	0.37
96-18-4	1,2,3-Trichloropropane	0.44	U	1.0	0.44
107-06-2	1,2-Dichloroethane	0.23	U	1.0	0.23
75-35-4	1,1-Dichloroethene	0.45	U	1.0	0.45
526-73-8	1,2,3-Trimethylbenzene	0.47	U	5.0	0.47
78-87-5	1,2-Dichloropropane	0.25	U	1.0	0.25
95-63-6	1,2,4-Trimethylbenzene	0.41	U	1.0	0.41
10061-01-5	cis-1,3-Dichloropropene	0.46	U	1.0	0.46
10061-02-6	trans-1,3-Dichloropropene	0.56	U	1.0	0.56
100-41-4	Ethylbenzene	0.25	U	1.0	0.25
591-78-6	2-Hexanone	0.48	U	10	0.48
75-09-2	Methylene Chloride	0.33	U	1.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	0.99	U	10	0.99
100-42-5	Styrene	0.45	U	1.0	0.45
79-34-5	1,1,2,2-Tetrachloroethane	0.22	U	1.0	0.22
127-18-4	Tetrachloroethene	0.31	U	1.0	0.31
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	0.56	J	1.0	0.22
75-01-4	Vinyl chloride	0.29	U	1.0	0.29
1330-20-7	Xylenes, Total	0.52	U	2.0	0.52
71-55-6	1,1,1-Trichloroethane	0.44	U	1.0	0.44

Lab Name: TestAmerica Canton	Job No.: <u>240-70040-1</u>
SDG No.:	
Client Sample ID: MRC-SW7A-092716	Lab Sample ID: 240-70040-8
Matrix: Water	Lab File ID: UXC8767.D
Analysis Method: 8260B	Date Collected: 09/27/2016 10:21
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 15:03
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 250454	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.19	U	1.0	0.19
96-12-8	1,2-Dibromo-3-Chloropropane	0.82	U	2.0	0.82
106-93-4	1,2-Dibromoethane	0.32	U	1.0	0.32
75-71-8	Dichlorodifluoromethane	0.32	U	1.0	0.32
156-59-2	cis-1,2-Dichloroethene	0.26	U	1.0	0.26
156-60-5	trans-1,2-Dichloroethene	0.30	U	1.0	0.30
98-82-8	Isopropylbenzene	0.35	U	1.0	0.35
1634-04-4	Methyl tert-butyl ether	0.20	U	1.0	0.20
76-13-1	1,1,2-Trichlorotrifluoroethane	0.45	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	0.32	U	1.0	0.32
594-20-7	2,2-Dichloropropane	0.26	U *	1.0	0.26
95-50-1	1,2-Dichlorobenzene	0.25	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	0.19	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	0.27	U	1.0	0.27
110-75-8	2-Chloroethyl vinyl ether	0.59	U	10	0.59
75-69-4	Trichlorofluoromethane	0.49	U *	1.0	0.49
95-49-8	2-Chlorotoluene	0.40	U	1.0	0.40
124-48-1	Chlorodibromomethane	0.43	U	1.0	0.43
108-86-1	Bromobenzene	0.35	U	1.0	0.35
74-97-5	Bromochloromethane	0.50	U	1.0	0.50
106-43-4	4-Chlorotoluene	0.29	U	1.0	0.29
99-87-6	4-Isopropyltoluene	0.43	U	1.0	0.43
87-68-3	Hexachlorobutadiene	0.35	U	1.0	0.35
74-95-3	Dibromomethane	0.42	U	1.0	0.42
108-20-3	Diisopropyl ether	0.50	U	10	0.50
91-20-3	Naphthalene	0.45	U	1.0	0.45
104-51-8	n-Butylbenzene	0.31	U	1.0	0.31
103-65-1	N-Propylbenzene	0.40	U	1.0	0.40
135-98-8	sec-Butylbenzene	0.48	U	1.0	0.48
994-05-8	Tert-amyl methyl ether	0.30	U	5.0	0.30
637-92-3	Ethyl tert-butyl ether	0.23	U	5.0	0.23
98-06-6	tert-Butylbenzene	0.41	U	1.0	0.41
108-05-4	Vinyl acetate	0.41	U	2.0	0.41
75-65-0	tert-Butyl alcohol	4.9	U	50	4.9

 Lab Name: TestAmerica Canton
 Job No.: 240-70040-1

 SDG No.:
 Client Sample ID: MRC-SW7A-092716
 Lab Sample ID: 240-70040-8

 Matrix: Water
 Lab File ID: UXC8767.D

 Analysis Method: 8260B
 Date Collected: 09/27/2016 10:21

 Sample wt/vol: 5(mL)
 Date Analyzed: 10/08/2016 15:03

 Soil Aliquot Vol:
 Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: DB-624 ID: 0.18 (mm)

 % Moisture:
 Level: (low/med) Low

 Analysis Batch No.: 250454
 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		63-132
460-00-4	4-Bromofluorobenzene (Surr)	112		73-120
2037-26-5	Toluene-d8 (Surr)	105		73-124
1868-53-7	Dibromofluoromethane (Surr)	105		80-120

Lab Name: TestAmerica Canton	Job No.: 240-70040-1		
SDG No.:			
Client Sample ID: MRC-SW7B-092716	Lab Sample ID: 240-70040-9		
Matrix: Water	Lab File ID: UXC8768.D		
Analysis Method: 8260B	Date Collected: 09/27/2016 10:27		
Sample wt/vol: 5 (mL)	Date Analyzed: 10/08/2016 15:26		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 250454	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	0.94	U	10	0.94
630-20-6	1,1,1,2-Tetrachloroethane	0.28	U	1.0	0.28
71-43-2	Benzene	0.35	U	1.0	0.35
75-27-4	Bromodichloromethane	0.29	U	1.0	0.29
75-25-2	Bromoform	0.56	U	1.0	0.56
74-83-9	Bromomethane	0.44	U	1.0	0.44
78-93-3	2-Butanone (MEK)	0.53	U	10	0.53
75-15-0	Carbon disulfide	0.38	U	1.0	0.38
56-23-5	Carbon tetrachloride	0.43	U	1.0	0.43
108-90-7	Chlorobenzene	0.25	U	1.0	0.25
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.25	U	1.0	0.25
563-58-6	1,1-Dichloropropene	0.42	U	1.0	0.42
74-87-3	Chloromethane	0.44	U	1.0	0.44
75-34-3	1,1-Dichloroethane	0.30	U	1.0	0.30
87-61-6	1,2,3-Trichlorobenzene	0.37	U	1.0	0.37
96-18-4	1,2,3-Trichloropropane	0.44	U	1.0	0.44
107-06-2	1,2-Dichloroethane	0.23	U	1.0	0.23
75-35-4	1,1-Dichloroethene	0.45	U	1.0	0.45
526-73-8	1,2,3-Trimethylbenzene	0.47	U	5.0	0.47
78-87-5	1,2-Dichloropropane	0.25	U	1.0	0.25
95-63-6	1,2,4-Trimethylbenzene	0.41	U	1.0	0.41
10061-01-5	cis-1,3-Dichloropropene	0.46	U	1.0	0.46
10061-02-6	trans-1,3-Dichloropropene	0.56	U	1.0	0.56
100-41-4	Ethylbenzene	0.25	U	1.0	0.25
591-78-6	2-Hexanone	0.48	U	10	0.48
75-09-2	Methylene Chloride	0.33	U	1.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	0.99	U	10	0.99
100-42-5	Styrene	0.45	U	1.0	0.45
79-34-5	1,1,2,2-Tetrachloroethane	0.22	U	1.0	0.22
127-18-4	Tetrachloroethene	0.31	U	1.0	0.31
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	0.58	J	1.0	0.22
75-01-4	Vinyl chloride	0.29	U	1.0	0.29
1330-20-7	Xylenes, Total	0.52	U	2.0	0.52
71-55-6	1,1,1-Trichloroethane	0.44	IJ	1.0	0.44

Lab Name: TestAmerica Canton	Job No.: 240-70040-1
SDG No.:	
Client Sample ID: MRC-SW7B-092716	Lab Sample ID: 240-70040-9
Matrix: Water	Lab File ID: UXC8768.D
Analysis Method: 8260B	Date Collected: 09/27/2016 10:27
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 15:26
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 250454	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.19	U	1.0	0.19
96-12-8	1,2-Dibromo-3-Chloropropane	0.82	U	2.0	0.82
106-93-4	1,2-Dibromoethane	0.32	U	1.0	0.32
75-71-8	Dichlorodifluoromethane	0.32	U	1.0	0.32
156-59-2	cis-1,2-Dichloroethene	0.26	U	1.0	0.26
156-60-5	trans-1,2-Dichloroethene	0.30	U	1.0	0.30
98-82-8	Isopropylbenzene	0.35	U	1.0	0.35
1634-04-4	Methyl tert-butyl ether	0.20	U	1.0	0.20
76-13-1	1,1,2-Trichlorotrifluoroethane	0.45	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	0.32	U	1.0	0.32
594-20-7	2,2-Dichloropropane	0.26	U *	1.0	0.26
95-50-1	1,2-Dichlorobenzene	0.25	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	0.19	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	0.27	U	1.0	0.27
110-75-8	2-Chloroethyl vinyl ether	0.59	U	10	0.59
75-69-4	Trichlorofluoromethane	0.49	U *	1.0	0.49
95-49-8	2-Chlorotoluene	0.40	U	1.0	0.40
124-48-1	Chlorodibromomethane	0.43	U	1.0	0.43
108-86-1	Bromobenzene	0.35	U	1.0	0.35
74-97-5	Bromochloromethane	0.50	U	1.0	0.50
106-43-4	4-Chlorotoluene	0.29	U	1.0	0.29
99-87-6	4-Isopropyltoluene	0.43	U	1.0	0.43
87-68-3	Hexachlorobutadiene	0.35	U	1.0	0.35
74-95-3	Dibromomethane	0.42	U	1.0	0.42
108-20-3	Diisopropyl ether	0.50	U	10	0.50
91-20-3	Naphthalene	0.45	U	1.0	0.45
104-51-8	n-Butylbenzene	0.31	U	1.0	0.31
103-65-1	N-Propylbenzene	0.40	U	1.0	0.40
135-98-8	sec-Butylbenzene	0.48	U	1.0	0.48
994-05-8	Tert-amyl methyl ether	0.30	U	5.0	0.30
637-92-3	Ethyl tert-butyl ether	0.23	U	5.0	0.23
98-06-6	tert-Butylbenzene	0.41	U	1.0	0.41
108-05-4	Vinyl acetate	0.41	U	2.0	0.41
75-65-0	tert-Butyl alcohol	4.9	U	50	4.9

 Lab Name: TestAmerica Canton
 Job No.: 240-70040-1

 SDG No.:
 Client Sample ID: MRC-SW7B-092716
 Lab Sample ID: 240-70040-9

 Matrix: Water
 Lab File ID: UXC8768.D

 Analysis Method: 8260B
 Date Collected: 09/27/2016 10:27

 Sample wt/vol: 5(mL)
 Date Analyzed: 10/08/2016 15:26

 Soil Aliquot Vol:
 Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: DB-624 ID: 0.18 (mm)

 % Moisture:
 Level: (low/med) Low

 Analysis Batch No.: 250454
 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96		63-132
460-00-4	4-Bromofluorobenzene (Surr)	107		73-120
2037-26-5	Toluene-d8 (Surr)	102		73-124
1868-53-7	Dibromofluoromethane (Surr)	100		80-120

Lab Name: TestAmerica Canton	Job No.: 240-70040-1
SDG No.:	
Client Sample ID: MRC-SW8A-092716	Lab Sample ID: 240-70040-10
Matrix: Water	Lab File ID: UXC8769.D
Analysis Method: 8260B	Date Collected: 09/27/2016 10:47
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 15:48
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 250454	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	0.94	U	10	0.94
630-20-6	1,1,1,2-Tetrachloroethane	0.28	U	1.0	0.28
71-43-2	Benzene	0.35	U	1.0	0.35
75-27-4	Bromodichloromethane	0.29	U	1.0	0.29
75-25-2	Bromoform	0.56	U	1.0	0.56
74-83-9	Bromomethane	0.44	U	1.0	0.44
78-93-3	2-Butanone (MEK)	0.53	U	10	0.53
75-15-0	Carbon disulfide	0.38	U	1.0	0.38
56-23-5	Carbon tetrachloride	0.43	U	1.0	0.43
108-90-7	Chlorobenzene	0.25	U	1.0	0.25
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.25	U	1.0	0.25
563-58-6	1,1-Dichloropropene	0.42	U	1.0	0.42
74-87-3	Chloromethane	0.44	U	1.0	0.44
75-34-3	1,1-Dichloroethane	0.30	U	1.0	0.30
87-61-6	1,2,3-Trichlorobenzene	0.37	U	1.0	0.37
96-18-4	1,2,3-Trichloropropane	0.44	U	1.0	0.44
107-06-2	1,2-Dichloroethane	0.23	U	1.0	0.23
75-35-4	1,1-Dichloroethene	0.45	U	1.0	0.45
526-73-8	1,2,3-Trimethylbenzene	0.47	U	5.0	0.47
78-87-5	1,2-Dichloropropane	0.25	U	1.0	0.25
95-63-6	1,2,4-Trimethylbenzene	0.41	U	1.0	0.41
10061-01-5	cis-1,3-Dichloropropene	0.46	U	1.0	0.46
10061-02-6	trans-1,3-Dichloropropene	0.56	U	1.0	0.56
100-41-4	Ethylbenzene	0.25	U	1.0	0.25
591-78-6	2-Hexanone	0.48	U	10	0.48
75-09-2	Methylene Chloride	0.33	U	1.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	0.99	U	10	0.99
100-42-5	Styrene	0.45	U	1.0	0.45
79-34-5	1,1,2,2-Tetrachloroethane	0.22	U	1.0	0.22
127-18-4	Tetrachloroethene	0.31	U	1.0	0.31
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	0.61	J	1.0	0.22
75-01-4	Vinyl chloride	0.29	U	1.0	0.29
1330-20-7	Xylenes, Total	0.52	U	2.0	0.52
71-55-6	1,1,1-Trichloroethane	0.44	U	1.0	0.44

Lab Name: TestAmerica Canton	Job No.: 240-70040-1
SDG No.:	
Client Sample ID: MRC-SW8A-092716	Lab Sample ID: 240-70040-10
Matrix: Water	Lab File ID: UXC8769.D
Analysis Method: 8260B	Date Collected: 09/27/2016 10:47
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 15:48
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 250454	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.19	Ū	1.0	0.19
96-12-8	1,2-Dibromo-3-Chloropropane	0.82	U	2.0	0.82
106-93-4	1,2-Dibromoethane	0.32	U	1.0	0.32
75-71-8	Dichlorodifluoromethane	0.32	U	1.0	0.32
156-59-2	cis-1,2-Dichloroethene	0.26	U	1.0	0.26
156-60-5	trans-1,2-Dichloroethene	0.30	U	1.0	0.30
98-82-8	Isopropylbenzene	0.35	U	1.0	0.35
1634-04-4	Methyl tert-butyl ether	0.20	U	1.0	0.20
76-13-1	1,1,2-Trichlorotrifluoroethane	0.45	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	0.32	U	1.0	0.32
594-20-7	2,2-Dichloropropane	0.26	Π *	1.0	0.26
95-50-1	1,2-Dichlorobenzene	0.25	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	0.19	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	0.27	U	1.0	0.27
110-75-8	2-Chloroethyl vinyl ether	0.59	U	10	0.59
75-69-4	Trichlorofluoromethane	0.49	Π *	1.0	0.49
95-49-8	2-Chlorotoluene	0.40	U	1.0	0.40
124-48-1	Chlorodibromomethane	0.43	U	1.0	0.43
108-86-1	Bromobenzene	0.35	U	1.0	0.35
74-97-5	Bromochloromethane	0.50	U	1.0	0.50
106-43-4	4-Chlorotoluene	0.29	U	1.0	0.29
99-87-6	4-Isopropyltoluene	0.43	U	1.0	0.43
87-68-3	Hexachlorobutadiene	0.35	U	1.0	0.35
74-95-3	Dibromomethane	0.42	U	1.0	0.42
108-20-3	Diisopropyl ether	0.50	U	10	0.50
91-20-3	Naphthalene	0.45	U	1.0	0.45
104-51-8	n-Butylbenzene	0.31	U	1.0	0.31
103-65-1	N-Propylbenzene	0.40	U	1.0	0.40
135-98-8	sec-Butylbenzene	0.48	U	1.0	0.48
994-05-8	Tert-amyl methyl ether	0.30	U	5.0	0.30
637-92-3	Ethyl tert-butyl ether	0.23	U	5.0	0.23
98-06-6	tert-Butylbenzene	0.41	U	1.0	0.41
108-05-4	Vinyl acetate	0.41	U	2.0	0.41
75-65-0	tert-Butyl alcohol	4.9	U	50	4.9

 Lab Name: TestAmerica Canton
 Job No.: 240-70040-1

 SDG No.:
 Client Sample ID: MRC-SW8A-092716
 Lab Sample ID: 240-70040-10

 Matrix: Water
 Lab File ID: UXC8769.D

 Analysis Method: 8260B
 Date Collected: 09/27/2016 10:47

 Sample wt/vol: 5(mL)
 Date Analyzed: 10/08/2016 15:48

 Soil Aliquot Vol:
 Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: DB-624 ID: 0.18 (mm)

 % Moisture:
 Level: (low/med) Low

 Analysis Batch No.: 250454
 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		63-132
460-00-4	4-Bromofluorobenzene (Surr)	111		73-120
2037-26-5	Toluene-d8 (Surr)	103		73-124
1868-53-7	Dibromofluoromethane (Surr)	104		80-120

Lab Name: TestAmerica Canton	Job No.: 240-70040-1
SDG No.:	
Client Sample ID: MRC-SW8B-092716	Lab Sample ID: 240-70040-11
Matrix: Water	Lab File ID: UXC8770.D
Analysis Method: 8260B	Date Collected: 09/27/2016 10:50
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 16:10
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 250454	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	0.94	Ŭ	10	0.94
630-20-6	1,1,1,2-Tetrachloroethane	0.28	U	1.0	0.28
71-43-2	Benzene	0.35	U	1.0	0.35
75-27-4	Bromodichloromethane	0.29	U	1.0	0.29
75-25-2	Bromoform	0.56	U	1.0	0.56
74-83-9	Bromomethane	0.44	U	1.0	0.44
78-93-3	2-Butanone (MEK)	0.53	U	10	0.53
75-15-0	Carbon disulfide	0.38	U	1.0	0.38
56-23-5	Carbon tetrachloride	0.43	U	1.0	0.43
108-90-7	Chlorobenzene	0.25	U	1.0	0.25
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.25	U	1.0	0.25
563-58-6	1,1-Dichloropropene	0.42	U	1.0	0.42
74-87-3	Chloromethane	0.44	U	1.0	0.44
75-34-3	1,1-Dichloroethane	0.30	U	1.0	0.30
87-61-6	1,2,3-Trichlorobenzene	0.37	U	1.0	0.37
96-18-4	1,2,3-Trichloropropane	0.44	U	1.0	0.44
107-06-2	1,2-Dichloroethane	0.23	U	1.0	0.23
75-35-4	1,1-Dichloroethene	0.45	U	1.0	0.45
526-73-8	1,2,3-Trimethylbenzene	0.47	U	5.0	0.47
78-87-5	1,2-Dichloropropane	0.25	U	1.0	0.25
95-63-6	1,2,4-Trimethylbenzene	0.41	U	1.0	0.41
10061-01-5	cis-1,3-Dichloropropene	0.46	U	1.0	0.46
10061-02-6	trans-1,3-Dichloropropene	0.56	U	1.0	0.56
100-41-4	Ethylbenzene	0.25	U	1.0	0.25
591-78-6	2-Hexanone	0.48	U	10	0.48
75-09-2	Methylene Chloride	0.33	U	1.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	0.99	U	10	0.99
100-42-5	Styrene	0.45	U	1.0	0.45
79-34-5	1,1,2,2-Tetrachloroethane	0.22	U	1.0	0.22
127-18-4	Tetrachloroethene	0.31	U	1.0	0.31
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	0.62	J	1.0	0.22
75-01-4	Vinyl chloride	0.29	U	1.0	0.29
1330-20-7	Xylenes, Total	0.52	U	2.0	0.52
71-55-6	1,1,1-Trichloroethane	0.44	U	1.0	0.44

Lab Name: TestAmerica Canton	Job No.: 240-70040-1	
SDG No.:		
Client Sample ID: MRC-SW8B-092716	Lab Sample ID: 240-70040-11	
Matrix: Water	Lab File ID: UXC8770.D	
Analysis Method: 8260B	Date Collected: 09/27/2016 10:50	
Sample wt/vol: 5 (mL)	Date Analyzed: 10/08/2016 16:10	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)	
% Moisture:	Level: (low/med) Low	
Analysis Batch No.: 250454	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.19	Ū	1.0	0.19
96-12-8	1,2-Dibromo-3-Chloropropane	0.82	U	2.0	0.82
106-93-4	1,2-Dibromoethane	0.32	U	1.0	0.32
75-71-8	Dichlorodifluoromethane	0.32	U	1.0	0.32
156-59-2	cis-1,2-Dichloroethene	0.26	U	1.0	0.26
156-60-5	trans-1,2-Dichloroethene	0.30	U	1.0	0.30
98-82-8	Isopropylbenzene	0.35	U	1.0	0.35
1634-04-4	Methyl tert-butyl ether	0.20	U	1.0	0.20
76-13-1	1,1,2-Trichlorotrifluoroethane	0.45	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	0.32	U	1.0	0.32
594-20-7	2,2-Dichloropropane	0.26	Π *	1.0	0.26
95-50-1	1,2-Dichlorobenzene	0.25	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	0.19	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	0.27	U	1.0	0.27
110-75-8	2-Chloroethyl vinyl ether	0.59	U	10	0.59
75-69-4	Trichlorofluoromethane	0.49	Π *	1.0	0.49
95-49-8	2-Chlorotoluene	0.40	U	1.0	0.40
124-48-1	Chlorodibromomethane	0.43	U	1.0	0.43
108-86-1	Bromobenzene	0.35	U	1.0	0.35
74-97-5	Bromochloromethane	0.50	U	1.0	0.50
106-43-4	4-Chlorotoluene	0.29	U	1.0	0.29
99-87-6	4-Isopropyltoluene	0.43	U	1.0	0.43
87-68-3	Hexachlorobutadiene	0.35	U	1.0	0.35
74-95-3	Dibromomethane	0.42	U	1.0	0.42
108-20-3	Diisopropyl ether	0.50	U	10	0.50
91-20-3	Naphthalene	0.45	U	1.0	0.45
104-51-8	n-Butylbenzene	0.31	U	1.0	0.31
103-65-1	N-Propylbenzene	0.40	U	1.0	0.40
135-98-8	sec-Butylbenzene	0.48	U	1.0	0.48
994-05-8	Tert-amyl methyl ether	0.30	U	5.0	0.30
637-92-3	Ethyl tert-butyl ether	0.23	U	5.0	0.23
98-06-6	tert-Butylbenzene	0.41	U	1.0	0.41
108-05-4	Vinyl acetate	0.41	U	2.0	0.41
75-65-0	tert-Butyl alcohol	4.9	U	50	4.9

 Lab Name: TestAmerica Canton
 Job No.: 240-70040-1

 SDG No.:
 Client Sample ID: MRC-SW8B-092716
 Lab Sample ID: 240-70040-11

 Matrix: Water
 Lab File ID: UXC8770.D

 Analysis Method: 8260B
 Date Collected: 09/27/2016 10:50

 Sample wt/vol: 5(mL)
 Date Analyzed: 10/08/2016 16:10

 Soil Aliquot Vol:
 Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: DB-624 ID: 0.18 (mm)

 % Moisture:
 Level: (low/med) Low

 Analysis Batch No.: 250454
 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		63-132
460-00-4	4-Bromofluorobenzene (Surr)	107		73-120
2037-26-5	Toluene-d8 (Surr)	104		73-124
1868-53-7	Dibromofluoromethane (Surr)	104		80-120

Lab Name: TestAmerica Canton	Job No.: 240-70040-1		
SDG No.:			
Client Sample ID: MRC-SW9A-092716	Lab Sample ID: 240-70040-12		
Matrix: Water	Lab File ID: UXC8771.D		
Analysis Method: 8260B	Date Collected: 09/27/2016 10:31		
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 16:32		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18 (mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 250454	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	0.94	U	10	0.94
630-20-6	1,1,1,2-Tetrachloroethane	0.28	U	1.0	0.28
71-43-2	Benzene	0.35	U	1.0	0.35
75-27-4	Bromodichloromethane	0.29	U	1.0	0.29
75-25-2	Bromoform	0.56	U	1.0	0.56
74-83-9	Bromomethane	0.44	U	1.0	0.44
78-93-3	2-Butanone (MEK)	0.53	U	10	0.53
75-15-0	Carbon disulfide	0.38	U	1.0	0.38
56-23-5	Carbon tetrachloride	0.43	U	1.0	0.43
108-90-7	Chlorobenzene	0.25	U	1.0	0.25
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.25	U	1.0	0.25
563-58-6	1,1-Dichloropropene	0.42	U	1.0	0.42
74-87-3	Chloromethane	0.44	U	1.0	0.44
75-34-3	1,1-Dichloroethane	0.30	U	1.0	0.30
87-61-6	1,2,3-Trichlorobenzene	0.37	U	1.0	0.37
96-18-4	1,2,3-Trichloropropane	0.44	U	1.0	0.44
107-06-2	1,2-Dichloroethane	0.23	U	1.0	0.23
75-35-4	1,1-Dichloroethene	0.45	U	1.0	0.45
526-73-8	1,2,3-Trimethylbenzene	0.47	U	5.0	0.47
78-87-5	1,2-Dichloropropane	0.25	U	1.0	0.25
95-63-6	1,2,4-Trimethylbenzene	0.41	U	1.0	0.41
10061-01-5	cis-1,3-Dichloropropene	0.46	U	1.0	0.46
10061-02-6	trans-1,3-Dichloropropene	0.56	U	1.0	0.56
100-41-4	Ethylbenzene	0.25	U	1.0	0.25
591-78-6	2-Hexanone	0.48	U	10	0.48
75-09-2	Methylene Chloride	0.33	U	1.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	0.99	U	10	0.99
100-42-5	Styrene	0.45	U	1.0	0.45
79-34-5	1,1,2,2-Tetrachloroethane	0.22	U	1.0	0.22
127-18-4	Tetrachloroethene	0.31	U	1.0	0.31
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	0.52	J	1.0	0.22
75-01-4	Vinyl chloride	0.29	U	1.0	0.29
1330-20-7	Xylenes, Total	0.52	U	2.0	0.52
71-55-6	1,1,1-Trichloroethane	0.44	U	1.0	0.44

Lab Name: TestAmerica Canton	Job No.: 240-70040-1		
SDG No.:			
Client Sample ID: MRC-SW9A-092716	Lab Sample ID: 240-70040-12		
Matrix: Water	Lab File ID: UXC8771.D		
Analysis Method: 8260B	Date Collected: 09/27/2016 10:31		
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 16:32		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 250454	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.19	U	1.0	0.19
96-12-8	1,2-Dibromo-3-Chloropropane	0.82	U	2.0	0.82
106-93-4	1,2-Dibromoethane	0.32	U	1.0	0.32
75-71-8	Dichlorodifluoromethane	0.32	U	1.0	0.32
156-59-2	cis-1,2-Dichloroethene	0.26	U	1.0	0.26
156-60-5	trans-1,2-Dichloroethene	0.30	U	1.0	0.30
98-82-8	Isopropylbenzene	0.35	U	1.0	0.35
1634-04-4	Methyl tert-butyl ether	0.20	U	1.0	0.20
76-13-1	1,1,2-Trichlorotrifluoroethane	0.45	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	0.32	U	1.0	0.32
594-20-7	2,2-Dichloropropane	0.26	U *	1.0	0.26
95-50-1	1,2-Dichlorobenzene	0.25	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	0.19	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	0.27	U	1.0	0.27
110-75-8	2-Chloroethyl vinyl ether	0.59	U	10	0.59
75-69-4	Trichlorofluoromethane	0.49	U *	1.0	0.49
95-49-8	2-Chlorotoluene	0.40	U	1.0	0.40
124-48-1	Chlorodibromomethane	0.43	U	1.0	0.43
108-86-1	Bromobenzene	0.35	U	1.0	0.35
74-97-5	Bromochloromethane	0.50	U	1.0	0.50
106-43-4	4-Chlorotoluene	0.29	U	1.0	0.29
99-87-6	4-Isopropyltoluene	0.43	U	1.0	0.43
87-68-3	Hexachlorobutadiene	0.35	U	1.0	0.35
74-95-3	Dibromomethane	0.42	U	1.0	0.42
108-20-3	Diisopropyl ether	0.50	U	10	0.50
91-20-3	Naphthalene	0.45	U	1.0	0.45
104-51-8	n-Butylbenzene	0.31	U	1.0	0.31
103-65-1	N-Propylbenzene	0.40	U	1.0	0.40
135-98-8	sec-Butylbenzene	0.48	U	1.0	0.48
994-05-8	Tert-amyl methyl ether	0.30	U	5.0	0.30
637-92-3	Ethyl tert-butyl ether	0.23	U	5.0	0.23
98-06-6	tert-Butylbenzene	0.41	U	1.0	0.41
108-05-4	Vinyl acetate	0.41	U	2.0	0.41
75-65-0	tert-Butyl alcohol	4.9	U	50	4.9

 Lab Name: TestAmerica Canton
 Job No.: 240-70040-1

 SDG No.:
 Client Sample ID: MRC-SW9A-092716
 Lab Sample ID: 240-70040-12

 Matrix: Water
 Lab File ID: UXC8771.D

 Analysis Method: 8260B
 Date Collected: 09/27/2016 10:31

 Sample wt/vol: 5(mL)
 Date Analyzed: 10/08/2016 16:32

 Soil Aliquot Vol:
 Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: DB-624
 ID: 0.18 (mm)

 % Moisture:
 Level: (low/med) Low

 Analysis Batch No.: 250454
 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		63-132
460-00-4	4-Bromofluorobenzene (Surr)	108		73-120
2037-26-5	Toluene-d8 (Surr)	103		73-124
1868-53-7	Dibromofluoromethane (Surr)	104		80-120

Lab Name: TestAmerica Canton	Job No.: 240-70040-1		
SDG No.:			
Client Sample ID: MRC-SW9B-092716	Lab Sample ID: 240-70040-13		
Matrix: Water	Lab File ID: UXC8772.D		
Analysis Method: 8260B	Date Collected: 09/27/2016 10:35		
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 16:55		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18 (mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 250454	 Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	0.94	U	10	0.94
630-20-6	1,1,1,2-Tetrachloroethane	0.28	U	1.0	0.28
71-43-2	Benzene	0.35	U	1.0	0.35
75-27-4	Bromodichloromethane	0.29	U	1.0	0.29
75-25-2	Bromoform	0.56	U	1.0	0.56
74-83-9	Bromomethane	0.44	U	1.0	0.44
78-93-3	2-Butanone (MEK)	0.53	U	10	0.53
75-15-0	Carbon disulfide	0.38	U	1.0	0.38
56-23-5	Carbon tetrachloride	0.43	U	1.0	0.43
108-90-7	Chlorobenzene	0.25	U	1.0	0.25
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.25	U	1.0	0.25
563-58-6	1,1-Dichloropropene	0.42	U	1.0	0.42
74-87-3	Chloromethane	0.44	U	1.0	0.44
75-34-3	1,1-Dichloroethane	0.30	U	1.0	0.30
87-61-6	1,2,3-Trichlorobenzene	0.37	U	1.0	0.37
96-18-4	1,2,3-Trichloropropane	0.44	U	1.0	0.44
107-06-2	1,2-Dichloroethane	0.23	U	1.0	0.23
75-35-4	1,1-Dichloroethene	0.45	U	1.0	0.45
526-73-8	1,2,3-Trimethylbenzene	0.47	U	5.0	0.47
78-87-5	1,2-Dichloropropane	0.25	U	1.0	0.25
95-63-6	1,2,4-Trimethylbenzene	0.41	U	1.0	0.41
10061-01-5	cis-1,3-Dichloropropene	0.46	U	1.0	0.46
10061-02-6	trans-1,3-Dichloropropene	0.56	U	1.0	0.56
100-41-4	Ethylbenzene	0.25	U	1.0	0.25
591-78-6	2-Hexanone	0.48	U	10	0.48
75-09-2	Methylene Chloride	0.33	U	1.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	0.99	U	10	0.99
100-42-5	Styrene	0.45	U	1.0	0.45
79-34-5	1,1,2,2-Tetrachloroethane	0.22	U	1.0	0.22
127-18-4	Tetrachloroethene	0.31	U	1.0	0.31
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	0.62	J	1.0	0.22
75-01-4	Vinyl chloride	0.29	U	1.0	0.29
1330-20-7	Xylenes, Total	0.52	U	2.0	0.52
71-55-6	1,1,1-Trichloroethane	0.44	U	1.0	0.44

Lab Name: TestAmerica Canton	Job No.: 240-70040-1		
SDG No.:			
Client Sample ID: MRC-SW9B-092716	Lab Sample ID: 240-70040-13		
Matrix: Water	Lab File ID: UXC8772.D		
Analysis Method: 8260B	Date Collected: 09/27/2016 10:35		
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 16:55		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18 (mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 250454	 Units: ug/L		

				1	
CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.19	U	1.0	0.19
96-12-8	1,2-Dibromo-3-Chloropropane	0.82	U	2.0	0.82
106-93-4	1,2-Dibromoethane	0.32	U	1.0	0.32
75-71-8	Dichlorodifluoromethane	0.32	U	1.0	0.32
156-59-2	cis-1,2-Dichloroethene	0.26	U	1.0	0.26
156-60-5	trans-1,2-Dichloroethene	0.30	U	1.0	0.30
98-82-8	Isopropylbenzene	0.35	U	1.0	0.35
1634-04-4	Methyl tert-butyl ether	0.20	U	1.0	0.20
76-13-1	1,1,2-Trichlorotrifluoroethane	0.45	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	0.32	U	1.0	0.32
594-20-7	2,2-Dichloropropane	0.26	U *	1.0	0.26
95-50-1	1,2-Dichlorobenzene	0.25	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	0.19	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	0.27	U	1.0	0.27
110-75-8	2-Chloroethyl vinyl ether	0.59	U	10	0.59
75-69-4	Trichlorofluoromethane	0.49	U *	1.0	0.49
95-49-8	2-Chlorotoluene	0.40	U	1.0	0.40
124-48-1	Chlorodibromomethane	0.43	U	1.0	0.43
108-86-1	Bromobenzene	0.35	U	1.0	0.35
74-97-5	Bromochloromethane	0.50	U	1.0	0.50
106-43-4	4-Chlorotoluene	0.29	U	1.0	0.29
99-87-6	4-Isopropyltoluene	0.43	U	1.0	0.43
87-68-3	Hexachlorobutadiene	0.35	U	1.0	0.35
74-95-3	Dibromomethane	0.42	U	1.0	0.42
108-20-3	Diisopropyl ether	0.50	U	10	0.50
91-20-3	Naphthalene	0.45	U	1.0	0.45
104-51-8	n-Butylbenzene	0.31	U	1.0	0.31
103-65-1	N-Propylbenzene	0.40	U	1.0	0.40
135-98-8	sec-Butylbenzene	0.48	U	1.0	0.48
994-05-8	Tert-amyl methyl ether	0.30	U	5.0	0.30
637-92-3	Ethyl tert-butyl ether	0.23	U	5.0	0.23
98-06-6	tert-Butylbenzene	0.41	U	1.0	0.41
108-05-4	Vinyl acetate	0.41	U	2.0	0.41
75-65-0	tert-Butyl alcohol	4.9	U	50	4.9

Lab Name: TestAmerica Canton Job No.: 240-70040-1 SDG No.: Client Sample ID: MRC-SW9B-092716 Lab Sample ID: 240-70040-13 Matrix: Water Lab File ID: UXC8772.D Analysis Method: 8260B Date Collected: 09/27/2016 10:35 Date Analyzed: 10/08/2016 16:55 Sample wt/vol: 5(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u> Level: (low/med) Low % Moisture: Analysis Batch No.: 250454 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96		63-132
460-00-4	4-Bromofluorobenzene (Surr)	113		73-120
2037-26-5	Toluene-d8 (Surr)	103		73-124
1868-53-7	Dibromofluoromethane (Surr)	104		80-120

Lab Name: TestAmerica Canton	Job No.: 240-70040-1		
SDG No.:			
Client Sample ID: TB-092716	Lab Sample ID: 240-70040-14		
Matrix: Water	Lab File ID: UXC8773.D		
Analysis Method: 8260B	Date Collected: 09/27/2016 00:00		
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 17:17		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 250454	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	0.94	Ŭ	10	0.94
630-20-6	1,1,1,2-Tetrachloroethane	0.28	U	1.0	0.28
71-43-2	Benzene	0.35	U	1.0	0.35
75-27-4	Bromodichloromethane	0.29	U	1.0	0.29
75-25-2	Bromoform	0.56	U	1.0	0.56
74-83-9	Bromomethane	0.44	U	1.0	0.44
78-93-3	2-Butanone (MEK)	0.53	U	10	0.53
75-15-0	Carbon disulfide	0.38	U	1.0	0.38
56-23-5	Carbon tetrachloride	0.43	U	1.0	0.43
108-90-7	Chlorobenzene	0.25	U	1.0	0.25
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.25	U	1.0	0.25
563-58-6	1,1-Dichloropropene	0.42	U	1.0	0.42
74-87-3	Chloromethane	0.44	U	1.0	0.44
75-34-3	1,1-Dichloroethane	0.30	U	1.0	0.30
87-61-6	1,2,3-Trichlorobenzene	0.37	U	1.0	0.37
96-18-4	1,2,3-Trichloropropane	0.44	U	1.0	0.44
107-06-2	1,2-Dichloroethane	0.23	U	1.0	0.23
75-35-4	1,1-Dichloroethene	0.45	U	1.0	0.45
526-73-8	1,2,3-Trimethylbenzene	0.47	U	5.0	0.47
78-87-5	1,2-Dichloropropane	0.25	U	1.0	0.25
95-63-6	1,2,4-Trimethylbenzene	0.41	U	1.0	0.41
10061-01-5	cis-1,3-Dichloropropene	0.46	U	1.0	0.46
10061-02-6	trans-1,3-Dichloropropene	0.56	U	1.0	0.56
100-41-4	Ethylbenzene	0.25	U	1.0	0.25
591-78-6	2-Hexanone	0.48	U	10	0.48
75-09-2	Methylene Chloride	0.33	U	1.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	0.99	U	10	0.99
100-42-5	Styrene	0.45	U	1.0	0.45
79-34-5	1,1,2,2-Tetrachloroethane	0.22	U	1.0	0.22
127-18-4	Tetrachloroethene	0.31	U	1.0	0.31
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	0.22	U	1.0	0.22
75-01-4	Vinyl chloride	0.29	U	1.0	0.29
1330-20-7	Xylenes, Total	0.52	U	2.0	0.52
71-55-6	1,1,1-Trichloroethane	0.44	IJ	1.0	0.44

Lab Name: TestAmerica Canton	Job No.: 240-70040-1	
SDG No.:		
Client Sample ID: TB-092716	Lab Sample ID: 240-70040-14	
Matrix: Water	Lab File ID: UXC8773.D	
Analysis Method: 8260B	Date Collected: 09/27/2016 00:00	
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 17:17	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)	
% Moisture:	Level: (low/med) Low	
Analysis Batch No.: 250454	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.19	Ū	1.0	0.19
96-12-8	1,2-Dibromo-3-Chloropropane	0.82	U	2.0	0.82
106-93-4	1,2-Dibromoethane	0.32	U	1.0	0.32
75-71-8	Dichlorodifluoromethane	0.32	U	1.0	0.32
156-59-2	cis-1,2-Dichloroethene	0.26	U	1.0	0.26
156-60-5	trans-1,2-Dichloroethene	0.30	U	1.0	0.30
98-82-8	Isopropylbenzene	0.35	U	1.0	0.35
1634-04-4	Methyl tert-butyl ether	0.20	U	1.0	0.20
76-13-1	1,1,2-Trichlorotrifluoroethane	0.45	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	0.32	U	1.0	0.32
594-20-7	2,2-Dichloropropane	0.26	Π *	1.0	0.26
95-50-1	1,2-Dichlorobenzene	0.25	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	0.19	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	0.27	U	1.0	0.27
110-75-8	2-Chloroethyl vinyl ether	0.59	U	10	0.59
75-69-4	Trichlorofluoromethane	0.49	Π *	1.0	0.49
95-49-8	2-Chlorotoluene	0.40	U	1.0	0.40
124-48-1	Chlorodibromomethane	0.43	U	1.0	0.43
108-86-1	Bromobenzene	0.35	U	1.0	0.35
74-97-5	Bromochloromethane	0.50	U	1.0	0.50
106-43-4	4-Chlorotoluene	0.29	U	1.0	0.29
99-87-6	4-Isopropyltoluene	0.43	U	1.0	0.43
87-68-3	Hexachlorobutadiene	0.35	U	1.0	0.35
74-95-3	Dibromomethane	0.42	U	1.0	0.42
108-20-3	Diisopropyl ether	0.50	U	10	0.50
91-20-3	Naphthalene	0.45	U	1.0	0.45
104-51-8	n-Butylbenzene	0.31	U	1.0	0.31
103-65-1	N-Propylbenzene	0.40	U	1.0	0.40
135-98-8	sec-Butylbenzene	0.48	U	1.0	0.48
994-05-8	Tert-amyl methyl ether	0.30	U	5.0	0.30
637-92-3	Ethyl tert-butyl ether	0.23	U	5.0	0.23
98-06-6	tert-Butylbenzene	0.41	U	1.0	0.41
108-05-4	Vinyl acetate	0.41	U	2.0	0.41
75-65-0	tert-Butyl alcohol	4.9	U	50	4.9

Lab Name: TestAmerica Canton Job No.: 240-70040-1 SDG No.: Client Sample ID: TB-092716 Lab Sample ID: 240-70040-14 Matrix: Water Lab File ID: UXC8773.D Date Collected: 09/27/2016 00:00 Analysis Method: 8260B Date Analyzed: 10/08/2016 17:17 Sample wt/vol: 5(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u> Level: (low/med) Low % Moisture: Analysis Batch No.: 250454 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		63-132
460-00-4	4-Bromofluorobenzene (Surr)	110		73-120
2037-26-5	Toluene-d8 (Surr)	103		73-124
1868-53-7	Dibromofluoromethane (Surr)	103		80-120

Lab Name: TestAmerica Canton	Job No.: 240-70040-1			
SDG No.:				
Client Sample ID: MRC-SWDUP-092716	Lab Sample ID: 240-70040-15			
Matrix: Water	Lab File ID: UXC8774.D			
Analysis Method: 8260B	Date Collected: 09/27/2016 00:00			
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 17:39			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 250454	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	0.94	Ŭ	10	0.94
630-20-6	1,1,1,2-Tetrachloroethane	0.28	U	1.0	0.28
71-43-2	Benzene	0.35	U	1.0	0.35
75-27-4	Bromodichloromethane	0.29	U	1.0	0.29
75-25-2	Bromoform	0.56	U	1.0	0.56
74-83-9	Bromomethane	0.44	U	1.0	0.44
78-93-3	2-Butanone (MEK)	0.53	U	10	0.53
75-15-0	Carbon disulfide	0.38	U	1.0	0.38
56-23-5	Carbon tetrachloride	0.43	U	1.0	0.43
108-90-7	Chlorobenzene	0.25	U	1.0	0.25
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.25	U	1.0	0.25
563-58-6	1,1-Dichloropropene	0.42	U	1.0	0.42
74-87-3	Chloromethane	0.44	U	1.0	0.44
75-34-3	1,1-Dichloroethane	0.30	U	1.0	0.30
87-61-6	1,2,3-Trichlorobenzene	0.37	U	1.0	0.37
96-18-4	1,2,3-Trichloropropane	0.44	U	1.0	0.44
107-06-2	1,2-Dichloroethane	0.23	U	1.0	0.23
75-35-4	1,1-Dichloroethene	0.45	U	1.0	0.45
526-73-8	1,2,3-Trimethylbenzene	0.47	U	5.0	0.47
78-87-5	1,2-Dichloropropane	0.25	U	1.0	0.25
95-63-6	1,2,4-Trimethylbenzene	0.41	U	1.0	0.41
10061-01-5	cis-1,3-Dichloropropene	0.46	U	1.0	0.46
10061-02-6	trans-1,3-Dichloropropene	0.56	U	1.0	0.56
100-41-4	Ethylbenzene	0.25	U	1.0	0.25
591-78-6	2-Hexanone	0.48	U	10	0.48
75-09-2	Methylene Chloride	0.33	U	1.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	0.99	U	10	0.99
100-42-5	Styrene	0.45	U	1.0	0.45
79-34-5	1,1,2,2-Tetrachloroethane	0.22	U	1.0	0.22
127-18-4	Tetrachloroethene	0.31	U	1.0	0.31
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	0.22	U	1.0	0.22
75-01-4	Vinyl chloride	0.29	U	1.0	0.29
1330-20-7	Xylenes, Total	0.52	U	2.0	0.52
71-55-6	1,1,1-Trichloroethane	0.44	IJ	1.0	0.44

Lab Name: TestAmerica Canton	Job No.: 240-70040-1
SDG No.:	
Client Sample ID: MRC-SWDUP-092716	Lab Sample ID: 240-70040-15
Matrix: Water	Lab File ID: UXC8774.D
Analysis Method: 8260B	Date Collected: 09/27/2016 00:00
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 17:39
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 250454	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.19	U	1.0	0.19
96-12-8	1,2-Dibromo-3-Chloropropane	0.82	U	2.0	0.82
106-93-4	1,2-Dibromoethane	0.32	U	1.0	0.32
75-71-8	Dichlorodifluoromethane	0.32	U	1.0	0.32
156-59-2	cis-1,2-Dichloroethene	0.26	U	1.0	0.26
156-60-5	trans-1,2-Dichloroethene	0.30	U	1.0	0.30
98-82-8	Isopropylbenzene	0.35	U	1.0	0.35
1634-04-4	Methyl tert-butyl ether	0.20	U	1.0	0.20
76-13-1	1,1,2-Trichlorotrifluoroethane	0.45	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	0.32	U	1.0	0.32
594-20-7	2,2-Dichloropropane	0.26	U *	1.0	0.26
95-50-1	1,2-Dichlorobenzene	0.25	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	0.19	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	0.27	U	1.0	0.27
110-75-8	2-Chloroethyl vinyl ether	0.59	U	10	0.59
75-69-4	Trichlorofluoromethane	0.49	U *	1.0	0.49
95-49-8	2-Chlorotoluene	0.40	U	1.0	0.40
124-48-1	Chlorodibromomethane	0.43	U	1.0	0.43
108-86-1	Bromobenzene	0.35	U	1.0	0.35
74-97-5	Bromochloromethane	0.50	U	1.0	0.50
106-43-4	4-Chlorotoluene	0.29	U	1.0	0.29
99-87-6	4-Isopropyltoluene	0.43	U	1.0	0.43
87-68-3	Hexachlorobutadiene	0.35	U	1.0	0.35
74-95-3	Dibromomethane	0.42	U	1.0	0.42
108-20-3	Diisopropyl ether	0.50	U	10	0.50
91-20-3	Naphthalene	0.45	U	1.0	0.45
104-51-8	n-Butylbenzene	0.31	U	1.0	0.31
103-65-1	N-Propylbenzene	0.40	U	1.0	0.40
135-98-8	sec-Butylbenzene	0.48	U	1.0	0.48
994-05-8	Tert-amyl methyl ether	0.30	U	5.0	0.30
637-92-3	Ethyl tert-butyl ether	0.23	U	5.0	0.23
98-06-6	tert-Butylbenzene	0.41	U	1.0	0.41
108-05-4	Vinyl acetate	0.41	U	2.0	0.41
75-65-0	tert-Butyl alcohol	4.9	U	50	4.9

 Lab Name: TestAmerica Canton
 Job No.: 240-70040-1

 SDG No.:
 Client Sample ID: MRC-SWDUP-092716
 Lab Sample ID: 240-70040-15

 Matrix: Water
 Lab File ID: UXC8774.D

 Analysis Method: 8260B
 Date Collected: 09/27/2016 00:00

 Sample wt/vol: 5(mL)
 Date Analyzed: 10/08/2016 17:39

 Soil Aliquot Vol:
 Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: DB-624 ID: 0.18 (mm)

 % Moisture:
 Level: (low/med) Low

 Analysis Batch No.: 250454
 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		63-132
460-00-4	4-Bromofluorobenzene (Surr)	110		73-120
2037-26-5	Toluene-d8 (Surr)	103		73-124
1868-53-7	Dibromofluoromethane (Surr)	104		80-120

Appendix C

Support Documentation

CASE NARRATIVE

Client: Tetra Tech, Inc.

Project: MRC Surface Water Sampling

Report Number: 240-70040-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

RECEIPT

The samples were received on 9/28/2016 9:20 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.2° C.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples MRC-SW1A-092716 (240-70040-1), MRC-SW2A-092716 (240-70040-2), MRC-SW5A1-092716 (240-70040-3), MRC-SW5A2-092716 (240-70040-4), MRC-SW5B-092716 (240-70040-5), MRC-SW6A-092716 (240-70040-6), MRC-SW6B-092716 (240-70040-7), MRC-SW7A-092716 (240-70040-8), MRC-SW7B-092716 (240-70040-9), MRC-SW8A-092716 (240-70040-10), MRC-SW8B-092716 (240-70040-11), MRC-SW9A-092716 (240-70040-12), MRC-SW9B-092716 (240-70040-13), TB-092716 (240-70040-14) and MRC-SWDUP-092716 (240-70040-15) were analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 10/08/2016.

The laboratory control sample (LCS) for 250454 recovered outside control limits for the following analytes: 2-2-Dichloropropane and/or Trichlorofluoromethane. These analytes have been identified as poor performing analytes when analyzed using this method; therefore, re-extraction/re-analysis was not performed: MRC-SW1A-092716 (240-70040-1), MRC-SW2A-092716 (240-70040-2), MRC-SW5A1-092716 (240-70040-3), MRC-SW5A2-092716 (240-70040-4), MRC-SW5B-092716 (240-70040-5), MRC-SW6A-092716 (240-70040-6), MRC-SW6B-092716 (240-70040-7), MRC-SW7A-092716 (240-70040-8), MRC-SW7B-092716 (240-70040-9), MRC-SW8A-092716 (240-70040-10), MRC-SW8B-092716 (240-70040-11), MRC-SW9A-092716 (240-70040-12), MRC-SW9B-092716 (240-70040-13), TB-092716 (240-70040-14), MRC-SWDUP-092716 (240-70040-15) and (LCS 240-250454/4).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

QC Association Summary

Client: Tetra Tech, Inc.

TestAmerica Job ID: 240-70040-1

Project/Site: MRC Surface Water Sampling

GC/MS VOA

Analysis Batch: 250454

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-70040-1	MRC-SW1A-092716	Total/NA	Water	8260B	_
240-70040-2	MRC-SW2A-092716	Total/NA	Water	8260B	
240-70040-3	MRC-SW5A1-092716	Total/NA	Water	8260B	
240-70040-4	MRC-SW5A2-092716	Total/NA	Water	8260B	
240-70040-5	MRC-SW5B-092716	Total/NA	Water	8260B	
240-70040-6	MRC-SW6A-092716	Total/NA	Water	8260B	
240-70040-7	MRC-SW6B-092716	Total/NA	Water	8260B	
240-70040-8	MRC-SW7A-092716	Total/NA	Water	8260B	
240-70040-9	MRC-SW7B-092716	Total/NA	Water	8260B	
240-70040-10	MRC-SW8A-092716	Total/NA	Water	8260B	
240-70040-11	MRC-SW8B-092716	Total/NA	Water	8260B	
240-70040-12	MRC-SW9A-092716	Total/NA	Water	8260B	
240-70040-13	MRC-SW9B-092716	Total/NA	Water	8260B	
240-70040-14	TB-092716	Total/NA	Water	8260B	
240-70040-15	MRC-SWDUP-092716	Total/NA	Water	8260B	
MB 240-250454/7	Method Blank	Total/NA	Water	8260B	
LCS 240-250454/4	Lab Control Sample	Total/NA	Water	8260B	

Method Summary

Client: Tetra Tech, Inc.

Project/Site: MRC Surface Water Sampling

TestAmerica Job ID: 240-70040-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

3.8/64,2

North Canton

4101 Shuffel Street, N. W.

180325

Chain of Custody Record

<u>TestAmerica</u>

North Canton, OH 44720 BALTIMORE phone 330.497.9396 fax 330.497.0772 TestAmerica Laboratories, Inc. Project Manager: Tony Apanavage Site Contact: Josh Mullis Date: 9/27/2016 COC No: Client Contact Tera Tech Tel/Fax: 301-233-8230 (cell) Lab Contact: Pat Omeara Carrier: Fedex of 7 COCs 20251 Century Blvd, Suite 200 Analysis Turnaround Time Calendar (C) or Work Days (W) Germantown, MD 20874 TAT if different from Below 21 day (301) 528-3021 Phone SDG No. 2 weeks (301) 528-3000 FAX Project Name: MRC Surface Water Sampling I week Site: Middle River Complex 2 days PO# 112107776.07 1 day MULLIS Sampler: Sample Sample Sample Sample Identification Date Time Type Matrix Cont. Sample Specific Notes: 9/27/2016 SW 3 MRC-SW1A-092716 1002 Water 9/27/2016 SW 3 MRC-SW2A-092716 Water 1010 3 9/27/2016 1100 MRC-SW5A1-092716 Water Page 1105 MRC-SW5A2-092716 9/27/2016 Water 3 153 1055 9/27/2016 SW 3 MRC-SW5B-092716 Water 1038 3 으 MRC-SW6A-092716 9/27/2016 SW Water 155 1041 9/27/2016 SW 3 Water MRC-SW6B-092716 9/27/2016 1071 3 MRC-SW7A-092716 SW Water 9/27/2016 1027 3 MRC-SW7B-092716 Water 9/27/2016 /047 3 MRC-SW8A-092716 Water MRC-SW8B-092716 9/27/2016 1050 SW Water 3 MRC-SW9A-092716 9/27/2016 103/ Water Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Disposal By Lab Non-Hazard Archive For_ ☐ Flammable Skin Irritant Return To Client Special Instructions/QC Requirements & Comments: Relinquished by: Relinquished by Relinquished by:

North Canton

4101 Shuffel Street, N. W.

180325

Chain of Custody Record

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

North Canton, OH 44720

phone 330.497.9396 fax 330.497.0772

BALTIMORE TestAmerica Laboratories, Inc. Project Manager: Tony Apanavage Site Contact: Josh Mullis Date: 9/27/16 COC No: Client Contact Tel/Fax: 301-233-8230 (cell) Lab Contact: Pat Omeara 2 of 2 COCs Tera Tech Carrier: Fedex 20251 Century Blvd, Suite 200 **Analysis Turnaround Time** Germantown, MD 20874 Calendar (C) or Work Days (W) (301) 528-3021 Phone TAT if different from Below 21 00 VS 2606 SDG No. (301) 528-3000 FAX 2 weeks Project Name: MRC Surface Water Sampling 1 week Site: Middle River Complex 2 days P O # 1121007776.07 1 day Sampler: MULLIS Sample Sample Sample # of Cont. Sample Identification Date Time Type Matrix Sample Specific Notes: 1035 MRC-SW9B-092716 9/27/2016 SW 3 Water TB-092716 SW Water 2 MRC-5WOLF-092716 9/27/1 SW 3 Exetes K Page 154 of 155 Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard Disposal By Lab Poison B Unknown Archive For_ Flammable | Return To Client Skin Irritant Special Instructions/QC Requirements & Comments: Company: Date/Time: 7-27-2016-1225
Company: Date/Time: O9/28/16 920 Relinquished by: Relinquished by Relinquished by:

Canton Facility	n#:
	Cooler unpacked by:
Client 2 + (a CCh Site Name Cooler Received on 09/28/16 Opened on 09/28/16	00
Cooler Received on 5 172 9 11	Other
FedEx: 1st Grd Exp UPS FAS Stetson Client Drop Off TestAmerica Courier Receipt After-hours: Drop-off Date/Time Storage Location	o the
COOLANT: Werke Blue Ice Dry Ice Water None	
	rm 112
1. Cooler temperature upon receipt IR GUN# IR-8 (CF +0.4 °C) Observed Cooler Temp. 3-8 °C Corrected Cooler Temp.	emp. 4, 6°C
IR GUN #36 (CF +1.3°C) Observed Cooler Temp. °C Corrected Cooler T	empC
2. Were custody seals on the outside of the cooler(s)? If Yes Quantity	No
-Were custody seals on the outside of the cooler(s) signed & dated?	
- Wele custody sears on the country of court in (s & no
3. Shippers' packing slip attached to the cooler(s)? 4. Did custody papers accompany the sample(s)?	
4. Did custody papers decompany the sample(s)	No No
Vas were the personal of the control	
7. Did all bottles arrive in good contactor (closed services).	
o. Could all bottle labels be reconciled with the second	
9. Were correct bottle(s) used for the test(s) indicated? 10. Sufficient quantity received to perform indicated analyses?	s No
11. Are these work share samples?	हों इ
If yes, Questions 11-15 have been checked at the originating laboratory.	
11. Were sample(s) at the correct pH upon receipt?	s No NA) pH Strip Lot# HC574756
12 Were VOAs on the COC?	No
15. Well all bubbles of fill in any vor vidio.	s NO NA
	No.
15. Was a LL Hg or Me Hg trip blank present?	s (1)
Contacted PM Date by via Verbal V	/oice Mail Other
Concerning	
Concerning	
Concerning	
	Samples processed by:
14. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	Samples processed by:
	Samples processed by:
14. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	Samples processed by:
14. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 15. SAMPLE CONDITION	
14. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 15. SAMPLE CONDITION Sample(s) were received after the recommended hole	ling time had expired.
14. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 15. SAMPLE CONDITION Sample(s) were received after the recommended hole were received.	ling time had expired. d in a broken container.
14. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 15. SAMPLE CONDITION Sample(s) were received after the recommended hole	ling time had expired. d in a broken container.
14. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 15. SAMPLE CONDITION Sample(s) were received after the recommended hole were received.	ling time had expired. d in a broken container.
14. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 15. SAMPLE CONDITION Sample(s) were received after the recommended hole sample(s) were received with bubble >6 mm 16. SAMPLE PRESERVATION	ling time had expired. d in a broken container. in diameter. (Notify PM)
14. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 15. SAMPLE CONDITION Sample(s) were received after the recommended hole sample(s) were received with bubble >6 mm 16. SAMPLE PRESERVATION	ling time had expired. d in a broken container. in diameter. (Notify PM)

Method 8260B

Volatile Organic Compounds (GC/MS) by Method 8260B

FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TestAmerica Canton Job No.: 240-70040-1

SDG No.:

Lab File ID: BFB619.D BFB Injection Date: 06/23/2016

Instrument ID: A3UX15 BFB Injection Time: 11:35

Analysis Batch No.: 235700

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15.0 - 40.0 % of mass 95	16.7	
75	30.0 - 60.0 % of mass 95	46.2	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	7.2	
173	Less than 2.0 % of mass 174	0.4	(0.4) 1
174	50.0 - 120.00 % of mass 95	90.4	
175	5.0 - 9.0 % of mass 174	6.2	(6.8) 1
176	95.0 - 101.0 % of mass 174	87.8	(97.1) 1
177	5.0 - 9.0 % of mass 176	5.4	(6.1) 2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	STD8260 240-235700/2	UXC9008.D	06/23/2016	12:01
	STD8260 240-235700/3	UXC9009.D	06/23/2016	12:23
	STD8260 240-235700/4	UXC9010.D	06/23/2016	12:46
	STD8260 240-235700/5	UXC9011.D	06/23/2016	13:08
	STD8260 240-235700/6	UXC9012.D	06/23/2016	13:31
	STD8260 240-235700/7	UXC9013.D	06/23/2016	13:53
	ICV 240-235700/14	UXC9014.D	06/23/2016	14:16
	STD 240-235700/8	UXC9015.D	06/23/2016	14:38
	STD 240-235700/9	UXC9016.D	06/23/2016	15:00
	STD 240-235700/10	UXC9017.D	06/23/2016	15:22
	STD 240-235700/11	UXC9018.D	06/23/2016	15:45
	STD 240-235700/12	UXC9019.D	06/23/2016	16:07
	STD 240-235700/13	UXC9020.D	06/23/2016	16:30
	ICV 240-235700/15	UXC9021.D	06/23/2016	16:52

FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TestAmerica Canton Job No.: 240-70040-1

SDG No.:

Lab File ID: BFB61008.D BFB Injection Date: 10/08/2016

Instrument ID: A3UX15 BFB Injection Time: 09:41

Analysis Batch No.: 250454

M/E	ION ABUNDANCE CRITERIA	_ ·	ATIVE DANCE
50	15.0 - 40.0 % of mass 95	15.4	
75	30.0 - 60.0 % of mass 95	45.7	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.7	
173	Less than 2.0 % of mass 174	0.5	(0.6) 1
174	50.0 - 120.00 % of mass 95	89.9	
175	5.0 - 9.0 % of mass 174	6.2	(6.9) 1
176	95.0 - 101.0 % of mass 174	88.1	(97.9) 1
177	5.0 - 9.0 % of mass 176	5.7	(6.4) 2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 240-250454/2	UXC8755.D	10/08/2016	10:30
	LCS 240-250454/4	UXC8756.D	10/08/2016	10:53
	CCV 240-250454/3	UXC8757.D	10/08/2016	11:16
	MB 240-250454/7	UXC8759.D	10/08/2016	12:01
MRC-SW1A-092716	240-70040-1	UXC8760.D	10/08/2016	12:24
MRC-SW2A-092716	240-70040-2	UXC8761.D	10/08/2016	12:49
MRC-SW5A1-092716	240-70040-3	UXC8762.D	10/08/2016	13:12
MRC-SW5A2-092716	240-70040-4	UXC8763.D	10/08/2016	13:34
MRC-SW5B-092716	240-70040-5	UXC8764.D	10/08/2016	13:56
MRC-SW6A-092716	240-70040-6	UXC8765.D	10/08/2016	14:18
MRC-SW6B-092716	240-70040-7	UXC8766.D	10/08/2016	14:41
MRC-SW7A-092716	240-70040-8	UXC8767.D	10/08/2016	15:03
MRC-SW7B-092716	240-70040-9	UXC8768.D	10/08/2016	15:26
MRC-SW8A-092716	240-70040-10	UXC8769.D	10/08/2016	15:48
MRC-SW8B-092716	240-70040-11	UXC8770.D	10/08/2016	16:10
MRC-SW9A-092716	240-70040-12	UXC8771.D	10/08/2016	16:32
MRC-SW9B-092716	240-70040-13	UXC8772.D	10/08/2016	16:55
TB-092716	240-70040-14	UXC8773.D	10/08/2016	17:17
MRC-SWDUP-092716	240-70040-15	UXC8774.D	10/08/2016	17:39

Lab Name: TestAmerica Canton Job No.: 240-70040-1 Analy Batch No.: 235700

SDG No.:

Instrument ID: A3UX15 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 06/23/2016 12:01 Calibration End Date: 06/23/2016 13:53 Calibration ID: 34930

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	STD8260 240-235700/7	UXC9013.D
Level 2	STD8260 240-235700/6	UXC9012.D
Level 3	STD8260 240-235700/5	UXC9011.D
Level 4	STD8260 240-235700/4	UXC9010.D
Level 5	STD8260 240-235700/3	UXC9009.D
Level 6	STD8260 240-235700/2	UXC9008.D

ANALYTE			RRF			CURVE		COEFFICIE	NT	# MIN RRF	%RSD	#	MAX	R^2		N R^2
	LVL 1 LVL 6	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR	COD
Dichlorodifluoromethane	0.3321 0.3340	0.3168	0.3294	0.3233	0.3421	Ave		0.3296			2.7		15.0			
Chloromethane	0.5208 0.4361	0.4774	0.4696	0.4288	0.4654	Ave		0.4664		0.1000	7.1		15.0			
Vinyl chloride	0.4391 0.4197	0.4151	0.4242	0.3962	0.4333	Ave		0.4213			3.6		15.0			
Butadiene	0.4013 0.3963	0.3836	0.3985	0.3823	0.4088	Ave		0.3951			2.6		15.0			
Bromomethane	0.1340 0.1484	0.1393	0.1381	0.1229	0.1534	Ave		0.1393			7.7		15.0			
Chloroethane	0.2365	0.2232	0.2271	0.2108	0.2270	Ave		0.2241			3.8		15.0			
Dichlorofluoromethane	0.5040 0.4904	0.5039	0.4975	0.4540	0.5047	Ave		0.4924			4.0		15.0			
Trichlorofluoromethane	0.2480	0.2535	0.2474	0.2379	0.2614	Ave		0.2524			4.1		15.0			
Ethyl ether	0.2476 0.2339	0.2449	0.2241	0.2370	0.2362	Ave		0.2373			3.5		15.0			
Acrolein	0.0273 0.0276	0.0269	0.0279	0.0278	0.0281	Ave		0.0276			1.5		15.0			
1,1-Dichloroethene	0.2949	0.2936	0.2845	0.2901	0.3022	Ave		0.2948			2.4		15.0			
1,1,2-Trichlorotrifluoroethane	0.2043 0.2209	0.2241	0.2068	0.1967	0.2302	Ave		0.2139			6.1		15.0			
Acetone	0.1395 0.0726	0.1118	0.0878	0.0765	0.0741	Lin1	0.1478	0.0706						1.0000	0 .	.9900
Iodomethane	0.4298 0.4393	0.4742	0.4386	0.4552	0.4550	Ave		0.4487			3.6		15.0			
Carbon disulfide	0.8263 0.9010	0.8422	0.8083	0.8576	0.9046	Ave		0.8567			4.6		15.0			

Lab Name: TestAmerica Canton Job No.: 240-70040-1 Analy Batch No.: 235700

SDG No.:

Instrument ID: A3UX15 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 06/23/2016 12:01 Calibration End Date: 06/23/2016 13:53 Calibration ID: 34930

ANALYTE			RRF			CURVE		COEFFICIE	NT :	# MIN RRF	%RSD	 MAX	R^2	MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%RSD	OR COD	OR COD
	LVL 6													
3-Chloro-1-propene	0.1554	0.1576	0.1559	0.1742	0.1827	Ave		0.1674			7.4	15.0		
	0.1784													
Methyl acetate	0.1618 0.1580	0.1598	0.1514	0.1507	0.1555	Ave		0.1562			2.9	15.0		
Methylene Chloride	0.1380	0.4248	0.3449	0.3381	0.3268	T 4 m 1	0 1072	0.3119					1.0000	0.9900
Methylene Chiofide	0.4936	0.4240	0.3449	0.3301	0.3200	PTIIT	0.1973	0.3119					1.0000	0.9900
tert-Butyl alcohol	0.0096	0.0101	0.0097	0.0091	0.0098	Ave		0.0095			5.9	15.0		
1	0.0085													
Methyl tert-butyl ether	0.5514	0.5838	0.5562	0.5860	0.5987	Ave		0.5780			3.4	15.0		
	0.5919													
Acrylonitrile	0.0865	0.0907	0.0851	0.0849	0.0870	Ave		0.0871			2.5	15.0		
	0.0883													
trans-1,2-Dichloroethene	0.3240	0.3275	0.3102	0.3200	0.3216	Ave		0.3190			2.2	15.0		
	0.3105													
Hexane	0.0821 0.0795	0.0794	0.0711	0.0762	0.0800	Ave		0.0781			5.0	15.0		
1,1-Dichloroethane	0.0795	0.5585	0.5285	0.5452	0.5510	7		0.5441		0.1000	1.9	15.0		
1,1-Dichioloechane	0.5364	0.3363	0.3203	0.3432	0.3310	Ave		0.3441		0.1000	1.9	13.0		
Vinyl acetate	0.3327	0.3342	0.3408	0.3597	0.3885	Ave		0.3607			8.7	15.0		
	0.4085													
2,2-Dichloropropane	0.1567	0.1672	0.1652	0.1881	0.1921	Ave		0.1735			8.0	15.0		
	0.1717													
cis-1,2-Dichloroethene	0.3493	0.3547	0.3327	0.3418	0.3441	Ave		0.3431			2.4	15.0		
	0.3361													
2-Butanone (MEK)	0.1156	0.1075	0.0977	0.0935	0.0974	Ave		0.1018			8.1	15.0		
Bromochloromethane	0.0989	0 1555	0 1 4 0 0	0 1505	0 1 5 0 5	_		0 1507			1 -	1 = 0		
Bromochloromethane	0.1540 0.1507	0.1555	0.1493	0.1527	0.1537	Ave		0.1527			1.5	15.0		
Tetrahydrofuran	0.1507	0.0583	0.0537	0.0538	0.0574	7		0.0568			4.7	15.0		
Tecranyuroruran	0.0572	0.0363	0.0337	0.0336	0.03/4	Ave		0.0366			4.7	13.0		
Chloroform	0.5050	0.5301	0.4888	0.5048	0.5160	Δττο		0.5085			2.7	15.0		
CHIOLOLOLM	0.5062	0.5501	0.4000	0.5040	0.5100	1100		0.3003			2.,	10.0		
1,1,1-Trichloroethane	0.2852	0.3011	0.2949	0.3230	0.3345	Ave		0.3093			6.0	15.0		
	0.3173													
Cyclohexane	0.5215	0.5316	0.5133	0.5316	0.5628	Ave		0.5356			3.5	15.0		
	0.5527													
1,1-Dichloropropene	0.4167	0.4314	0.4054	0.4204	0.4364	Ave		0.4235			2.7	15.0		
	0.4309													
Carbon tetrachloride	0.2299	0.2395	0.2362	0.2634	0.2833	Ave		0.2551			9.0	15.0		
	0.2784													

Lab Name: TestAmerica Canton Job No.: 240-70040-1 Analy Batch No.: 235700

SDG No.:

Instrument ID: A3UX15 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 06/23/2016 12:01 Calibration End Date: 06/23/2016 13:53 Calibration ID: 34930

ANALYTE			RRF			CURVE		COEFFICIE	NT :	# MIN RRF	%RSD					N R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%RS	SD	OR COD	OF	R COD
	LVL 6															
Isobutyl alcohol	0.0044	0.0050	0.0049	0.0045	0.0052	Ave		0.0048			6.2	15	.0			
	0.0049															
Benzene	1.2947 1.3224	1.3476	1.2332	1.2686	1.3184	Ave		1.2975			3.2	15	.0			
1,2-Dichloroethane	0.3772	0.3872	0.3588	0.3580	0.3701	7770		0.3701			3.0	15	. 0			
1,2 Dichioloechane	0.3692	0.3072	0.5500	0.3300	0.5701	Ave		0.3701			3.0	13	. 0			
n-Heptane	0.0707	0.0678	0.0671	0.0694	0.0748	Ave		0.0709			5.0	15	.0			
-	0.0754															
Trichloroethene	0.3257	0.3303	0.3132	0.3205	0.3298	Ave		0.3242			2.0	15	.0			
	0.3255															
Methylcyclohexane	0.4725	0.4829	0.4609	0.4756	0.5114	Ave		0.4846			4.0	15	.0			
	0.5041															
1,2-Dichloropropane	0.2716	0.2967	0.2760	0.2859	0.2981	Ave		0.2882			4.3	15	.0			
	0.3011															
Dibromomethane	0.1477 0.1578	0.1546	0.1476	0.1507	0.1554	Ave		0.1523			2.8	15	.0			
1,4-Dioxane	0.1378	0.0021	0.0022	0.0020	0.0024	7110		0.0021			10.4	15	0			
1,4-Dioxane	0.0018	0.0021	0.0022	0.0020	0.0024	Ave		0.0021			10.4	1	• •			
Bromodichloromethane	0.2755	0.2939	0.2900	0.3099	0.3353	Ave		0.3088			9.1	15	.0			
	0.3482															
2-Chloroethyl vinyl ether	0.1285	0.1385	0.1373	0.1440	0.1608	Ave		0.1461			10.3	15	.0			
	0.1675															
cis-1,3-Dichloropropene	0.2821	0.3138	0.3239	0.3522	0.4012	Lin1	-0.207	0.4144						0.9960	0	.9900
	0.4251															
4-Methyl-2-pentanone (MIBK)	0.1559	0.1659	0.1670	0.1782	0.1883	Ave		0.1749			8.3	15	.0			
	0.1939	1 0050	1 6070	1.7996	1.8461	_		1 0007			2 0	1-				
Toluene	1.8454 1.8440	1.8252	1.6979	1./996	1.8461	Ave		1.8097			3.2	15	.0			
trans-1,3-Dichloropropene	0.2726	0.3002	0.3104	0.3649	0.4144	Tin1	0.265	0.4348						0.9930		9900
crans-1,3-Dichioropropene	0.2728	0.3002	0.3104	0.3649	0.4144	PTIIT	-0.203	0.4340						0.9930	0	.9900
Ethyl methacrylate	0.3014	0.3234	0.3291	0.3763	0.4067	Δττο		0.3599			13.7	15	Λ			
Benyi meenaeryiaee	0.4225	0.5251	0.3231	0.3703	0.4007	7100		0.3333			13.7	1	• •			
1,1,2-Trichloroethane	0.3188	0.3102	0.2977	0.3101	0.3157	Ave		0.3112			2.4	15	.0			
	0.3147															
Tetrachloroethene	0.3611	0.3544	0.3269	0.3481	0.3554	Ave		0.3500			3.4	15	.0			-
	0.3541															
1,3-Dichloropropane	0.5883	0.5978	0.5552	0.5681	0.5922	Ave		0.5823			2.9	15	.0			
	0.5924															
2-Hexanone	0.1386	0.1470	0.1601	0.1648	0.1828	Ave		0.1630			11.4	15	.0			
	0.1847															

Lab Name: TestAmerica Canton Job No.: 240-70040-1 Analy Batch No.: 235700

SDG No.:

Instrument ID: A3UX15 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 06/23/2016 12:01 Calibration End Date: 06/23/2016 13:53 Calibration ID: 34930

ANALYTE			RRF			CURVE		COEFFICIE	NT #	MIN RRF	%RSD		ΑX	R^2		MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%F	.SD	OR COD	1	OR COD
	LVL 6															
Chlorodibromomethane	0.2261	0.2475	0.2505	0.2847	0.3137	Ave		0.2750			14.6	1	5.0			
	0.3274															
1,2-Dibromoethane	0.2774	0.2927	0.2790	0.2998	0.3114	Ave		0.2951			5.0	1	5.0			
01-11		1 1001	1 1010	1 1 4 4 0	1 1620			1 1 6 4 4		0 2000	0 4	1	F 0	\vdash	_	
Chlorobenzene	1.1961 1.1713	1.1891	1.1210	1.1448	1.1639	Ave		1.1644		0.3000	2.4		5.0			
1,1,1,2-Tetrachloroethane	0.2725	0.2873	0.2883	0 3111	0.3365	7770		0.3072			9.7	1	5.0	$\overline{}$	+	
1,1,1,2 lettachioloethane	0.3478	0.2075	0.2003	0.5111	0.5505	Ave		0.3072			J. /	+	J. 0			
Ethylbenzene	0.6049	0.6212	0.5904	0.6147	0.6332	Ave		0.6168			2.8	1	5.0		-	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.6363															
m-Xylene & p-Xylene	1.5175	1.5565	1.4594	1.5035	1.5590	Ave		1.5266			2.7	1	5.0			
	1.5637															
o-Xylene	0.6940	0.7369	0.7052	0.7149	0.7489	Ave		0.7251			3.3	1	5.0			
	0.7507															
Styrene	1.0918	1.2017	1.1803	1.2357	1.2846	Ave		1.2173			6.4	1	5.0			
	1.3099														_	
Bromoform	0.1065 0.1710	0.1173	0.1240	0.1392	0.1569	Linl	-0.095	0.1654		0.1000				0.9940		0.9900
Isopropylbenzene	1.6591	1.7054	1.6662	1.6882	1.7718	Δττο		1.7152			3.4	1	5.0	$\overline{}$	+	
130010001201120110	1.8007	1.7054	1.0002	1.0002	1.7710	7100		1.7132			3.4		J.0			
1,1,2,2-Tetrachloroethane	0.7544	0.7987	0.7374	0.7885	0.8054	Ave		0.7771		0.3000	3.4	1	5.0		\neg	
	0.7783															
Bromobenzene	0.9784	1.0763	0.9992	1.0201	1.0915	Ave		1.0362			4.3	1	5.0			
	1.0520															
1,2,3-Trichloropropane	0.2309	0.2509	0.2407	0.2509	0.2552	Ave		0.2460			3.6	1	5.0			
	0.2475														\rightarrow	
trans-1,4-Dichloro-2-butene	0.2006	0.2147	0.2001	0.2165	0.2397	Ave		0.2183			8.0	1	5.0			
W D 11	0.2385	1 0015	1 0040	1 0006	1 1105	_		1 0 1 6 1				1	- ^		_	
N-Propylbenzene	0.9622 1.0807	1.0815	1.0048	1.0306	1.1185	Ave		1.0464			5.5	1	5.0			
2-Chlorotoluene	0.8538	0.9561	0.8891	0.9079	0.9420	7		0.9116			4.1	1	5.0		\rightarrow	
z-chiorocordene	0.8338	0.9361	0.0091	0.9079	0.9420	Ave		0.9116			4.1	1	J.U			
1,3,5-Trimethylbenzene	2.8746	2.9843	2.8406	2.9341	3.0812	Ave		2.9642			3.4	1	5.0			
, ,	3.0704															
4-Chlorotoluene	3.0370	3.3117	3.0525	3.1150	3.2501	Ave		3.1573			3.5	1	5.0		\top	
	3.1778															
tert-Butylbenzene	2.2647	2.3995	2.3043	2.3833	2.5293	Ave		2.4010			4.6	1	5.0			
	2.5252															
1,2,4-Trimethylbenzene	3.0029	3.0523	2.8941	2.9667	3.0688	Ave		3.0065			2.2	1	5.0			
	3.0543													1	.	

Lab Name: TestAmerica Canton Job No.: 240-70040-1 Analy Batch No.: 235700

SDG No.:

Instrument ID: A3UX15 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 06/23/2016 12:01 Calibration End Date: 06/23/2016 13:53 Calibration ID: 34930

ANALYTE			RRF			CURVE		COEFFIC	IENT	#	MIN RRF	%RSD			# MIN R^
	LVL 1 LVL 6	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR COL
sec-Butylbenzene	3.0231 3.4048	3.2243	3.0768	3.1838	3.3627	Ave		3.2126				4.7	15.	0	
1,3-Dichlorobenzene	1.7546 1.7099	1.7746	1.6796	1.7043	1.7149	Ave		1.7230				2.0	15.	0	
4-Isopropyltoluene	2.5011 2.9007	2.6300	2.6148	2.7211	2.8304	Ave		2.6997				5.5	15.	0	
1,4-Dichlorobenzene	1.8619 1.7322	1.8194	1.7077	1.7335	1.7343	Ave		1.7648				3.5	15.	0	
n-Butylbenzene	2.0048	2.0827	2.0417	2.1624	2.2859	Ave		2.1514				6.2	15.	0	
1,2-Dichlorobenzene	1.6369 1.5498	1.6372	1.5209	1.5641	1.5550	Ave		1.5773				3.1	15.	0	
1,2-Dibromo-3-Chloropropane	0.0713 0.0968	0.0775	0.0764	0.0877	0.0937	Ave		0.0839				12.3	15.	0	
1,2,4-Trichlorobenzene	0.8718 0.7845	0.8230	0.8095	0.8148	0.8000	Ave		0.8173				3.6	15.	0	
Hexachlorobutadiene	0.4286 0.3302	0.4026	0.3714	0.3683	0.3604	Ave		0.3769				9.1	15.	0	
Naphthalene	1.6356 1.6877	1.6077	1.7526	1.8425	1.8273	Ave		1.7256				5.7	15.	0	
1,2,3-Trichlorobenzene	0.7978 0.6410	0.7359	0.7435	0.7184	0.7003	Ave		0.7228				7.2	15.	0	
Dibromofluoromethane (Surr)	0.2526 0.2636	0.2509	0.2605	0.2635	0.2693	Ave		0.2601				2.7	15.	0	
1,2-Dichloroethane-d4 (Surr)	0.3324 0.3123	0.3098	0.3131	0.3078	0.3160	Ave		0.3152				2.8	15.	0	
Toluene-d8 (Surr)	1.5529 1.5694	1.4893	1.5049	1.5498	1.5942	Ave		1.5434				2.6	15.	0	
4-Bromofluorobenzene (Surr)	0.5282 0.5273	0.5194	0.5346	0.5225	0.5355	Ave		0.5279				1.2	15.	0	

Lab Name: TestAmerica Canton Job No.: 240-70040-1 Analy Batch No.: 235700

SDG No.:

Instrument ID: A3UX15 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:		LAB	SAMPLE ID:	LAB FILE ID:
Level	1	STD	240-235700/13	UXC9020.D
Level	2	STD	240-235700/12	UXC9019.D
Level	3	STD	240-235700/11	UXC9018.D
Level	4	STD	240-235700/10	UXC9017.D
Level	5	STD	240-235700/9	UXC9016.D
Level	6	STD	240-235700/8	UXC9015.D

ANALYTE		RRF			CURVE		COEFFICIE	NT #	MIN RRF	%RSD		MAX	R^2	# MIN R^2
	LVL 1 LVL :	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				RSD	OR COD	OR COD
Acetonitrile	0.0371 0.028 0.0231	0.0274	0.0194	0.0290	Ave		0.0274			21.8	*	15.0		
Diisopropyl ether	0.2497 0.24 0.2582	.9 0.2443	0.2635	0.2625	Ave		0.2533			3.7		15.0		
2-Chloro-1,3-butadiene	0.4420 0.420 0.4704	0.4511	0.4740	0.4713	Ave		0.4549			4.6		15.0		
Ethyl tert-butyl ether	0.6211 0.58° 0.6584	0.6198	0.6492	0.6651	Ave		0.6336			4.6		15.0		
Ethyl acetate	0.1632 0.15 0.1658	0.1495	0.1390	0.1611	Ave		0.1549			6.6		15.0		
Propionitrile	0.0323 0.028 0.0304	0.0316	0.0274	0.0314	Ave		0.0303			6.3		15.0		
Methacrylonitrile	0.1405 0.12 0.1382	0.1332	0.1307	0.1364	Ave		0.1342			3.9		15.0		
Tert-amyl methyl ether	0.4696 0.442 0.5053	0.4624	0.4953	0.5015	Ave		0.4794			5.3		15.0		
n-Butanol	0.0033 0.003 0.0036	0.0035	0.0026	0.0039	Ave		0.0033			14.8		15.0		
Ethyl acrylate	0.1948 0.193 0.2549	0.2166	0.2112	0.2430	Ave		0.2188			11.6		15.0		
Methyl methacrylate	0.1627 0.15 0.1910	0.1754	0.1669	0.1881	Ave		0.1732			8.3		15.0		
2-Nitropropane	0.0209 0.019 0.0282	0.0215	0.0212	0.0248	Ave		0.0227			14.0		15.0		
n-Butyl acetate	0.1945 0.18 0.2865	0.2185	0.2229	0.2597	Lin1	-0.151	0.2749						0.9930	0.990
1-Chlorohexane	0.4540 0.423 0.4857	0.4478	0.4555	0.4907	Ave		0.4595			5.5		15.0		
Cyclohexanone	0.0135 0.013 0.0138	0.0152	0.0121	0.0159	Ave		0.0138			10.8		15.0		

Lab Name: TestAmerica Canton Job No.: 240-70040-1 Analy Batch No.: 235700

SDG No.:

Instrument ID: A3UX15 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFIC	IENT	#	MIN RRF	%RSD	#	MAX	R^2	# MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	М1	M2					%RSD	OR COD	OR COD
	LVL 6															
Pentachloroethane	0.0921	0.0900	0.1037	0.0991	0.1534	Qua	-0.330	0.1448	0.0001243						0.9930	0.9900
	0.1497															
1,2,3-Trimethylbenzene	2.9918	2.6781	2.8844	2.7917	3.1763	Ave		2.9181				6.0		15.0		
	2.9864															
Benzyl chloride	0.0675	0.0593	0.0659	0.0672	0.0896	Qua	-0.025	0.0660	0.0011122						0.9990	0.9900
	0.1096															
1,3,5-Trichlorobenzene	1.2280	0.9726	0.9640	0.9309	1.1773	Ave		1.0266				13.7		15.0		
	0.8870															
2-Methylnaphthalene	1.0982	0.7226	0.7098	1.2187	0.9000	Ave		0.8699				28.7	*	15.0		
	0.5699															

Note: The ml coefficient is the same as Ave RRF for an Ave curve type.

FORM VI 8260B Page 133 of 155

Lab Name: TestAmerica Canton Job No.: 240-70040-1

SDG No.:

Lab Sample ID: ICV 240-235700/14 Calibration Date: 06/23/2016 14:16

Instrument ID: A3UX15 Calib Start Date: 06/23/2016 12:01

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 06/23/2016 13:53

Lab File ID: UXC9014.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.3296	0.3164		0.00960	0.0100	-4.0	50.0
Chloromethane	Ave	0.4664	0.4448	0.1000	0.00954	0.0100	-4.6	50.0
Vinyl chloride	Ave	0.4213	0.4126		0.00979	0.0100	-2.1	20.0
Butadiene	Ave	0.3951	0.3681		0.00932	0.0100	-6.8	50.0
Bromomethane	Ave	0.1393	0.1386		0.00995	0.0100	-0.5	50.0
Chloroethane	Ave	0.2241	0.2155		0.00962	0.0100	-3.8	50.0
Dichlorofluoromethane	Ave	0.4924	0.4860		0.00987	0.0100	-1.3	50.0
Trichlorofluoromethane	Ave	0.2524	0.2694		0.0107	0.0100	6.8	50.0
Ethyl ether	Ave	0.2373	0.2405		0.0101	0.0100	1.4	50.0
Acrolein	Ave	0.0276	0.0413		0.0749	0.0500	49.8	50.0
1,1,2-Trichlorotrifluoroetha	Ave	0.2139	0.2353		0.0110	0.0100	10.0	50.0
1,1-Dichloroethene	Ave	0.2948	0.3180		0.0108	0.0100	7.9	20.0
Acetone	Lin1		0.0617		0.0154	0.0200	-23.0	50.0
Iodomethane	Ave	0.4487	0.5028		0.0112	0.0100	12.1	50.0
Carbon disulfide	Ave	0.8567	0.9472		0.0111	0.0100	10.6	50.0
3-Chloro-1-propene	Ave	0.1674	0.1872		0.0112	0.0100	11.9	50.0
Methyl acetate	Ave	0.1562	0.1548		0.0495	0.0500	-0.9	50.0
Methylene Chloride	Lin1		0.3544		0.0107	0.0100	7.3	50.0
tert-Butyl alcohol	Ave	0.0095	0.0086		0.0907	0.100	-9.3	50.0
Acrylonitrile	Ave	0.0871	0.0893		0.103	0.100	2.6	50.0
Methyl tert-butyl ether	Ave	0.5780	0.6020		0.0104	0.0100	4.1	50.0
trans-1,2-Dichloroethene	Ave	0.3190	0.3457		0.0108	0.0100	8.4	50.0
Hexane	Ave	0.0781	0.0849		0.0109	0.0100	8.7	20.0
1,1-Dichloroethane	Ave	0.5441	0.5576	0.1000	0.0102	0.0100	2.5	50.0
Vinyl acetate	Ave	0.3607	0.4002		0.0111	0.0100	10.9	50.0
2,2-Dichloropropane	Ave	0.1735	0.1819		0.0105	0.0100	4.8	50.0
cis-1,2-Dichloroethene	Ave	0.3431	0.3582		0.0104	0.0100	4.4	50.0
2-Butanone (MEK)	Ave	0.1018	0.0930		0.0183	0.0200	-8.6	50.0
Bromochloromethane	Ave	0.1527	0.1581		0.0104	0.0100	3.6	50.0
Tetrahydrofuran	Ave	0.0568	0.0553		0.0195	0.0200	-2.6	50.0
Chloroform	Ave	0.5085	0.5370		0.0106	0.0100	5.6	20.0
1,1,1-Trichloroethane	Ave	0.3093	0.3345		0.0108	0.0100	8.1	50.0
Cyclohexane	Ave	0.5356	0.5820		0.0109	0.0100	8.7	50.0
1,1-Dichloropropene	Ave	0.4235	0.4371		0.0103	0.0100	3.2	50.0
Carbon tetrachloride	Ave	0.2551	0.2760		0.0108	0.0100	8.2	50.0
Isobutyl alcohol	Ave	0.0048	0.0045		0.231	0.250	-7.7	50.0
Benzene	Ave	1.297	1.346		0.0104	0.0100	3.7	50.0
1,2-Dichloroethane	Ave	0.3701	0.3803		0.0103	0.0100	2.8	50.0
n-Heptane	Ave	0.0709	0.0751		0.0106	0.0100	6.0	50.0
Trichloroethene	Ave	0.3242	0.3424		0.0106	0.0100	5.6	50.0

Lab Name: TestAmerica Canton Job No.: 240-70040-1

SDG No.:

Lab Sample ID: ICV 240-235700/14 Calibration Date: 06/23/2016 14:16

Instrument ID: A3UX15 Calib Start Date: 06/23/2016 12:01

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 06/23/2016 13:53

Lab File ID: UXC9014.D Conc. Units: ng/uL Heated Purge: (Y/N) N

1,2-Dichloropropane Ave 0.2882 0.3125 0.0108 0.0100 0.4,4 20.0									
1,2-Dichloropropane Ave 0.2882 0.3125 0.0108 0.0100 0.4,4 20.0	ANALYTE		AVE RRF	RRF	MIN RRF			%D	
1,2-Dichloropropane Ave 0.2882 0.3125 0.0108 0.0100 0.4,4 20.0	Methylcyclohexane	Ave	0.4846	0.5143		0.0106	0.0100	6.1	50.0
1,4-Dioxane Ave 0.0021 0.0016 0.153 0.200 -23.6 50.0 Normodichloromethane Ave 0.3088 0.3286 0.0106 0.0100 6.4 50.0 Normodichloromethane Ave 0.3088 0.3286 0.0106 0.0100 6.4 50.0 Cis-1,3-Dichloropropene Lin1 0.3799 0.00957 0.0200 0.313 Normodichloromethane Ave 0.1749 0.1785 0.0204 0.0200 0.11 Normodichloropropene Lin1 0.3799 0.00957 0.0200 0.11 Normodichloropropene Lin1 0.3694 0.0001 0.0100 4.4 20.0 Normodichloropropene Lin1 0.3694 0.00901 0.0100 4.4 20.0 Litans-1,3-Dichloropropene Lin1 0.3694 0.00901 0.0100 11.5 50.0 Litans-1,3-Dichloropropene Lin1 0.3599 0.4014 0.0112 0.0100 11.5 50.0 Lit,2-Trichlorocethane Ave 0.3599 0.4014 0.0112 0.0100 11.5 50.0 Lit,2-Trichlorocethane Ave 0.3599 0.4014 0.0112 0.0100 3.7 50.0 Retrachlorocethane Ave 0.3590 0.3627 0.0104 0.0100 3.4 50.0 Setrachlorocethane Ave 0.5833 0.6023 0.0103 0.0100 3.4 50.0 Chlorodichromomethane Ave 0.1630 0.1674 0.0205 0.0200 2.7 50.0 Chlorodichromomethane Ave 0.2750 0.2891 0.0103 0.0100 5.1 50.0 Chlorobenzene Ave 0.3012 0.3176 0.0108 0.0100 0.7,6 50.0 Chlorodenzene Ave 0.3012 0.3176 0.0108 0.0100 0.7,6 50.0 Lit,1-Z-Tetrachlorocethane Ave 0.3012 0.3176 0.0108 0.0100 0.0100 2.4 50.0 Styrene Ave 1.127 1.578 0.0107 0.0100 0.0100 2.5 50.0 Styrene Ave 1.217 1.578 0.0107 0.0100 0.0100 3.9 50.0 Styrene Ave 1.715 1.785 0.0107 0.0100 0.0100 5.9 50.0 Styrene Ave 1.715 1.785 0.0107 0.0100 0.0100 7.2 50.0 Styrene Ave 0.2460 0.2711 0.0100 0.0100 0.0100 5.9 50.0 Styrene Ave 0.2460 0.2711 0.0100 0.0100 0.0100 5.9 50.0 Styrene Ave 0.2460 0.2711 0.0100 0.0100 0.0100 5.9 50.0 Styrene Ave 0.2460 0.2711 0.01	1,2-Dichloropropane	Ave	0.2882	0.3125		0.0108	0.0100	8.4	20.0
### Bromodichloromethane Ave	Dibromomethane	Ave	0.1523	0.1580		0.0104	0.0100	3.7	50.0
2-Chloroethyl vinyl ether Ave	1,4-Dioxane	Ave	0.0021	0.0016		0.153	0.200	-23.6	50.0
cis=1,3-Dichloropropene Lin1 0.3799 0.00967 0.0100 -3.3 50.0 4-Methyl-2-pentanone (MIBK) Ave 0.1749 0.1785 0.0004 0.0200 2.1 50.0 Tolluene Ave 1.810 1.889 0.0104 0.0100 4.4 20.0 Lin1 0.3654 0.00901 0.0100 -9.9 50.0 Ethyl methacrylate Ave 0.3599 0.4014 0.0112 0.0100 11.5 50.0 Tetrachloroethane Ave 0.3599 0.4014 0.0112 0.0100 3.7 50.0 Tetrachloroethane Ave 0.3520 0.3627 0.0104 0.0100 3.6 50.0 7.3-Dichloropropane Ave 0.1630 0.1674 0.0205 0.0200 2.7 50.0 2-Hexanone Ave 0.1630 0.1674 0.0205 0.020 2.7 50.0 Chlorodeneme Ave 0.1630 0.1676 0.010 0.010 7.6 50.0 <td>Bromodichloromethane</td> <td>Ave</td> <td>0.3088</td> <td>0.3286</td> <td></td> <td>0.0106</td> <td>0.0100</td> <td>6.4</td> <td>50.0</td>	Bromodichloromethane	Ave	0.3088	0.3286		0.0106	0.0100	6.4	50.0
4-Methyl-2-pentanone (MIBK) Ave 0.1749 0.1785 0.0204 0.0200 2.1 50.0 Toluene Ave 1.810 1.889 0.0104 0.0100 4.4 20.0 trans-1,3-Dichloropropene Lini 0.3654 0.00901 0.0100 -9.9 50.0 Ethyl methacrylate Ave 0.3599 0.4014 0.0112 0.0100 11.5 50.0 1.7,2-Trichloroethane Ave 0.3599 0.4014 0.0112 0.0100 11.5 50.0 1.7,2-Trichloroethane Ave 0.3112 0.3226 0.0104 0.0100 3.7 50.0 Tetranbloroethane Ave 0.3500 0.3627 0.0104 0.0100 3.6 50.0 1.3-Dichloropropane Ave 0.5823 0.6023 0.0103 0.0100 3.4 50.0 1.3-Dichloropropane Ave 0.5823 0.6023 0.0103 0.0100 3.4 50.0 1.3-Dichloromomethane Ave 0.1630 0.1674 0.0200 0.0200 0.27 50.0 thlorodibromomethane Ave 0.2750 0.2891 0.0105 0.0100 5.1 50.0 1.2-Dibromoethane Ave 0.2951 0.3176 0.0105 0.0100 7.6 50.0 thlorodibromomethane Ave 0.2951 0.3176 0.0100 0.0100 7.6 50.0 thlorodibromomethane Ave 0.3072 0.3146 0.0102 0.0100 2.4 50.0 thlorodibromomethane Ave 0.3072 0.3146 0.0102 0.0100 2.4 50.0 thlorodibromomethane Ave 0.3072 0.3146 0.0102 0.0100 2.4 50.0 thlorodibromomethane Ave 0.6168 0.6406 0.0104 0.0100 3.9 22.0 thlorodibromomethane Ave 0.6168 0.6406 0.0104 0.0100 3.9 50.0 thlorodibromomethane Ave 0.6168 0.6406 0.0104 0.0100 3.9 50.0 thlorodibromomethane Ave 0.6251 0.7431 0.0000 0.0100 2.5 50.0 thlorodibromomethane Ave 0.6251 0.7431 0.0000 0.0100 2.5 50.0 thlorodibromomethane Ave 0.6251 0.7431 0.0100 0.0100 3.9 50.0 thlorodibromomethane Ave 0.7771 0.8287 0.0107 0.0100 5.6 50.0 thlorodibromomethane Ave 0.7771 0.8287 0.0107 0.0100 5.6 50.0 thlorodibromomethane Ave 0.7771 0.8287 0.0107 0.0100 5.6 50.0 thlorodibromomethane Ave 0.7466 0.2711 0.0100 0.0100 5.9 50.0 thlorodibromomethane Ave 0.2460 0.2711 0.0100 0.0100 5.9 50.0 trans-1,4-Dichloro-2-butne Ave 0.2483 0.2313 0.0106 0.0100 5.9 50.0 trans-1,4-Dichloro-2-butne Ave 0.2460 0.2711 0.0100 0.0100 5.9 50.0 trans-1,4-Dichloro-2-butne Ave 0.2460 0.2711 0.0000 0.0100 5.9 50.0 50.0 trans-1,4-Dichloro-2-butne Ave 0.2460 0.2711 0.0000 0.0100 5.0 50.0 50.0 50.0 50.0	2-Chloroethyl vinyl ether	Ave	0.1461	0.1547		0.0106	0.0100	5.9	50.0
Toluene Ave 1.810 1.889 0.0104 0.0100 4.4 20.0 trans-1,3-Dichloropropene Lini 0.3654 0.00901 0.0100 -9.9 56.0 Ethyl methacrylate Ave 0.3399 0.4014 0.0112 0.0100 11.5 50.0 11.1,2-Trichloroethane Ave 0.3112 0.3226 0.0104 0.0100 3.7 56.0 Tetrachloroethane Ave 0.3500 0.3627 0.0104 0.0100 3.6 56.0 1,3-Dichloropropane Ave 0.5823 0.6023 0.0023 0.0103 0.0100 3.4 55.0 2-Hexanone Ave 0.1630 0.1674 0.0205 0.0200 2.7 56.0 Chlorodibromomethane Ave 0.2750 0.2891 0.0105 0.0100 5.1 55.0 Chlorodibromomethane Ave 0.2951 0.3176 0.0108 0.0100 5.1 55.0 Chlorobenzene Ave 1.164 1.192 0.3000 0.0102 0.0100 7.6 50.0 Chlorobenzene Ave 0.3072 0.3146 0.0102 0.0100 2.3 50.0 mXylene 6.p-xylene Ave 0.7251 0.7431 0.0102 0.0100 2.4 55.0 0.0-Xylene Ave 0.7251 0.7431 0.0102 0.0100 3.3 50.0 0.0-Xylene Ave 0.7251 0.7431 0.0102 0.0100 2.5 55.0 0.0-Xylene Ave 1.161 0.1506 0.1000 0.0096 0.0100 2.5 55.0 0.0-Xylene Ave 1.715 1.785 0.0107 0.0100 6.6 50.0 Examoform Lini 0.1506 0.1007 0.0000 6.7 50.0 Examoform Lini 0.1506 0.1007 0.0100 6.6 50.0 Examoforme Ave 0.7771 0.8287 0.3000 0.0107 0.0100 6.6 50.0 Examoforme Ave 0.7771 0.8287 0.3000 0.0107 0.0100 6.6 50.0 Examoforme Ave 0.2460 0.2711 0.0101 0.0100 0.72 55.0 0.0 Examoforme Ave 0.2460 0.2711 0.0101 0.0100 0.72 55.0 0.0 Examoforme Ave 0.2460 0.2711 0.0101 0.0100 0.000 5.9 50.0 0.0 Examoforme Ave 0.2460 0.2711 0.0101 0.0100 0.000 5.9 50.0 Examoforme Ave 0.2460 0.2711 0.0101 0.0100 0.000 5.0 50.0 Examoforme Ave 0.2460 0.2711 0.0101 0.0100 0.000 5.0 50.0 Examoforme Ave 0.2460 0.2711 0.0101 0.0100 0.000 5.0 50.0 Examoforme Ave 0.2460 0.2711 0.0101 0.0100 0.000 5.6 50.0 Examoforme Ave 0.2460 0.2711 0.0101 0.0100 0.000 5.0 50.0 Examoforme Ave 0.2460 0.2711 0.0101 0.0100 0.000 5.0 50.0 Examoforme Ave 0.2460 0.2711 0.0101 0.0100 0.0100 0.000 5.0 50.0 Examoforme Ave 0.2460 0.2711 0.0101 0.0100 0.0100 0.000 5.0 50.0 Examoforme Ave 0.2460 0.2711 0.0101 0.0100 0.0100 0.000 5.0 50.0 0.000 0.000 5.0 50.0 0.000 0.000 5.0 50.0 0.0000 5.0 50.0 0.0000 5.0 50.0 0.0000 5.0 50.0 0.0000 5.0 50.0 0.0000 5.0 50.0 0.0000 5.0 5	cis-1,3-Dichloropropene	Lin1		0.3799		0.00967	0.0100	-3.3	50.0
Trans-1,3-Dichloropropene	4-Methyl-2-pentanone (MIBK)	Ave	0.1749	0.1785		0.0204	0.0200	2.1	50.0
Ethyl methacrylate	Toluene	Ave	1.810	1.889		0.0104	0.0100	4.4	20.0
1,1,2-Trichloroethane	trans-1,3-Dichloropropene	Lin1		0.3654		0.00901	0.0100	-9.9	50.0
Tetrachloroethene	Ethyl methacrylate	Ave	0.3599	0.4014		0.0112	0.0100	11.5	50.0
1,3-Dichloropropane Ave 0.5823 0.6023 0.0103 0.0100 3.4 50.0	1,1,2-Trichloroethane	Ave	0.3112	0.3226		0.0104	0.0100	3.7	50.0
2-Hexanone Ave 0.1630 0.1674 0.0205 0.0200 2.7 50.0 Chlorodibromomethane Ave 0.2750 0.2891 0.0105 0.0100 5.1 50.0 1,2-Dibromoethane Ave 0.2951 0.3176 0.0108 0.0100 7.6 50.0 1,1,2-Dibromoethane Ave 0.2951 0.3176 0.0108 0.0100 7.6 50.0 1,1,1,1,2-Tetrachloroethane Ave 0.3072 0.3146 0.0102 0.0100 2.3 50.0 1,1,1,2-Tetrachloroethane Ave 0.3072 0.3146 0.0102 0.0100 2.4 50.0 Ethylbenzene Ave 0.6168 0.6406 0.0104 0.0100 3.9 20.0 m-Xylene & p-Xylene Ave 1.527 1.578 0.0103 0.0100 3.3 50.0 5.2 50	Tetrachloroethene	Ave	0.3500	0.3627		0.0104	0.0100	3.6	50.0
Chlorodibromomethane Ave 0.2750 0.2891 0.0105 0.0100 5.1 50.0 1,2-Dibromoethane Ave 0.2951 0.3176 0.0108 0.0100 7.6 50.0 Chlorobenzene Ave 1.164 1.192 0.3000 0.0102 0.0100 2.3 50.0 1,1,1,2-Tetrachloroethane Ave 0.3072 0.3146 0.0102 0.0100 2.4 50.0 Ethylbenzene Ave 0.6168 0.6406 0.0104 0.0100 3.9 20.0 m-Xylene & p-Xylene Ave 0.7251 0.7431 0.0102 0.0100 2.5 50.0 Styrene Ave 0.7251 0.7431 0.0102 0.0100 2.5 50.0 Styrene Ave 1.217 1.297 0.0107 0.0100 6.6 50.0 Bromoform Linl 0.1506 0.1000 0.00968 0.0100 -3.2 50.0 I,1,2,2-Tetrachloroethane Ave 0.7771 0.8287 0.3000 0.0107 0.0100 6.6 50.0 Bromobenzene Ave 1.036 1.111 0.0107 0.0100 7.2 50.0 Exam: 4-Dichloro-2-butene Ave 0.2460 0.2711 0.0110 0.0100 7.2 50.0 N-Propylbenzene Ave 1.046 1.121 0.0107 0.0100 7.2 50.0 N-Propylbenzene Ave 1.046 1.121 0.0107 0.0100 7.2 50.0 L-3,5-Trimethylbenzene Ave 0.9116 0.9667 0.0106 0.0100 7.2 50.0 L-3,5-Trimethylbenzene Ave 3.037 3.339 0.0104 0.0100 7.2 50.0 L-3,4-Trimethylbenzene Ave 3.037 3.339 0.0106 0.0100 3.9 50.0 L-3,4-Trimethylbenzene Ave 3.037 3.339 0.0106 0.0100 5.9 50.0 L-3,4-Trimethylbenzene Ave 3.037 3.339 0.0106 0.0100 5.6 50.0 L-3,4-Trimethylbenzene Ave 3.037 3.339 0.0106 0.0100 5.6 50.0 L-3,2-Trimethylbenzene Ave 3.037 3.339 0.0106 0.0100 5.6 50.0 L-3-Dichlorobenzene Ave 3.037 3.339 0.0106 0.0100 5.6 50.0 L-3-Dichlorobenzene Ave 3.037 3.339 0.0106 0.0100 5.6 50.0 L-3-Dichlorobenzene Ave 3.037 3.339 0.0106 0.0100 5.6 50.0 L-3-Dichlorobenzene Ave 3.037 3.339 0.0102 0.0100 5.6 50.0 L-3-Dichlorobenzene Ave 3.037 3.339 0.0102 0.0100 5.6 50.0 L-3-Dichlorobenzene Ave 3.037 3.339 0.0102 0.0100 5.6 50.0 L-3-Dichlorobenzene Ave 3.037 3.339 0.0102 0.0100 5.6 50.0 L-3-Dichlorobenzene Ave 3.037 3.055 0.0102 0.0100 5.6 50.0 L-3-Dichlorobenzene Ave 3.037 3.055 0.0102 0.0100 5.6 50.0 L-3-Dichlorobenzene Ave 3.037 3.055 0.0102 0.0100 5.6 50.0 L-3-Dichlorobenzene Ave 3.037 3.055 0.0102 0.0100 5.6 50.0 L-3-Dichlorobenzene Ave 3.037 3.055 0.0102 0.0100 5.6 50.0 L-3-Dichlorobenzene Ave 3.037 3.055 0.0102 0.0100 5.6 50.0 L-3-Dichlorobenzene Ave 3.0	1,3-Dichloropropane	Ave	0.5823	0.6023		0.0103	0.0100	3.4	50.0
1,2-Dibromoethane Ave 0.2951 0.3176 0.0108 0.0100 7.6 50.0	2-Hexanone	Ave	0.1630	0.1674		0.0205	0.0200	2.7	50.0
Chlorobenzene Ave 1.164 1.192 0.3000 0.0102 0.0100 2.3 50.0 1,1,1,2-Tetrachloroethane Ave 0.3072 0.3146 0.0102 0.0100 2.4 50.0 Ethylbenzene Ave 0.6168 0.6406 0.0104 0.0100 3.9 20.0 m-Xylene & p-Xylene Ave 1.527 1.578 0.0103 0.0100 3.3 50.0 o-Xylene & p-Xylene Ave 0.7251 0.7431 0.0102 0.0100 2.5 50.0 Styrene Ave 1.217 1.297 0.0107 0.0100 6.6 50.0 Ethylbenzene Ave 1.217 1.297 0.0107 0.0100 6.6 50.0 Ethylbenzene Ave 1.715 1.785 0.0004 0.0006 0.0000 3.3 50.0 o-Xylene Styrene Ave 1.715 1.785 0.0100 0.0006 0.0100 0.0006 0.0100 0.0006 0.0100 0.0006 0.0100 0.0006 0.0100 0.0006 0.0100 0.0006 0.0100 0.0006 0.0100 0.0006 0.0100 0.0006 0.0000 0.0006 0.0000 0.0006 0.0100 0.0006 0.0100 0.0006 0.0100 0.0006 0.0100 0.0006 0.0100 0.0006 0.0100 0.0006 0.0100	Chlorodibromomethane	Ave	0.2750	0.2891		0.0105	0.0100	5.1	50.0
1,1,1,2-Tetrachloroethane	1,2-Dibromoethane	Ave	0.2951	0.3176		0.0108	0.0100	7.6	50.0
Ethylbenzene Ave 0.6168 0.6406 0.0104 0.0100 3.9 20.0 m-Xylene & p-Xylene Ave 1.527 1.578 0.0103 0.0100 3.3 50.0 o-Xylene Ave 0.7251 0.7431 0.0102 0.0100 2.5 50.0 Styrene Ave 1.217 1.297 0.0107 0.0100 6.6 50.0 Styrene Ave 1.217 1.297 0.0107 0.0100 6.6 50.0 Isopropylbenzene Ave 1.715 1.785 0.00088 0.0100 -3.2 50.0 Isopropylbenzene Ave 1.715 1.785 0.0104 0.0100 4.1 50.0 1.1,2,2-Tetrachloroethane Ave 0.7771 0.8287 0.3000 0.0107 0.0100 6.6 50.0 Isomobenzene Ave 1.036 1.111 0.0107 0.0100 7.2 50.0 Izopropylbenzene Ave 0.2460 0.2711 0.0107 0.0100 7.2 50.0 Izopropylbenzene Ave 0.2460 0.2711 0.0110 0.0100 7.2 50.0 Izopropylbenzene Ave 0.2183 0.2313 0.0106 0.0100 5.9 50.0 N-Propylbenzene Ave 0.2183 0.2313 0.0106 0.0100 5.9 50.0 Izopropylbenzene Ave 0.9116 0.9667 0.0106 0.0100 7.2 50.0 Izopropylbenzene Ave 0.9116 0.9667 0.0106 0.0100 6.0 50.0 Izopropylbenzene Ave 0.2964 3.080 0.0104 0.0100 3.9 50.0 Izopropylbenzene Ave 2.964 3.080 0.0104 0.0100 3.9 50.0 Izopropylbenzene Ave 2.964 3.080 0.0104 0.0100 3.9 50.0 Izopropylbenzene Ave 2.964 3.080 0.0104 0.0100 3.9 50.0 Izopropylbenzene Ave 3.057 3.319 0.0105 0.0100 5.1 50.0 Izopropylbenzene Ave 3.017 3.319 0.0105 0.0100 5.6 50.0 Izopropylbenzene Ave 3.017 3.319 0.0105 0.0100 5.6 50.0 Izopropylbenzene Ave 3.017 3.336 0.0104 0.0100 3.8 50.0 Izopropylbenzene Ave 3.213 3.336 0.0104 0.0100 3.8 50.0 Izopropylbenzene Ave 3.213 3.336 0.0104 0.0100 3.8 50.0 Izopropylbenzene Ave 3.213 3.336 0.0104 0.0100 3.8 50.0 Izopropylbenzene Ave 3.213 3.336 0.0104 0.0100 3.8 50.0 Izopropylbenzene Ave 3.213 3.336 0.0104 0.0100 3.8 50.0 Izopropylbenzene Ave 3.2730 0.0103 0.0100 -0.3 50.0 Izopropylbenzene Ave 3.2730 0.0103 0.0100 -0.3 50.0 Izopropylbenzene Ave 3.2730 0.0103 0.0100 -0.1 50.0 Izopropylbenzene Ave 3.2730 0.00099 0.0100 -0.1 50.0 Izopropylbenzene Ave 3.213 3.336 0.00099 0.0100 -0.1 50.0 Izopropylbenzene Ave 3.2730 0.00099 0.0100 -0.1 50.0 Izopropylbenzene Ave 3.2730 0.00099 0.0100 -0.1 50.0 Izopropylbenzene Ave 3.2730 0.00099 0.0100 -0.1 50.0 Izopropylbenzene Ave 3.2151 0.000999 0.0100 -0.	Chlorobenzene	Ave	1.164	1.192	0.3000	0.0102	0.0100	2.3	50.0
Marticle Ave 1.527 1.578 0.0103 0.0100 3.3 50.0	1,1,1,2-Tetrachloroethane	Ave	0.3072	0.3146		0.0102	0.0100	2.4	50.0
O-Xylene Ave 0.7251 0.7431 0.0102 0.0100 2.5 50.0 Styrene Ave 1.217 1.297 0.0107 0.0100 6.6 50.0 Bromoform Lin1 0.1506 0.1000 0.0968 0.0100 -3.2 50.0 Isopropylbenzene Ave 1.715 1.785 0.0104 0.0100 4.1 50.0 Isopropylbenzene Ave 0.7771 0.8287 0.3000 0.0107 0.0100 6.6 50.0 Bromobenzene Ave 1.036 1.111 0.0107 0.0100 7.2 50.0 1,2,3-Trichloropropane Ave 0.2460 0.2711 0.0110 0.0100 7.2 50.0 N-Propylbenzene Ave 0.2183 0.2313 0.0106 0.0100 5.9 50.0 2-Chlorotoluene Ave 0.9116 0.9667 0.0106 0.0100 7.2 50.0 4-Chlorotoluene Ave 3.157 3.319 0.0105 <td>Ethylbenzene</td> <td>Ave</td> <td>0.6168</td> <td>0.6406</td> <td></td> <td>0.0104</td> <td>0.0100</td> <td>3.9</td> <td>20.0</td>	Ethylbenzene	Ave	0.6168	0.6406		0.0104	0.0100	3.9	20.0
Styrene Ave 1.217 1.297 0.0107 0.0100 6.6 50.0	m-Xylene & p-Xylene	Ave	1.527	1.578		0.0103	0.0100	3.3	50.0
Description Lin1 Description Lin1 Description	o-Xylene	Ave	0.7251	0.7431		0.0102	0.0100	2.5	50.0
Taspropylbenzene	Styrene	Ave	1.217	1.297		0.0107	0.0100	6.6	50.0
1,1,2,2-Tetrachloroethane Ave 0.7771 0.8287 0.3000 0.0107 0.0100 6.6 50.0 Bromobenzene Ave 1.036 1.111 0.0107 0.0100 7.2 50.0 1,2,3-Trichloropropane Ave 0.2460 0.2711 0.0110 0.0100 10.2 50.0 trans-1,4-Dichloro-2-butene Ave 0.2183 0.2313 0.0106 0.0100 5.9 50.0 N-Propylbenzene Ave 1.046 1.121 0.0107 0.0100 7.2 50.0 2-Chlorotoluene Ave 0.9116 0.9667 0.0106 0.0100 6.0 50.0 1,3,5-Trimethylbenzene Ave 2.964 3.080 0.0104 0.0100 3.9 50.0 4-Chlorotoluene Ave 3.157 3.319 0.0105 0.0100 5.1 50.0 4-Chlorotoluene Ave 2.401 2.534 0.0106 0.0100 5.6 50.0 1,2,4-Trimethylbenzene Ave 3.213 3.336 0.0102 0.0100 1.6 50.0 sec-	Bromoform	Lin1		0.1506	0.1000	0.00968	0.0100	-3.2	50.0
Bromobenzene Ave 1.036 1.111 0.0107 0.0100 7.2 50.0	Isopropylbenzene	Ave	1.715	1.785		0.0104	0.0100	4.1	50.0
1,2,3-Trichloropropane Ave 0.2460 0.2711 0.0110 0.0100 10.2 50.0 trans-1,4-Dichloro-2-butene Ave 0.2183 0.2313 0.0106 0.0100 5.9 50.0 N-Propylbenzene Ave 1.046 1.121 0.0107 0.0100 7.2 50.0 2-Chlorotoluene Ave 0.9116 0.9667 0.0106 0.0100 6.0 50.0 1,3,5-Trimethylbenzene Ave 2.964 3.080 0.0104 0.0100 3.9 50.0 4-Chlorotoluene Ave 3.157 3.319 0.0105 0.0100 5.1 50.0 4-Chlorotoluene Ave 2.401 2.534 0.0106 0.0100 5.6 50.0 1,2,4-Trimethylbenzene Ave 3.007 3.055 0.0102 0.0100 1.6 50.0 sec-Butylbenzene Ave 3.213 3.336 0.0104 0.0100 3.8 50.0 1,3-Dichlorobenzene Ave 1.723 1.718	1,1,2,2-Tetrachloroethane	Ave	0.7771	0.8287	0.3000	0.0107	0.0100	6.6	50.0
trans-1,4-Dichloro-2-butene Ave 0.2183 0.2313 0.0106 0.0100 5.9 50.0 N-Propylbenzene Ave 1.046 1.121 0.0107 0.0100 7.2 50.0 2-Chlorotoluene Ave 0.9116 0.9667 0.0106 0.0100 6.0 50.0 1,3,5-Trimethylbenzene Ave 2.964 3.080 0.0104 0.0100 3.9 50.0 4-Chlorotoluene Ave 3.157 3.319 0.0105 0.0100 5.1 50.0 tert-Butylbenzene Ave 2.401 2.534 0.0106 0.0100 5.6 50.0 1,2,4-Trimethylbenzene Ave 3.007 3.055 0.0102 0.0100 5.6 50.0 sec-Butylbenzene Ave 3.213 3.336 0.0104 0.0100 3.8 50.0 1,3-Dichlorobenzene Ave 3.213 3.336 0.0104 0.0100 3.8 50.0 1,3-Dichlorobenzene Ave 2.700 2.773 0.0103 0.0100 -0.3 50.0 4-Isopropyltoluene Ave 2.700 2.773 0.0103 0.0100 2.7 50.0 1,4-Dichlorobenzene Ave 2.151 2.130 0.00990 0.0100 -1.0 50.0	Bromobenzene	Ave	1.036	1.111		0.0107	0.0100	7.2	50.0
Ave 1.046 1.121 0.0107 0.0100 7.2 50.0	1,2,3-Trichloropropane	Ave	0.2460	0.2711		0.0110	0.0100	10.2	50.0
2-Chlorotoluene Ave 0.9116 0.9667 0.0106 0.0100 6.0 50.0 1,3,5-Trimethylbenzene Ave 2.964 3.080 0.0104 0.0100 3.9 50.0 4-Chlorotoluene Ave 3.157 3.319 0.0105 0.0100 5.1 50.0 tert-Butylbenzene Ave 2.401 2.534 0.0106 0.0100 5.6 50.0 1,2,4-Trimethylbenzene Ave 3.007 3.055 0.0102 0.0100 1.6 50.0 sec-Butylbenzene Ave 3.213 3.336 0.0104 0.0100 3.8 50.0 1,3-Dichlorobenzene Ave 1.723 1.718 0.00997 0.0100 -0.3 50.0 4-Isopropyltoluene Ave 2.700 2.773 0.0103 0.0100 2.7 50.0 1,4-Dichlorobenzene Ave 1.765 1.763 0.00999 0.0100 -0.1 50.0 n-Butylbenzene Ave 2.151 2.130	trans-1,4-Dichloro-2-butene	Ave	0.2183	0.2313		0.0106	0.0100	5.9	50.0
1,3,5-Trimethylbenzene Ave 2.964 3.080 0.0104 0.0100 3.9 50.0 4-Chlorotoluene Ave 3.157 3.319 0.0105 0.0100 5.1 50.0 tert-Butylbenzene Ave 2.401 2.534 0.0106 0.0100 5.6 50.0 1,2,4-Trimethylbenzene Ave 3.007 3.055 0.0102 0.0100 1.6 50.0 sec-Butylbenzene Ave 3.213 3.336 0.0104 0.0100 3.8 50.0 1,3-Dichlorobenzene Ave 1.723 1.718 0.00997 0.0100 -0.3 50.0 4-Isopropyltoluene Ave 2.700 2.773 0.0103 0.0100 2.7 50.0 1,4-Dichlorobenzene Ave 1.765 1.763 0.00999 0.0100 -0.1 50.0 n-Butylbenzene Ave 2.151 2.130 0.00990 0.0100 -1.0 50.0	N-Propylbenzene	Ave	1.046	1.121		0.0107	0.0100	7.2	50.0
4-Chlorotoluene Ave 3.157 3.319 0.0105 0.0100 5.1 50.0 tert-Butylbenzene Ave 2.401 2.534 0.0106 0.0100 5.6 50.0 1,2,4-Trimethylbenzene Ave 3.007 3.055 0.0102 0.0100 1.6 50.0 sec-Butylbenzene Ave 3.213 3.336 0.0104 0.0100 3.8 50.0 1,3-Dichlorobenzene Ave 1.723 1.718 0.00997 0.0100 -0.3 50.0 4-Isopropyltoluene Ave 2.700 2.773 0.0103 0.0100 2.7 50.0 1,4-Dichlorobenzene Ave 1.765 1.763 0.00999 0.0100 -0.1 50.0 n-Butylbenzene Ave 2.151 2.130 0.00990 0.0100 -1.0 50.0	2-Chlorotoluene	Ave	0.9116	0.9667		0.0106	0.0100	6.0	50.0
tert-Butylbenzene Ave 2.401 2.534 0.0106 0.0100 5.6 50.0 1,2,4-Trimethylbenzene Ave 3.007 3.055 0.0102 0.0100 1.6 50.0 sec-Butylbenzene Ave 3.213 3.336 0.0104 0.0100 3.8 50.0 1,3-Dichlorobenzene Ave 1.723 1.718 0.00997 0.0100 -0.3 50.0 4-Isopropyltoluene Ave 2.700 2.773 0.0103 0.0100 2.7 50.0 1,4-Dichlorobenzene Ave 1.765 1.763 0.00999 0.0100 -0.1 50.0 n-Butylbenzene Ave 2.151 2.130 0.00990 0.0100 -1.0 50.0	1,3,5-Trimethylbenzene	Ave	2.964	3.080		0.0104	0.0100	3.9	50.0
1,2,4-Trimethylbenzene Ave 3.007 3.055 0.0102 0.0100 1.6 50.0 sec-Butylbenzene Ave 3.213 3.336 0.0104 0.0100 3.8 50.0 1,3-Dichlorobenzene Ave 1.723 1.718 0.00997 0.0100 -0.3 50.0 4-Isopropyltoluene Ave 2.700 2.773 0.0103 0.0100 2.7 50.0 1,4-Dichlorobenzene Ave 1.765 1.763 0.00999 0.0100 -0.1 50.0 n-Butylbenzene Ave 2.151 2.130 0.00990 0.0100 -1.0 50.0	4-Chlorotoluene	Ave	3.157	3.319		0.0105	0.0100	5.1	50.0
sec-Butylbenzene Ave 3.213 3.336 0.0104 0.0100 3.8 50.0 1,3-Dichlorobenzene Ave 1.723 1.718 0.00997 0.0100 -0.3 50.0 4-Isopropyltoluene Ave 2.700 2.773 0.0103 0.0100 2.7 50.0 1,4-Dichlorobenzene Ave 1.765 1.763 0.00999 0.0100 -0.1 50.0 n-Butylbenzene Ave 2.151 2.130 0.00990 0.0100 -1.0 50.0	tert-Butylbenzene	Ave	2.401	2.534		0.0106	0.0100	5.6	50.0
1,3-Dichlorobenzene Ave 1.723 1.718 0.00997 0.0100 -0.3 50.0 4-Isopropyltoluene Ave 2.700 2.773 0.0103 0.0100 2.7 50.0 1,4-Dichlorobenzene Ave 1.765 1.763 0.00999 0.0100 -0.1 50.0 n-Butylbenzene Ave 2.151 2.130 0.00990 0.0100 -1.0 50.0	1,2,4-Trimethylbenzene	Ave	3.007	3.055		0.0102	0.0100	1.6	50.0
4-Isopropyltoluene Ave 2.700 2.773 0.0103 0.0100 2.7 50.0 1,4-Dichlorobenzene Ave 1.765 1.763 0.00999 0.0100 -0.1 50.0 n-Butylbenzene Ave 2.151 2.130 0.00990 0.0100 -1.0 50.0	sec-Butylbenzene	Ave	3.213	3.336		0.0104	0.0100	3.8	50.0
1,4-Dichlorobenzene Ave 1.765 1.763 0.00999 0.0100 -0.1 50.0 n-Butylbenzene Ave 2.151 2.130 0.00990 0.0100 -1.0 50.0	1,3-Dichlorobenzene	Ave	1.723	1.718		0.00997	0.0100	-0.3	50.0
n-Butylbenzene Ave 2.151 2.130 0.00990 0.0100 -1.0 50.0	4-Isopropyltoluene	Ave	2.700	2.773		0.0103	0.0100	2.7	50.0
	1,4-Dichlorobenzene	Ave	1.765	1.763		0.00999	0.0100	-0.1	50.0
1,2-Dichlorobenzene Ave 1.577 1.548 0.00981 0.0100 -1.9 50.0	n-Butylbenzene	Ave	2.151	2.130		0.00990	0.0100	-1.0	50.0
	1,2-Dichlorobenzene	Ave	1.577	1.548		0.00981	0.0100	-1.9	50.0

Lab Name: TestAmerica Canton Job No.: 240-70040-1

SDG No.:

Lab Sample ID: <u>ICV 240-235700/14</u> Calibration Date: 06/23/2016 14:16

Instrument ID: A3UX15 Calib Start Date: 06/23/2016 12:01

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 06/23/2016 13:53

Lab File ID: UXC9014.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.0839	0.0824		0.00982	0.0100	-1.8	50.0
1,2,4-Trichlorobenzene	Ave	0.8173	0.7237		0.00885	0.0100	-11.5	50.0
Hexachlorobutadiene	Ave	0.3769	0.3089		0.00820	0.0100	-18.0	50.0
Naphthalene	Ave	1.726	1.505		0.00872	0.0100	-12.8	50.0
1,2,3-Trichlorobenzene	Ave	0.7228	0.5970		0.00826	0.0100	-17.4	50.0
Dibromofluoromethane (Surr)	Ave	0.2601	0.2609		0.00804	0.00801	0.3	50.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.3152	0.3049		0.00775	0.00801	-3.3	50.0
Toluene-d8 (Surr)	Ave	1.543	1.568		0.00814	0.00801	1.6	50.0
4-Bromofluorobenzene (Surr)	Ave	0.5279	0.5475		0.00831	0.00801	3.7	50.0

Lab Name: TestAmerica Canton Job No.: 240-70040-1

SDG No.:

Lab Sample ID: ICV 240-235700/15 Calibration Date: 06/23/2016 16:52

Instrument ID: A3UX15 Calib Start Date: 06/23/2016 14:38

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 06/23/2016 16:30

Lab File ID: UXC9021.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Acetonitrile	Ave	0.0274	0.0239		0.0873	0.100	-12.7	50.0
Diisopropyl ether	Ave	0.2533	0.2592		0.0102	0.0100	2.3	50.0
2-Chloro-1,3-butadiene	Ave	0.4549	0.4689		0.0103	0.0100	3.1	50.0
Ethyl tert-butyl ether	Ave	0.6336	0.6351		0.0100	0.0100	0.2	50.0
Ethyl acetate	Ave	0.1549	0.1602		0.0207	0.0200	3.4	50.0
Propionitrile	Ave	0.0303	0.0294		0.0970	0.100	-3.0	50.0
Methacrylonitrile	Ave	0.1342	0.1343		0.100	0.100	0.0	50.0
Tert-amyl methyl ether	Ave	0.4794	0.4766		0.00994	0.0100	-0.6	50.0
n-Butanol	Ave	0.0033	0.0025		0.189	0.250	-24.4	50.0
Methyl methacrylate	Ave	0.1732	0.1774		0.0205	0.0200	2.4	50.0
2-Nitropropane	Ave	0.0227	0.0209		0.0183	0.0200	-8.3	50.0
1-Chlorohexane	Ave	0.4595	0.4468		0.00973	0.0100	-2.7	50.0
Cyclohexanone	Ave	0.0138	0.0107		0.0771	0.100	-22.9	50.0
Pentachloroethane	Qua		0.0896		0.0145	0.0200	-27.7	50.0
1,2,3-Trimethylbenzene	Ave	2.918	2.777		0.00952	0.0100	-4.8	50.0
Benzyl chloride	Qua		0.0650		0.00889	0.0100	-11.1	50.0
1,3,5-Trichlorobenzene	Ave	1.027	0.8443		0.00822	0.0100	-17.8	50.0
2-Methylnaphthalene	Ave	0.8699	0.4078		0.00938	0.0200	-53.1*	50.0

Lab Name: TestAmerica Canton Job No.: 240-70040-1

SDG No.:

Lab Sample ID: CCVIS 240-250454/2 Calibration Date: 10/08/2016 10:30

Instrument ID: A3UX15 Calib Start Date: 06/23/2016 12:01

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 06/23/2016 13:53

Lab File ID: UXC8755.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.3296	0.3973		0.0121	0.0100	20.5	50.0
Chloromethane	Ave	0.4664	0.4429	0.1000	0.00950	0.0100	-5.0	50.0
Vinyl chloride	Ave	0.4213	0.3958		0.00940	0.0100	-6.0	20.0
Butadiene	Ave	0.3951	0.3637		0.00921	0.0100	-7.9	50.0
Bromomethane	Ave	0.1393	0.0991		0.00711	0.0100	-28.9	50.0
Chloroethane	Ave	0.2241	0.1684		0.00751	0.0100	-24.9	50.0
Dichlorofluoromethane	Ave	0.4924	0.4212		0.00855	0.0100	-14.5	50.0
Trichlorofluoromethane	Ave	0.2524	0.4335		0.0172	0.0100	71.8*	50.0
Ethyl ether	Ave	0.2373	0.2081		0.00877	0.0100	-12.3	50.0
Acrolein	Ave	0.0276	0.0234		0.0424	0.0500	-15.2	50.0
1,1-Dichloroethene	Ave	0.2948	0.3113		0.0106	0.0100	5.6	20.0
1,1,2-Trichlorotrifluoroetha	Ave	0.2139	0.2582		0.0121	0.0100	20.7	50.0
Acetone	Lin1		0.0564		0.0139	0.0200	-30.5	50.0
Iodomethane	Ave	0.4487	0.5269		0.0117	0.0100	17.4	50.0
Carbon disulfide	Ave	0.8567	0.9074		0.0106	0.0100	5.9	50.0
3-Chloro-1-propene	Ave	0.1674	0.1810		0.0108	0.0100	8.2	50.0
Methyl acetate	Ave	0.1562	0.1352		0.0433	0.0500	-13.5	50.0
Methylene Chloride	Lin1		0.3535		0.0107	0.0100	7.0	50.0
tert-Butyl alcohol	Ave	0.0095	0.0086		0.0904	0.100	-9.6	50.0
Acrylonitrile	Ave	0.0871	0.0745		0.0855	0.100	-14.5	50.0
Methyl tert-butyl ether	Ave	0.5780	0.6211		0.0107	0.0100	7.5	50.0
trans-1,2-Dichloroethene	Ave	0.3190	0.3400		0.0107	0.0100	6.6	50.0
Hexane	Ave	0.0781	0.0840		0.0108	0.0100	7.5	20.0
1,1-Dichloroethane	Ave	0.5441	0.5563	0.1000	0.0102	0.0100	2.2	50.0
Vinyl acetate	Ave	0.3607	0.3087		0.00856	0.0100	-14.4	50.0
2,2-Dichloropropane	Ave	0.1735	0.2739		0.0158	0.0100	57.9*	50.0
cis-1,2-Dichloroethene	Ave	0.3431	0.3557		0.0104	0.0100	3.7	50.0
2-Butanone (MEK)	Ave	0.1018	0.0810		0.0159	0.0200	-20.4	50.0
Bromochloromethane	Ave	0.1527	0.1628		0.0107	0.0100	6.7	50.0
Tetrahydrofuran	Ave	0.0568	0.0507		0.0178	0.0200	-10.8	50.0
Chloroform	Ave	0.5085	0.5199		0.0102	0.0100	2.2	20.0
1,1,1-Trichloroethane	Ave	0.3093	0.4155		0.0134	0.0100	34.3	50.0
Cyclohexane	Ave	0.5356	0.5713		0.0107	0.0100	6.7	50.0
1,1-Dichloropropene	Ave	0.4235	0.4352		0.0103	0.0100	2.8	50.0
Carbon tetrachloride	Ave	0.2551	0.3775		0.0148	0.0100	48.0	50.0
Isobutyl alcohol	Ave	0.0048	0.0038		0.196	0.250	-21.5	50.0
Benzene	Ave	1.297	1.324		0.0102	0.0100	2.0	50.0
1,2-Dichloroethane	Ave	0.3701	0.3515		0.00950	0.0100	-5.0	50.0
n-Heptane	Ave	0.0709	0.0800		0.0113	0.0100	12.9	50.0
Trichloroethene	Ave	0.3242	0.3477		0.0107	0.0100	7.2	50.0

Lab Name: TestAmerica Canton Job No.: 240-70040-1

SDG No.:

Lab Sample ID: CCVIS 240-250454/2 Calibration Date: 10/08/2016 10:30

Instrument ID: A3UX15 Calib Start Date: 06/23/2016 12:01

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 06/23/2016 13:53

Lab File ID: UXC8755.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	0.4846	0.5289		0.0109	0.0100	9.2	50.0
1,2-Dichloropropane	Ave	0.2882	0.3034		0.0105	0.0100	5.3	20.0
1,4-Dioxane	Ave	0.0021	0.0011		0.106	0.200	-47.0	50.0
Dibromomethane	Ave	0.1523	0.1496		0.00982	0.0100	-1.8	50.0
Bromodichloromethane	Ave	0.3088	0.3368		0.0109	0.0100	9.1	50.0
2-Chloroethyl vinyl ether	Ave	0.1461	0.1453		0.0199	0.0200	-0.5	50.0
cis-1,3-Dichloropropene	Lin1		0.4021		0.0102	0.0100	2.0	50.0
4-Methyl-2-pentanone (MIBK)	Ave	0.1749	0.1577		0.0180	0.0200	-9.8	50.0
Toluene	Ave	1.810	1.942		0.0107	0.0100	7.3	20.0
trans-1,3-Dichloropropene	Lin1		0.4035		0.00989	0.0100	-1.1	50.0
Ethyl methacrylate	Ave	0.3599	0.3736		0.0104	0.0100	3.8	50.0
1,1,2-Trichloroethane	Ave	0.3112	0.3148		0.0101	0.0100	1.2	50.0
Tetrachloroethene	Ave	0.3500	0.3923		0.0112	0.0100	12.1	50.0
1,3-Dichloropropane	Ave	0.5823	0.5751		0.00988	0.0100	-1.2	50.0
2-Hexanone	Ave	0.1630	0.1409		0.0173	0.0200	-13.6	50.0
Chlorodibromomethane	Ave	0.2750	0.3193		0.0116	0.0100	16.1	50.0
1,2-Dibromoethane	Ave	0.2951	0.2982		0.0101	0.0100	1.0	50.0
Chlorobenzene	Ave	1.164	1.240	0.3000	0.0107	0.0100	6.5	50.0
1,1,1,2-Tetrachloroethane	Ave	0.3072	0.3839		0.0125	0.0100	24.9	50.0
Ethylbenzene	Ave	0.6168	0.6688		0.0108	0.0100	8.4	20.0
m-Xylene & p-Xylene	Ave	1.527	1.599		0.0105	0.0100	4.8	50.0
o-Xylene	Ave	0.7251	0.7852		0.0108	0.0100	8.3	50.0
Styrene	Ave	1.217	1.349		0.0111	0.0100	10.8	50.0
Bromoform	Lin1		0.1484	0.1000	0.00954	0.0100	-4.6	50.0
Isopropylbenzene	Ave	1.715	1.903		0.0111	0.0100	11.0	50.0
1,1,2,2-Tetrachloroethane	Ave	0.7771	0.6361	0.3000	0.00819	0.0100	-18.1	50.0
Bromobenzene	Ave	1.036	0.9727		0.00939	0.0100	-6.1	50.0
1,2,3-Trichloropropane	Ave	0.2460	0.2064		0.00839	0.0100	-16.1	50.0
trans-1,4-Dichloro-2-butene	Ave	0.2183	0.1715		0.00786	0.0100	-21.4	50.0
N-Propylbenzene	Ave	1.046	1.008		0.00963	0.0100	-3.7	50.0
2-Chlorotoluene	Ave	0.9116	0.8680		0.00952	0.0100	-4.8	50.0
1,3,5-Trimethylbenzene	Ave	2.964	2.826		0.00953	0.0100	-4.7	50.0
4-Chlorotoluene	Ave	3.157	2.966		0.00939	0.0100	-6.1	50.0
tert-Butylbenzene	Ave	2.401	2.503		0.0104	0.0100	4.3	50.0
1,2,4-Trimethylbenzene	Ave	3.007	2.923		0.00972	0.0100	-2.8	50.0
sec-Butylbenzene	Ave	3.213	3.205		0.00998	0.0100	-0.2	50.0
1,3-Dichlorobenzene	Ave	1.723	1.699		0.00986	0.0100	-1.4	50.0
4-Isopropyltoluene	Ave	2.700	2.828		0.0105	0.0100	4.8	50.0
1,4-Dichlorobenzene	Ave	1.765	1.737		0.00984	0.0100	-1.6	50.0
n-Butylbenzene	Ave	2.151	2.174		0.0101	0.0100	1.1	50.0
1,2-Dichlorobenzene	Ave	1.577	1.546		0.00980	0.0100	-2.0	50.0

Lab Name: TestAmerica Canton Job No.: 240-70040-1

SDG No.:

Lab Sample ID: CCVIS 240-250454/2 Calibration Date: 10/08/2016 10:30

Instrument ID: A3UX15 Calib Start Date: 06/23/2016 12:01

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 06/23/2016 13:53

Lab File ID: UXC8755.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.0839	0.0693		0.00826	0.0100	-17.4	50.0
1,2,4-Trichlorobenzene	Ave	0.8173	0.7673		0.00939	0.0100	-6.1	50.0
Hexachlorobutadiene	Ave	0.3769	0.3715		0.00986	0.0100	-1.4	50.0
Naphthalene	Ave	1.726	1.237		0.00717	0.0100	-28.3	50.0
1,2,3-Trichlorobenzene	Ave	0.7228	0.6058		0.00838	0.0100	-16.2	50.0
Dibromofluoromethane (Surr)	Ave	0.2601	0.2782		0.00857	0.00801	7.0	50.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.3152	0.2951		0.00750	0.00801	-6.4	50.0
Toluene-d8 (Surr)	Ave	1.543	1.726		0.00896	0.00801	11.8	50.0
4-Bromofluorobenzene (Surr)	Ave	0.5279	0.6143		0.00932	0.00801	16.4	50.0

Lab Name: TestAmerica Canton Job No.: 240-70040-1

SDG No.:

Lab Sample ID: CCV 240-250454/3 Calibration Date: 10/08/2016 11:16

Instrument ID: A3UX15 Calib Start Date: 06/23/2016 14:38

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 06/23/2016 16:30

Lab File ID: UXC8757.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Acetonitrile	Ave	0.0274	0.0260		0.0950	0.100	-5.0	50.0
Diisopropyl ether	Ave	0.2533	0.2754		0.0109	0.0100	8.7	50.0
2-Chloro-1,3-butadiene	Ave	0.4549	0.4911		0.0108	0.0100	8.0	50.0
Ethyl tert-butyl ether	Ave	0.6336	0.7139		0.0113	0.0100	12.7	50.0
Ethyl acetate	Ave	0.1549	0.1625		0.0210	0.0200	4.9	50.0
Propionitrile	Ave	0.0303	0.0284		0.0939	0.100	-6.1	50.0
Methacrylonitrile	Ave	0.1342	0.1257		0.0936	0.100	-6.4	50.0
Tert-amyl methyl ether	Ave	0.4794	0.5589		0.0117	0.0100	16.6	50.0
n-Butanol	Ave	0.0033	0.0031		0.235	0.250	-5.8	50.0
Methyl methacrylate	Ave	0.1732	0.1713		0.0198	0.0200	-1.1	50.0
2-Nitropropane	Ave	0.0227	0.0258		0.0227	0.0200	13.6	50.0
1-Chlorohexane	Ave	0.4595	0.4959		0.0108	0.0100	7.9	50.0
Cyclohexanone	Ave	0.0138	0.0119		0.0856	0.100	-14.4	50.0
Pentachloroethane	Qua		0.2322		0.0334	0.0200	66.9*	50.0
1,2,3-Trimethylbenzene	Ave	2.918	2.893		0.00991	0.0100	-0.9	50.0
Benzyl chloride	Qua		0.0905		0.0118	0.0100	17.6	50.0
1,3,5-Trichlorobenzene	Ave	1.027	0.9737		0.00948	0.0100	-5.2	50.0
2-Methylnaphthalene	Ave	0.8699	0.2530		0.00582	0.0200	-70.9*	50.0

FORM IV GC/MS VOA METHOD BLANK SUMMARY

Lab Name: TestAmerica Canton	Job No.: 240-70040-1
SDG No.:	
Lab File ID: UXC8759.D	Lab Sample ID: MB 240-250454/7
Matrix: Water	Heated Purge: (Y/N) N
Instrument ID: A3UX15	Date Analyzed: 10/08/2016 12:01
GC Column: DB-624 ID: 0.18(mm)	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 240-250454/4	UXC8756.D	10/08/2016 10:53
MRC-SW1A-092716	240-70040-1	UXC8760.D	10/08/2016 12:24
MRC-SW2A-092716	240-70040-2	UXC8761.D	10/08/2016 12:49
MRC-SW5A1-092716	240-70040-3	UXC8762.D	10/08/2016 13:12
MRC-SW5A2-092716	240-70040-4	UXC8763.D	10/08/2016 13:34
MRC-SW5B-092716	240-70040-5	UXC8764.D	10/08/2016 13:56
MRC-SW6A-092716	240-70040-6	UXC8765.D	10/08/2016 14:18
MRC-SW6B-092716	240-70040-7	UXC8766.D	10/08/2016 14:41
MRC-SW7A-092716	240-70040-8	UXC8767.D	10/08/2016 15:03
MRC-SW7B-092716	240-70040-9	UXC8768.D	10/08/2016 15:26
MRC-SW8A-092716	240-70040-10	UXC8769.D	10/08/2016 15:48
MRC-SW8B-092716	240-70040-11	UXC8770.D	10/08/2016 16:10
MRC-SW9A-092716	240-70040-12	UXC8771.D	10/08/2016 16:32
MRC-SW9B-092716	240-70040-13	UXC8772.D	10/08/2016 16:55
TB-092716	240-70040-14	UXC8773.D	10/08/2016 17:17
MRC-SWDUP-092716	240-70040-15	UXC8774.D	10/08/2016 17:39

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Canton	a Canton Job No.: 240-70040-1				
SDG No.:					
Client Sample ID:	Lab Sample ID: MB 240-250454/7				
Matrix: Water	Lab File ID: UXC8759.D				
Analysis Method: 8260B	Date Collected:				
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 12:01				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 250454	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	0.94	U	10	0.94
630-20-6	1,1,1,2-Tetrachloroethane	0.28	U	1.0	0.28
71-43-2	Benzene	0.35	U	1.0	0.35
75-27-4	Bromodichloromethane	0.29	U	1.0	0.29
75-25-2	Bromoform	0.56	U	1.0	0.56
74-83-9	Bromomethane	0.44	U	1.0	0.44
78-93-3	2-Butanone (MEK)	0.53	U	10	0.53
75-15-0	Carbon disulfide	0.38	U	1.0	0.38
56-23-5	Carbon tetrachloride	0.43	U	1.0	0.43
108-90-7	Chlorobenzene	0.25	U	1.0	0.25
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.25	U	1.0	0.25
563-58-6	1,1-Dichloropropene	0.42	U	1.0	0.42
74-87-3	Chloromethane	0.44	U	1.0	0.44
75-34-3	1,1-Dichloroethane	0.30	U	1.0	0.30
87-61-6	1,2,3-Trichlorobenzene	0.37	U	1.0	0.37
96-18-4	1,2,3-Trichloropropane	0.44	U	1.0	0.44
107-06-2	1,2-Dichloroethane	0.23	U	1.0	0.23
75-35-4	1,1-Dichloroethene	0.45	U	1.0	0.45
526-73-8	1,2,3-Trimethylbenzene	0.47	U	5.0	0.47
78-87-5	1,2-Dichloropropane	0.25	U	1.0	0.25
95-63-6	1,2,4-Trimethylbenzene	0.41	U	1.0	0.41
10061-01-5	cis-1,3-Dichloropropene	0.46	U	1.0	0.46
10061-02-6	trans-1,3-Dichloropropene	0.56	U	1.0	0.56
100-41-4	Ethylbenzene	0.25	U	1.0	0.25
591-78-6	2-Hexanone	0.48	U	10	0.48
75-09-2	Methylene Chloride	0.33	U	1.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	0.99	U	10	0.99
100-42-5	Styrene	0.45	U	1.0	0.45
79-34-5	1,1,2,2-Tetrachloroethane	0.22	U	1.0	0.22
127-18-4	Tetrachloroethene	0.31	U	1.0	0.31
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	0.22	U	1.0	0.22
75-01-4	Vinyl chloride	0.29	U	1.0	0.29
1330-20-7	Xylenes, Total	0.52	U	2.0	0.52
71-55-6	1,1,1-Trichloroethane	0.44	U	1.0	0.44

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Canton	Job No.: 240-70040-1				
SDG No.:					
Client Sample ID:	Lab Sample ID: MB 240-250454/7				
Matrix: Water	Lab File ID: UXC8759.D				
Analysis Method: 8260B	Date Collected:				
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 12:01				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624	ID: <u>0.18(mm)</u>			
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 250454	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.19	U	1.0	0.19
96-12-8	1,2-Dibromo-3-Chloropropane	0.82	U	2.0	0.82
106-93-4	1,2-Dibromoethane	0.32	U	1.0	0.32
75-71-8	Dichlorodifluoromethane	0.32	U	1.0	0.32
156-59-2	cis-1,2-Dichloroethene	0.26	U	1.0	0.26
156-60-5	trans-1,2-Dichloroethene	0.30	U	1.0	0.30
98-82-8	Isopropylbenzene	0.35	U	1.0	0.35
1634-04-4	Methyl tert-butyl ether	0.20	U	1.0	0.20
76-13-1	1,1,2-Trichlorotrifluoroethane	0.45	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	0.32	U	1.0	0.32
594-20-7	2,2-Dichloropropane	0.26	U	1.0	0.26
95-50-1	1,2-Dichlorobenzene	0.25	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	0.19	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	0.27	U	1.0	0.27
110-75-8	2-Chloroethyl vinyl ether	0.59	U	10	0.59
75-69-4	Trichlorofluoromethane	0.49	U	1.0	0.49
95-49-8	2-Chlorotoluene	0.40	U	1.0	0.40
124-48-1	Chlorodibromomethane	0.43	U	1.0	0.43
108-86-1	Bromobenzene	0.35	U	1.0	0.35
74-97-5	Bromochloromethane	0.50	U	1.0	0.50
106-43-4	4-Chlorotoluene	0.29	U	1.0	0.29
99-87-6	4-Isopropyltoluene	0.43	U	1.0	0.43
87-68-3	Hexachlorobutadiene	0.35	U	1.0	0.35
74-95-3	Dibromomethane	0.42	U	1.0	0.42
108-20-3	Diisopropyl ether	0.50	U	10	0.50
91-20-3	Naphthalene	0.45	U	1.0	0.45
104-51-8	n-Butylbenzene	0.31	U	1.0	0.31
103-65-1	N-Propylbenzene	0.40	U	1.0	0.40
135-98-8	sec-Butylbenzene	0.48	U	1.0	0.48
994-05-8	Tert-amyl methyl ether	0.30	U	5.0	0.30
637-92-3	Ethyl tert-butyl ether	0.23	U	5.0	0.23
98-06-6	tert-Butylbenzene	0.41	U	1.0	0.41
108-05-4	Vinyl acetate	0.41	U	2.0	0.41
75-65-0	tert-Butyl alcohol	4.9	U	50	4.9

Lab Name: TestAmerica Canton	Job No.: 240-70040-1					
SDG No.:						
Client Sample ID:	Lab Sample ID: MB 240-2	50454/7				
Matrix: Water	Lab File ID: UXC8759.D					
Analysis Method: 8260B	Date Collected:	Date Collected:				
Sample wt/vol: 5 (mL)	Date Analyzed: 10/08/20	Date Analyzed: 10/08/2016 12:01				
Soil Aliquot Vol:	Dilution Factor: 1	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18 (mm)				
% Moisture:	Level: (low/med) Low					
Analysis Batch No.: 250454	Units: ug/L					

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	93		63-132
460-00-4	4-Bromofluorobenzene (Surr)	107		73-120
2037-26-5	Toluene-d8 (Surr)	103		73-124
1868-53-7	Dibromofluoromethane (Surr)	101		80-120

FORM II GC/MS VOA SURROGATE RECOVERY

ab Name: TestAmerica	Canton	Job No.:	240-70040-1

SDG No.:

Matrix: Water Level: Low

GC Column (1): DB-624 ID: 0.18 (mm)

	1				
Client Sample ID	Lab Sample ID	DBFM #	DCA #	TOL #	BFB #
MRC-SW1A-092716	240-70040-1	107	98	105	115
MRC-SW2A-092716	240-70040-2	104	98	106	113
MRC-SW5A1-092716	240-70040-3	101	99	106	109
MRC-SW5A2-092716	240-70040-4	103	96	101	109
MRC-SW5B-092716	240-70040-5	103	97	104	111
MRC-SW6A-092716	240-70040-6	106	96	104	113
MRC-SW6B-092716	240-70040-7	104	96	101	110
MRC-SW7A-092716	240-70040-8	105	97	105	112
MRC-SW7B-092716	RC-SW7B-092716 240-70040-9		96	102	107
MRC-SW8A-092716			99	103	111
MRC-SW8B-092716	240-70040-11	104	97	104	107
MRC-SW9A-092716	240-70040-12	104	98	103	108
MRC-SW9B-092716	240-70040-13	104	96	103	113
TB-092716	240-70040-14	103	98	103	110
MRC-SWDUP-092716	240-70040-15	104	98	103	110
	MB 240-250454/7	101	93	103	107
	LCS 240-250454/4	108	96	108	117

	QC LIMITS
DBFM = Dibromofluoromethane (Surr)	80-120
DCA = 1,2-Dichloroethane-d4 (Surr)	63-132
TOL = Toluene-d8 (Surr)	73-124
BFB = 4-Bromofluorobenzene (Surr)	73-120

FORM III GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Nam	e: TestAmerica Cant	con	Job No.: $240-70040-1$	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: UXC8756.	D
Lab ID:	LCS 240-250454/4		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
Acetone	20.0	12.5	62		
1,1,1,2-Tetrachloroethane	10.0	11.2	112	77-126	
Benzene	10.0	9.48	95		
Bromodichloromethane	10.0	9.88	99	76-125	
Bromoform	10.0	9.02	90	52-157	
Bromomethane	10.0	8.95	90	24-160	
2-Butanone (MEK)	20.0	14.6	73		
Carbon disulfide	10.0	9.30	93	58-160	
Carbon tetrachloride	10.0	13.3	133	69-149	
Chlorobenzene	10.0	9.67	97	80-120	
Chloroethane	10.0	8.87	89	24-147	
Chloroform	10.0	9.81	98	80-120	
1,1-Dichloropropene	10.0	9.30	93		
Chloromethane	10.0	9.50	95		
1,1-Dichloroethane	10.0	9.37	94	77-121	
1,2,3-Trichlorobenzene	10.0	9.39	94	53-135	
1,2,3-Trichloropropane	10.0	7.56	76	65-135	
1,2-Dichloroethane	10.0	8.94	89	76-130	
1,1-Dichloroethene	10.0	9.33	93	70-141	
1,2-Dichloropropane	10.0	9.80	98	79-121	
1,2,4-Trimethylbenzene	10.0	9.17	92	77-120	
cis-1,3-Dichloropropene	10.0	9.16	92	75-120	
trans-1,3-Dichloropropene	10.0	8.64	86	65-120	
Ethylbenzene	10.0	9.73	97	80-120	
2-Hexanone	20.0	14.4	72	56-124	
Methylene Chloride	10.0	10.0	100	68-136	
4-Methyl-2-pentanone (MIBK)	20.0	17.0	85	60-131	
Styrene	10.0	10.3	103	80-120	
1,1,2,2-Tetrachloroethane	10.0	7.37	74	61-130	
Tetrachloroethene	10.0	9.99	100	80-123	
Toluene	10.0	9.63	96	80-121	
Trichloroethene	10.0	10.2	102	80-122	
Vinyl chloride	10.0	9.20	92	60-129	
Xylenes, Total	20.0	19.7	99	80-120	
1,1,1-Trichloroethane	10.0	12.1	121		
1,3-Dichloropropane	10.0	8.63	86		
1,2-Dibromo-3-Chloropropane	10.0	8.64	86		
1,2-Dibromoethane	10.0	9.13	91		
Dichlorodifluoromethane	10.0	10.1	101		
cis-1,2-Dichloroethene	10.0	9.98	100		
trans-1,2-Dichloroethene	10.0	10.1	101		
Isopropylbenzene	10.0	10.8	108		

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM III GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Nam	e: TestAmerica Cant	ton	Job No.: 240-70040-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: UXC8756.D	
Lab ID:	LCS 240-250454/4		Client ID:	

SPIKE	LCS	LCS	QC	
ADDED	CONCENTRATION	왕	LIMITS	#
(ug/L)	(ug/L)	REC	REC	
10.0	10.1	101	75-126	
10.0	11.0	110		
10.0	10.2	102		
10.0	13.8	138	70-137	*
10.0	9.61	96		
10.0	9.35	94		
10.0	9.46	95		
10.0	8.32 J	83		
10.0	16.8	168	56-161	*
10.0	8.73	87	76-120	
10.0	8.36	84		
10.0	10.0	100		
10.0	8.54	85		
10.0	10.1	101		
10.0	9.70	97		
10.0	10.0	100		
10.0	10.5	105		
10.0	9.28			
10.0	8.34	83	39-148	
10.0	9.74	97	66-120	
10.0	8.56	86		
10.0	9.43	94		
10.0	9.25	92		
10.0	8.11	81		
100	97.9	98	47-137	
	ADDED (ug/L) 10.0	ADDED (ug/L) (ug/L) (ug/L) 10.0 10.1 10.0 11.0 10.0 10.2 10.0 13.8 10.0 9.61 10.0 9.35 10.0 9.46 10.0 8.32 J 10.0 16.8 10.0 8.73 10.0 8.73 10.0 8.36 10.0 10.0 10.0 10.0 10.0 10.0 10.0 9.70 10.0 9.70 10.0 9.28 10.0 9.74 10.0 9.74 10.0 9.74 10.0 9.74 10.0 9.43 10.0 9.25 10.0 9.25 10.0 9.25	ADDED (ug/L) (ug/L) (ug/L) REC 10.0 10.1 101 10.0 11.0 110 10.0 10.2 102 10.0 9.61 96 10.0 9.35 94 10.0 9.46 95 10.0 8.32 J 83 10.0 8.73 87 10.0 8.73 87 10.0 8.36 84 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 9.70 97 10.0 9.28 93 10.0 9.74 97 10.0 9.43 94 10.0 9.25 92 10.0 9.25 92 10.0 9.25 92	ADDED (ug/L) (ug/L) REC REC REC 10.0 10.1 10.1 75-126 10.0 11.0 11.0 65-151 10.0 10.2 10.2 53-137 10.0 9.61 96 80-120 10.0 9.46 95 80-120 10.0 8.32 J 83 51-138 10.0 8.73 87 76-120 10.0 8.36 84 79-120 10.0 8.54 85 77-120 10.0 9.70 97 80-120 10.0 9.70 97 80-120 10.0 9.70 97 80-120 10.0 9.70 97 80-120 10.0 10.0 10.5 10.5 55-134 10.0 9.28 93 73-127 10.0 8.34 83 39-148 10.0 9.74 97 66-120 10.0 9.75 92 78-120 10.0 9.25 92 78-120 10.0 9.25 92 78-120 10.0 9.25 92 78-120 10.0 9.25 92 78-120 10.0 9.25 92 78-120 10.0 9.25 92 78-120

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM VIII GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TestAmerica Canton	Job No.: 240-70040-1	
SDG No.:		
Sample No.: STD8260 240-235700/4	Date Analyzed: 06/23/2016	12:46
Instrument ID: A3UX15	GC Column: DB-624	ID: 0.18(mm)

Lab File ID (Standard): UXC9010.D Heated Purge: (Y/N) N

Calibration ID: 34930

		FB	FB		5	DCBd4	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MID-POINT		1646184	5.13	1222360	7.81	530154	10.04
UPPER LIMIT		3292368	5.63	2444720	8.31	1060308	10.54
LOWER LIMIT		823092	4.63	611180	7.31	265077	9.54
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICV 240-235700/14		1661685	5.13	1268289	7.81	530949	10.04
ICV 240-235700/15		1649875	5.13	1270373	7.81	493234	10.04
CCVIS 240-250454/2		1916572	5.03	1440646	7.68	751283	9.91

FB = Fluorobenzene
CBNZd5 = Chlorobenzene-d5
DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

FORM VIII 8260B

FORM VIII GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TestAmerica Canton Job No.: 240-70040-1

SDG No.:

Sample No.: CCVIS 240-250454/2 Date Analyzed: 10/08/2016 10:30

Instrument ID: A3UX15 GC Column: DB-624 ID: 0.18(mm)

Lab File ID (Standard): UXC8755.D Heated Purge: (Y/N) N

Calibration ID: 36079

		FB	FB		5	DCBd	4
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		1916572	5.03	1440646	7.68	751283	9.91
UPPER LIMIT		3833144	5.53	2881292	8.18	1502566	10.41
LOWER LIMIT		958286	4.53	720323	7.18	375642	9.41
LAB SAMPLE ID	CLIENT SAMPLE ID						
LCS 240-250454/4		1962696	5.03	1492659	7.68	844633	9.91
CCV 240-250454/3		2020204	5.03	1622318	7.68	889810	9.91
MB 240-250454/7		1974790	5.03	1527963	7.68	784855	9.91
240-70040-1	MRC-SW1A-092716	1859881	5.03	1402297	7.68	771622	9.91
240-70040-2	MRC-SW2A-092716	1963809	5.03	1521134	7.68	810855	9.91
240-70040-3	MRC-SW5A1-092716	2006477	5.03	1515069	7.68	792802	9.91
240-70040-4	MRC-SW5A2-092716	1955749	5.03	1547569	7.68	835290	9.91
240-70040-5	MRC-SW5B-092716	1961527	5.03	1521750	7.68	834325	9.91
240-70040-6	MRC-SW6A-092716	1858972	5.03	1436289	7.68	788408	9.91
240-70040-7	MRC-SW6B-092716	1901386	5.03	1486896	7.68	773066	9.91
240-70040-8	MRC-SW7A-092716	1962808	5.03	1523666	7.68	852159	9.91
240-70040-9	MRC-SW7B-092716	1935948	5.03	1539252	7.68	800388	9.91
240-70040-10	MRC-SW8A-092716	1968573	5.03	1548415	7.68	831934	9.91
240-70040-11	MRC-SW8B-092716	1886152	5.03	1445279	7.68	743207	9.91
240-70040-12	MRC-SW9A-092716	1880065	5.03	1429210	7.68	772443	9.91
240-70040-13	MRC-SW9B-092716	1932347	5.03	1516412	7.68	863395	9.91
240-70040-14	TB-092716	1903197	5.03	1489465	7.68	816347	9.91
240-70040-15	MRC-SWDUP-092716	1962417	5.03	1550980	7.68	870717	9.91

FB = Fluorobenzene

CBNZd5 = Chlorobenzene-d5

DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Column used to flag values outside QC limits

FORM VIII 8260B

GC/MS VOA ANALYSIS RUN LOG

Lab Name: TestAmerica Canton	Job No.: 240-70040-1
SDG No.:	
Instrument ID: A3UX15	Start Date: 06/23/2016 11:35
Analysis Batch Number: 235700	End Date: 06/23/2016 23:14

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 240-235700/1		06/23/2016 11:35	1	BFB619.D	DB-624 0.18 (mm)
STD8260 240-235700/2 IC		06/23/2016 12:01	1	UXC9008.D	DB-624 0.18(mm)
STD8260 240-235700/3		06/23/2016 12:23	1	UXC9009.D	DB-624 0.18(mm)
STD8260 240-235700/4		06/23/2016 12:46	1	UXC9010.D	DB-624 0.18 (mm)
STD8260 240-235700/5		06/23/2016 13:08	1	UXC9011.D	DB-624 0.18 (mm)
STD8260 240-235700/6		06/23/2016 13:31	1	UXC9012.D	DB-624 0.18 (mm)
STD8260 240-235700/7		06/23/2016 13:53	1	UXC9013.D	DB-624 0.18 (mm)
ICV 240-235700/14		06/23/2016 14:16	1	UXC9014.D	DB-624 0.18(mm)
STD 240-235700/8 IC		06/23/2016 14:38	1	UXC9015.D	DB-624 0.18(mm)
STD 240-235700/9 IC		06/23/2016 15:00	1	UXC9016.D	DB-624 0.18(mm)
STD 240-235700/10 IC		06/23/2016 15:22	1	UXC9017.D	DB-624 0.18(mm)
STD 240-235700/11 IC		06/23/2016 15:45	1	UXC9018.D	DB-624 0.18(mm)
STD 240-235700/12 IC		06/23/2016 16:07	1	UXC9019.D	DB-624 0.18(mm)
STD 240-235700/13 IC		06/23/2016 16:30	1	UXC9020.D	DB-624 0.18 (mm)
ICV 240-235700/15		06/23/2016 16:52	1	UXC9021.D	DB-624 0.18(mm)
ZZZZZ		06/23/2016 17:15	1		DB-624 0.18(mm)
ZZZZZ		06/23/2016 18:00	1		DB-624 0.18(mm)
ZZZZZ		06/23/2016 18:23	1		DB-624 0.18(mm)
ZZZZZ		06/23/2016 18:45	1		DB-624 0.18(mm)
ZZZZZ		06/23/2016 19:08	1		DB-624 0.18(mm)
ZZZZZ		06/23/2016 19:30	1		DB-624 0.18 (mm)
ZZZZZ		06/23/2016 19:53	1		DB-624 0.18(mm)
ZZZZZ		06/23/2016 20:15	1		DB-624 0.18 (mm)
ZZZZZ		06/23/2016 20:37	1		DB-624 0.18(mm)
ZZZZZ		06/23/2016 21:00	1		DB-624 0.18(mm)
ZZZZ		06/23/2016 21:22	1		DB-624 0.18(mm)
ZZZZ		06/23/2016 21:45	4		DB-624 0.18(mm)
ZZZZZ		06/23/2016 22:07	1		DB-624 0.18(mm)
ZZZZZ		06/23/2016 22:30	1		DB-624 0.18 (mm)
ZZZZZ		06/23/2016 22:52	1		DB-624 0.18 (mm)
ZZZZZ		06/23/2016 23:14	1		DB-624 0.18(mm)

GC/MS VOA ANALYSIS RUN LOG

Lab Name: TestAmerica Canton	Job No.: 240-70040-1
SDG No.:	
Instrument ID: A3UX15	Start Date: 10/08/2016 09:41
Analysis Batch Number: 250454	End Date: 10/08/2016 20:17

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 240-250454/1		10/08/2016 09:41	1	BFB61008.D	DB-624 0.18 (mm)
CCVIS 240-250454/2		10/08/2016 10:30	1	UXC8755.D	DB-624 0.18(mm)
LCS 240-250454/4		10/08/2016 10:53	1	UXC8756.D	DB-624 0.18(mm)
CCV 240-250454/3		10/08/2016 11:16	1	UXC8757.D	DB-624 0.18(mm)
MB 240-250454/7		10/08/2016 12:01	1	UXC8759.D	DB-624 0.18(mm)
240-70040-1		10/08/2016 12:24	1	UXC8760.D	DB-624 0.18(mm)
240-70040-2		10/08/2016 12:49	1	UXC8761.D	DB-624 0.18(mm)
240-70040-3		10/08/2016 13:12	1	UXC8762.D	DB-624 0.18(mm)
240-70040-4		10/08/2016 13:34	1	UXC8763.D	DB-624 0.18(mm)
240-70040-5		10/08/2016 13:56	1	UXC8764.D	DB-624 0.18(mm)
240-70040-6		10/08/2016 14:18	1	UXC8765.D	DB-624 0.18(mm)
240-70040-7		10/08/2016 14:41	1	UXC8766.D	DB-624 0.18(mm)
240-70040-8		10/08/2016 15:03	1	UXC8767.D	DB-624 0.18(mm)
240-70040-9		10/08/2016 15:26	1	UXC8768.D	DB-624 0.18(mm)
240-70040-10		10/08/2016 15:48	1	UXC8769.D	DB-624 0.18(mm)
240-70040-11		10/08/2016 16:10	1	UXC8770.D	DB-624 0.18(mm)
240-70040-12		10/08/2016 16:32	1	UXC8771.D	DB-624 0.18(mm)
240-70040-13		10/08/2016 16:55	1	UXC8772.D	DB-624 0.18(mm)
240-70040-14		10/08/2016 17:17	1	UXC8773.D	DB-624 0.18(mm)
240-70040-15		10/08/2016 17:39	1	UXC8774.D	DB-624 0.18(mm)
ZZZZZ		10/08/2016 18:02	200		DB-624 0.18(mm)
ZZZZZ		10/08/2016 18:25	20		DB-624 0.18(mm)
ZZZZZ		10/08/2016 18:47	1		DB-624 0.18(mm)
ZZZZZ		10/08/2016 19:10	1		DB-624 0.18(mm)
ZZZZZ		10/08/2016 19:32	1		DB-624 0.18(mm)
ZZZZZ		10/08/2016 19:54	20		DB-624 0.18(mm)
ZZZZZ		10/08/2016 20:17	20		DB-624 0.18(mm)

SAMPLE IDENTIFICATION	MRC-SW1A-092716
COMPOUND	2-Butanone
COMPOUND AREA	97153
INTERNAL STANDARD AMOUNT (ug)	10
DILUTION FACTOR	1
INTERNAL STANDARD AREA	1859881
AVERAGE RRF	0.1018
97153 x 10 x 1 / 1859881 x 0.1018	5.13 ug/L

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Canton	Job No.: 240-70040-1
SDG No.:	
Client Sample ID: MRC-SW1A-092716	Lab Sample ID: 240-70040-1
Matrix: Water	Lab File ID: UXC8760.D
Analysis Method: 8260B	Date Collected: 09/27/2016 10:02
Sample wt/vol: 5(mL)	Date Analyzed: 10/08/2016 12:24
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 250454	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	7.7	J	10	0.94
630-20-6	1,1,1,2-Tetrachloroethane	0.28	U	1.0	0.28
71-43-2	Benzene	0.35	U	1.0	0.35
75-27-4	Bromodichloromethane	0.29	U	1.0	0.29
75-25-2	Bromoform	0.56	U	1.0	0.56
74-83-9	Bromomethane	0.44	U	1.0	0.44
78-93-3	2-Butanone (MEK)	5.1	7	10	0.53
75-15-0	Carbon disulfide	0.38	U	1.0	0.38
56-23-5	Carbon tetrachloride	0.43	U	1.0	0.43
108-90-7	Chlorobenzene	0.25	U	1.0	0.25
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.25	U	1.0	0.25
563-58-6	1,1-Dichloropropene	0.42	U	1.0	0.42
74-87-3	Chloromethane	0.44	U	1.0	0.44
75-34-3	1,1-Dichloroethane	0.30	U	1.0	0.30
87-61-6	1,2,3-Trichlorobenzene	0.37	U	1.0	0.37
96-18-4	1,2,3-Trichloropropane	0.44	U	1.0	0.44
107-06-2	1,2-Dichloroethane	0.23	U	1.0	0.23
75-35-4	1,1-Dichloroethene	0.45	U	1.0	0.45
526-73-8	1,2,3-Trimethylbenzene	0.47	U	5.0	0.47
78-87-5	1,2-Dichloropropane	0.25	U	1.0	0.25
95-63-6	1,2,4-Trimethylbenzene	0.41	U	1.0	0.41
10061-01-5	cis-1,3-Dichloropropene	0.46	U	1.0	0.46
10061-02-6	trans-1,3-Dichloropropene	0.56	U	1.0	0.56
100-41-4	Ethylbenzene	0.25	U	1.0	0.25
591-78-6	2-Hexanone	0.55	J	10	0.48
75-09-2	Methylene Chloride	0.33	U	1.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	0.99	U	10	0.99
100-42-5	Styrene	0.45	U	1.0	0.45
79-34-5	1,1,2,2-Tetrachloroethane	0.22	U	1.0	0.22
127-18-4	Tetrachloroethene	0.31	U	1.0	0.31
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	0.27	J	1.0	0.22
75-01-4	Vinyl chloride	0.29	U	1.0	0.29
1330-20-7	Xylenes, Total	0.52	U	2.0	0.52
71-55-6	1,1,1-Trichloroethane	0.44	U	1.0	0.44

Report Date: 10-Oct-2016 08:26:49 Chrom Revision: 2.2 08-Sep-2016 14:45:52

TestAmerica Canton
Target Compound Quantitation Report

Data File: \\ChromNA\Canton\ChromData\A3UX15\20161008-58782.b\UXC8760.D

Lims ID: 240-70040-B-1 Client ID: MRC-SW1A-092716

Sample Type: Client

Inject. Date: 08-Oct-2016 12:24:30 ALS Bottle#: 6 Worklist Smp#: 33

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 240-0058782-033

Misc. Info.: C61008A,8260LLUX15,,43582

Operator ID: Instrument ID: A3UX15

Method: \\ChromNA\Canton\ChromData\A3UX15\20161008-58782.b\8260_15.m

Limit Group: MSV 8260B ICAL

Last Update:10-Oct-2016 08:26:45Calib Date:17-Sep-2016 00:05:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Canton\ChromData\A3UX15\20160916-58103.b\UXC8208.D

Column 1 : DB-624 (0.18 mm) Det: MS SCAN

Process Host: XAWRK047

First Level Reviewer: evansle Date: 10-Oct-2016 08:14:36

First Level Reviewer: evansle			Date:			10-Oct-2016 08:14:36			
		RT	Exp RT	Dlt RT			OnCol Amt		
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	Flags	
* 1 Fluorobenzene	96	5.027	5.028	-0.001	99	1859881	10.0		
* 2 Chlorobenzene-d5	117	7.684	7.684	0.000	86	1402297	10.0		
* 3 1,4-Dichlorobenzene-d4	152	9.913	9.913	0.000	94	771622	10.0		
\$ 4 Dibromofluoromethane (Surr	113	4.470	4.482	-0.012	95	415330	8.59		
\$ 51,2-Dichloroethane-d4 (Sur	65	4.755	4.767	-0.012	0	459636	7.84		
\$ 6 Toluene-d8 (Surr)	98	6.379	6.379	0.000	93	1824599	8.43		
\$ 7 4-Bromofluorobenzene (Surr	95	8.798	8.798	0.000	97	682250	9.22		
9 Dichlorodifluoromethane	85		1.470				ND		
10 Chloromethane	50		1.600				ND		
11 Vinyl chloride	62		1.695				ND		
13 Bromomethane	94		1.968				ND		
14 Chloroethane	64		2.051				ND		
16 Trichlorofluoromethane	101		2.229				ND		
19 1,1-Dichloroethene	96		2.656				ND		
20 1,1,2-Trichloro-1,2,2-trif	151	0 (01	2.668	0.010			ND		
22 Acetone	43	2.691	2.703	-0.012	99	128445	7.69		
24 Carbon disulfide	76		2.834				ND		
28 Methylene Chloride	84		3.047				ND		
29 2-Methyl-2-propanol	59		3.130				ND		
31 Methyl tert-butyl ether	73		3.261				ND		
30 trans-1,2-Dichloroethene	96		3.272				ND		
34 1,1-Dichloroethane	63		3.616				ND		
35 Isopropyl ether	87		3.628				ND		
36 Vinyl acetate	43		3.640				ND		
38 Tert-butyl ethyl ether	59		3.925				ND		
40 2,2-Dichloropropane	77		4.079				ND		
39 cis-1,2-Dichloroethene	96		4.091	0.615	0.5		ND		
41 2-Butanone (MEK)	43	4.090	4.103	-0.013	99	97153	5.13		
45 Chlorobromomethane	128		4.292				ND		
47 Chloroform	83		4.340				ND		
48 1,1,1-Trichloroethane	97		4.494				ND		

Lab Name: TestAmerica Canton Job No.: 240-70040-1 Analy Batch No.: 235700

SDG No.:

Instrument ID: A3UX15 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 06/23/2016 12:01 Calibration End Date: 06/23/2016 13:53 Calibration ID: 34930

ANALYTE			RRF			CURVE		COEFFICI	ENT	# MIN RRF	%RSD	 MAX	R^2		MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%RSD	OR COD		OR COD
	LVL 6														
3-Chloro-1-propene	0.1554	0.1576	0.1559	0.1742	0.1827	Ave		0.1674			7.4	15.0			
	0.1784														
Methyl acetate	0.1618 0.1580	0.1598	0.1514	0.1507	0.1555	Ave		0.1562			2.9	15.0			
Methylene Chloride	0.1380	0.4248	0.3449	0.3381	0.3268	Tin1	0 1072	0.3119					1.0000	\vdash	0.9900
Methylene Chioride	0.4936	0.4240	0.3449	0.3301	0.3200	PILL	0.1973	0.3119					1.0000		0.9900
tert-Butyl alcohol	0.0096	0.0101	0.0097	0.0091	0.0098	Ave		0.0095			5.9	15.0		-	
-	0.0085														
Methyl tert-butyl ether	0.5514	0.5838	0.5562	0.5860	0.5987	Ave		0.5780			3.4	15.0			
	0.5919														
Acrylonitrile	0.0865	0.0907	0.0851	0.0849	0.0870	Ave		0.0871			2.5	15.0			
	0.0883														
trans-1,2-Dichloroethene	0.3240	0.3275	0.3102	0.3200	0.3216	Ave		0.3190			2.2	15.0		1	
	0.3105													\vdash	
Hexane	0.0821 0.0795	0.0794	0.0711	0.0762	0.0800	Ave		0.0781			5.0	15.0			
1,1-Dichloroethane	0.0793	0.5585	0.5285	0.5452	0.5510	7		0.5441		0.1000	1.9	15.0		\vdash	
1,1-Dichioloechane	0.5434	0.3363	0.3203	0.3432	0.5510	Ave		0.5441		0.1000	1.9	13.0			
Vinyl acetate	0.3327	0.3342	0.3408	0.3597	0.3885	Ave		0.3607			8.7	15.0		-	
-	0.4085														
2,2-Dichloropropane	0.1567	0.1672	0.1652	0.1881	0.1921	Ave		0.1735			8.0	15.0			
	0.1717														
cis-1,2-Dichloroethene	0.3493	0.3547	0.3327	0.3418	0.3441	Ave		0.3431			2.4	15.0			
	0.3361													\vdash	
2-Butanone (MEK)	0.1156	0.1075	0.0977	0.0935	0.0974	Ave		0.1018)		8.1	15.0			
Bromochloromethane	0.0989	0.1555	0.1493	0.1527	0.1537	7 -		0.1527			1 -	15.0		\vdash	
Bromocniorometnane	0.1540	0.1555	0.1493	0.1527	0.1537	Ave		0.1527			1.5	15.0			
Tetrahydrofuran	0.1307	0.0583	0.0537	0.0538	0.0574	7770		0.0568			4.7	15.0		+	
Tectanyuroruran	0.0606	0.0303	0.0557	0.0558	0.0374	Ave		0.0308			4./	13.0			
Chloroform	0.5050	0.5301	0.4888	0.5048	0.5160	Ave		0.5085			2.7	15.0		+	
01110101011II	0.5062	0.0001	0.1000	0.0010	0.0100	1110					,	10.0			
1,1,1-Trichloroethane	0.2852	0.3011	0.2949	0.3230	0.3345	Ave		0.3093			6.0	15.0		-	
	0.3173														
Cyclohexane	0.5215	0.5316	0.5133	0.5316	0.5628	Ave		0.5356			3.5	15.0			
	0.5527														
1,1-Dichloropropene	0.4167	0.4314	0.4054	0.4204	0.4364	Ave		0.4235			2.7	15.0			
	0.4309														
Carbon tetrachloride	0.2299	0.2395	0.2362	0.2634	0.2833	Ave		0.2551			9.0	15.0			
	0.2784														

MRC SW

WATER DATA

240-70040-1

FRACTION	CHEMICAL	MRC-SW5B-092716	UNITS	MRC-SWDUP-092716	RPD	_ D _
OV	TRICHLOROETHENE	0.22 J	UG/L	ND	200.00	0.22

Current RPD Quality Control Limit: 30 %.

Shaded cells indicate RPDs that exceed the applicable quality control limit.

INTERNAL CORRESPONDENCE

TO: A. APANAVAGE DATE: JANUARY 6, 2017

FROM: L. GANSER COPIES: DV FILE

SUBJECT: DATA VALIDATION - VOC

LOCKHEED MARTIN CORPORATION (LMC) - MIDDLE RIVER COMPLEX (MRC)

SDG 240-73352-1

SAMPLES: 13/Aqueous/

MRC-SW10A-D-121316	MRC-SW10A-S-121316	MRC-SW10B-D-121316
MRC-SW10B-S-121316	MRC-SW11A-D-121316	MRC-SW11A-S-121316
MRC-SW11B-D-121316	MRC-SW11B-S-121316	MRC-SW12A-D-121316
MRC-SW12A-S-121316	MRC-SW12B-D-121316	MRC-SW12B-S-121316

TB-121316

Overview

The sample set for LMC-MRC, SDG 240-73352-1 consisted of twelve (12) aqueous environmental samples and one (1) trip blank. The samples were analyzed for volatile organic compounds (VOC). No field duplicate sample pair was included in this SDG.

The samples were collected by Tetra Tech, Inc. on December 13, 2016 and analyzed by TestAmerica, Inc. All analyses were conducted in accordance with SW-846 Methods 8260C for VOC analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters: data completeness, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method/preparation blanks, surrogate spike recoveries, laboratory control sample results, internal standard areas and recoveries, chromatographic resolution, analyte identification, analyte quantitation, and detection limits. Areas of concern are listed below.

<u>Major</u>

 As stated in the case narrative, 2-chloroethyl vinyl ether cannot be reliably recovered in acid preserved samples. Because the environmental samples were preserved in acid, the recovery of this compound is unreliable. The non-detected results reported for 2-chloroethyl vinyl ether in all samples were qualified as rejected, (UR).

Minor

- Continuing calibration percent difference greater than 20 percent was noted for tert-amyl methyl ether, dichlorodifluoromethane, bromomethane, chloroethane, trichlorofluoromethane, 1,1,2-trichlorotrifluoroethane, methylene chloride, tert-butyl alcohol, methyl tert-butyl ether, vinyl acetate, 2,2-dichloropropane, bromochloromethane, 1,1,1-trichloroethane, carbon tetrachloride, trichloroethene, bromodichloromethane, 4-methyl-2-pentanone, 1,1,1,2-tetrachloroethane, isopropylbenzene, 1,2,4-trichlorobenzene, hexachlorobutadiene, and 1,2,3-trichlorobenzene on 12/22/2016 at 10:25 on instrument A3UX15 affecting all samples. Detected and nondetected results for these parameters were qualified as estimated, (J) and (UJ), respectively.
- Detected results reported below the Reporting Limit (RL) limit but above the Method Detection Limit (MDL) were qualified as estimated, (J).

TO: A. APANAVAGE PAGE 2

SDG: 240-73352-1

<u>Notes</u>

Non-detected results were reported to the MDL.

VOC laboratory control sample (LCS) percent recovery was greater than QC limits for carbon tetrachloride and 2,2-dichloropropane. Not action was taken as results for these parameters were nondetect.

Executive Summary

Laboratory Performance: Calibration noncompliance was noted for select VOCs.

Other Factors Affecting Data Quality: Because all environmental samples were preserved in acid, the recovery of 2-chloroethyl vinyl ether is unreliable.

The data for these analyses were reviewed with reference to "National Functional Guidelines for Organic Review" (September 2016). The text of this report has been formulated to address only those areas affecting data quality.

Tetra Tech, Inc. Leanne Ganser

Environmental Scientist/Data Validator

canne M. Va

Joseph A. Samchuck

Tetra Tech, Inc.

Data Validation Manager

Attachments:

Appendix A – Qualified Analytical Results

Appendix B – Results as Reported by the Laboratory

Appendix C – Support Documentation

Data Qualifier Definitions

The following definitions provide brief explanations of the validation qualifiers assigned to results in the data review process.

U	The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted method detection limit for sample and method.
J	The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the reporting limit).
J+	The result is an estimated quantity, but the result may be biased high.
J-	The result is an estimated quantity, but the result may be biased low.
UJ	The analyte was analyzed for, but was not detected. The reported detection limit is approximate and may be inaccurate or imprecise.
R	The sample result (detected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
UR	The sample result (nondetected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.

Appendix A

Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = ICP PDS Recovery Noncompliance; MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 standard deviations is greater than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

Z2 = Tentatively Identified Compound column bleed

Z3 = Tentatively Identified Compound aldol condensate

Z4 = Sample activity is less than the at uncertainty at 3 standard deviations and greater than the MDC

Z5 = Sample activity is less than the at uncertainty at 3 standard deviations and less than the MDC

PROJ_NO: 07776	NSAMPLE	MRC-SW10A-I	D-1213	16	MRC-SW10A-	S-12131	16	MRC-SW10B-	D-1213	16	MRC-SW10B-	S-12131	6
SDG: 240-73352-1	LAB_ID	240-73352-2			240-73352-3			240-73352-4			240-73352-5		
FRACTION: OV	SAMP_DATE	12/13/2016			12/13/2016			12/13/2016			12/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1,2-TETRACHLOROE	THANE	0.46	UJ	С	0.46	UJ	С	0.46	UJ	С	0.46	UJ	С
1,1,1-TRICHLOROETHAN	E	0.23	UJ	С	0.23	UJ	С	0.23	UJ	С	0.23	UJ	С
1,1,2,2-TETRACHLOROE	THANE	0.32	U		0.32	U		0.32	U		0.32	U	
1,1,2-TRICHLOROTRIFLU	IOROETHANE	0.41	UJ	С	0.41	UJ	С	0.41	UJ	С	0.41	UJ	С
1,1-DICHLOROETHANE		0.25	U		0.25	U		0.25	U		0.25	U	
1,1-DICHLOROETHENE		0.27	U		0.27	U		0.27	U		0.27	U	
1,1-DICHLOROPROPENE		0.28			0.28	U		0.28	U		0.28	U	
1,2,3-TRICHLOROBENZE	NE	0.35	UJ	С	0.35	UJ	С	0.35	UJ	С	0.35	UJ	С
1,2,3-TRICHLOROPROPA	NE	0.54	U		0.54	U		0.54	U		0.54	U	
1,2,3-TRIMETHYLBENZEI	NE	0.22	U		0.22	U		0.22	U		0.22	U	
1,2,4-TRICHLOROBENZE	NE	0.27	UJ	С	0.27	UJ	С	0.27	UJ	С	0.27	UJ	С
1,2,4-TRIMETHYLBENZEI	NE	0.24	U		0.24	U		0.24	U		0.24	U	
1,2-DIBROMO-3-CHLORO	PROPANE	0.47	U		0.47	U		0.47	U		0.47	U	
1,2-DIBROMOETHANE		0.23	U		0.23	U		0.23	U		0.23	U	
1,2-DICHLOROBENZENE		0.26	U		0.26	U		0.26	U		0.26	U	
1,2-DICHLOROETHANE		0.3	U		0.3	U		0.3	U		0.3	U	
1,2-DICHLOROPROPANE		0.3	U		0.3	U		0.3	U		0.3	U	
1,3-DICHLOROBENZENE		0.32	U		0.32	U		0.32	U		0.32	U	
1,3-DICHLOROPROPANE		0.29	U		0.29	U		0.29	U		0.29	U	
1,4-DICHLOROBENZENE		0.23	U		0.23	U		0.23	U		0.23	U	
2,2-DICHLOROPROPANE		0.34	UJ	С	0.34	UJ	С	0.34	UJ	С	0.34	UJ	С
2-BUTANONE		1	U		1	U		1	U		1	U	
2-CHLOROETHYL VINYL	ETHER	0.65	UR	M	0.65	UR	M	0.65	UR	M	0.65	UR	M
2-CHLOROTOLUENE		0.28	U		0.28	U		0.28	U		0.28	U	
2-HEXANONE		1.2	U		1.2	U		1.2	U		1.2	U	
4-CHLOROTOLUENE		0.23	U		0.23	U		0.23	U		0.23	U	
4-ISOPROPYLTOLUENE		0.29	U		0.29	U		0.29	U		0.29	U	
4-METHYL-2-PENTANON	E	0.71	UJ	С	0.71	UJ	С	0.71	UJ	С	0.71	UJ	С
ACETONE		2.6	J	Р	2.9	J	Р	2.4	J	Р	1.8	U	
BENZENE		0.28	U		0.28			0.28			0.28		
BROMOBENZENE		0.31	U		0.31	U		0.31	U		0.31	U	
BROMOCHLOROMETHAI	NE	0.47	UJ	С	0.47	UJ	С	0.47	UJ	С	0.47	UJ	С
BROMODICHLOROMETH	IANE	0.3	UJ	С	0.3	UJ	С	0.3	UJ	С	0.3	UJ	С
BROMOFORM		0.43			0.43	U		0.43	U		0.43	U	
BROMOMETHANE		0.42	UJ	С	0.42	UJ	С	0.42	UJ	С	0.42	UJ	С

PROJ_NO: 07776 NSAMPLE		MRC-SW11A-I	D-1213	16	MRC-SW11A-	S-12131	16	MRC-SW11B-	1B-D-121316 MRC-SW11B-S-121316			6	
SDG: 240-73352-1	LAB_ID	240-73352-6			240-73352-7			240-73352-8			240-73352-9		
FRACTION: OV	SAMP_DATE	12/13/2016			12/13/2016			12/13/2016			12/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1,2-TETRACHLOROE	THANE	0.46	UJ	С	0.46	UJ	С	0.46	UJ	С	0.46	UJ	С
1,1,1-TRICHLOROETHAN	E	0.23	UJ	С	0.23	UJ	С	0.23	UJ	С	0.23	UJ	С
1,1,2,2-TETRACHLOROE	THANE	0.32	U		0.32	U		0.32	U		0.32	U	
1,1,2-TRICHLOROTRIFLU	JOROETHANE	0.41	UJ	С	0.41	UJ	С	0.41	UJ	С	0.41	UJ	С
1,1-DICHLOROETHANE		0.25	U		0.25	U		0.25	U		0.25	U	
1,1-DICHLOROETHENE		0.27	U		0.27			0.27	U		0.27	U	
1,1-DICHLOROPROPENE		0.28	U		0.28	U		0.28	U		0.28	U	
1,2,3-TRICHLOROBENZE	NE	0.35	UJ	С	0.35	UJ	С	0.35	UJ	С	0.35	UJ	С
1,2,3-TRICHLOROPROPA	NE	0.54	U		0.54	U		0.54	U		0.54	U	
1,2,3-TRIMETHYLBENZE	NE	0.22	U		0.22	U		0.22	U		0.22	U	
1,2,4-TRICHLOROBENZE	NE	0.27	UJ	С	0.27	UJ	С	0.27	UJ	С	0.27	UJ	С
1,2,4-TRIMETHYLBENZE	NE	0.24	U		0.24	U		0.24	U		0.24	U	
1,2-DIBROMO-3-CHLORO	PROPANE	0.47	U		0.47			0.47	U		0.47	U	
1,2-DIBROMOETHANE		0.23	U		0.23	U		0.23	U		0.23	U	
1,2-DICHLOROBENZENE		0.26	U		0.26	U		0.26	U		0.26	U	
1,2-DICHLOROETHANE		0.3	U		0.3	U		0.3	U		0.3	U	
1,2-DICHLOROPROPANE		0.3	U		0.3	U		0.3	U		0.3	U	
1,3-DICHLOROBENZENE		0.32	U		0.32	U		0.32	U		0.32	U	
1,3-DICHLOROPROPANE		0.29	U		0.29	U		0.29	U		0.29	U	
1,4-DICHLOROBENZENE		0.23	U		0.23			0.23	U		0.23	U	
2,2-DICHLOROPROPANE		0.34		С	0.34		С	0.34	UJ	С	0.34	UJ	С
2-BUTANONE		1	U		1	U		1	U		1	U	
2-CHLOROETHYL VINYL	ETHER	0.65	UR	M	0.65	UR	M	0.65		M	0.65	UR	M
2-CHLOROTOLUENE		0.28	U		0.28	U		0.28	U		0.28	U	
2-HEXANONE		1.2			1.2			1.2			1.2		
4-CHLOROTOLUENE		0.23	U		0.23	U		0.23	U		0.23	U	
4-ISOPROPYLTOLUENE		0.29			0.29			0.29			0.29		
4-METHYL-2-PENTANON	E	0.71		С	0.71	UJ	С	0.71	UJ	С	0.71	UJ	С
ACETONE		2	J	Р	2.1	J	Р	1.8			1.8		
BENZENE		0.28			0.28			0.28			0.28		
BROMOBENZENE		0.31			0.31			0.31			0.31		
BROMOCHLOROMETHAI	NE	0.47		С	0.47		С	0.47		С	0.47		С
BROMODICHLOROMETH	IANE	0.3	UJ	С	0.3	UJ	С	0.3	UJ	С	0.3	UJ	С
BROMOFORM		0.43	_		0.43			0.43			0.43		
BROMOMETHANE		0.42	UJ	С	0.42	UJ	С	0.42	UJ	С	0.42	UJ	С

PROJ_NO: 07776 NSAMPLE		MRC-SW12A-	D-1213	316	MRC-SW12A-	S-1213	16	MRC-SW12B-	D-1213	16	MRC-SW12B-	S-12131	6
SDG: 240-73352-1	LAB_ID	240-73352-10			240-73352-11			240-73352-12			240-73352-13		
FRACTION: OV	SAMP_DATE	12/13/2016			12/13/2016			12/13/2016			12/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1,2-TETRACHLOROE	THANE	0.46	UJ	С	0.46	UJ	С	0.46	UJ	С	0.46	UJ	С
1,1,1-TRICHLOROETHAN	IE	0.23	UJ	С	0.23	UJ	С	0.23	UJ	С	0.23	UJ	С
1,1,2,2-TETRACHLOROE	THANE	0.32	U		0.32	U		0.32	U		0.32	U	
1,1,2-TRICHLOROTRIFLU	JOROETHANE	0.41	UJ	С	0.41	UJ	С	0.41	UJ	С	0.41	UJ	С
1,1-DICHLOROETHANE		0.25	U		0.25	U		0.25	U		0.25	U	
1,1-DICHLOROETHENE		0.27	U		0.27	U		0.27	U		0.27	U	
1,1-DICHLOROPROPENE		0.28	U		0.28	U		0.28	U		0.28	U	
1,2,3-TRICHLOROBENZE	NE	0.35	UJ	С	0.35	UJ	С	0.35	UJ	С	0.35	UJ	С
1,2,3-TRICHLOROPROPA	ANE	0.54	U		0.54	U		0.54	U		0.54	U	
1,2,3-TRIMETHYLBENZE	NE	0.22	U		0.22	U		0.22	U		0.22	U	
1,2,4-TRICHLOROBENZE	NE	0.27	UJ	С	0.27	UJ	С	0.27	UJ	С	0.27	UJ	С
1,2,4-TRIMETHYLBENZE	NE	0.24	U		0.24	U		0.24	· U		0.24	J	Р
1,2-DIBROMO-3-CHLORO	PROPANE	0.47	U		0.47	U		0.47	U		0.47	U	
1,2-DIBROMOETHANE		0.23	U		0.23	U		0.23	U		0.23	U	
1,2-DICHLOROBENZENE		0.26	U		0.26	U		0.26	U		0.26	U	
1,2-DICHLOROETHANE		0.3	U		0.3	U		0.3	U		0.3	U	
1,2-DICHLOROPROPANE		0.3	U		0.3	U		0.3	U		0.3	U	
1,3-DICHLOROBENZENE		0.32	U		0.32	U		0.32	U		0.32	U	
1,3-DICHLOROPROPANE		0.29	U		0.29	U		0.29	U		0.29	U	
1,4-DICHLOROBENZENE		0.23	U		0.23	U		0.23	U		0.23	U	
2,2-DICHLOROPROPANE		0.34	UJ	С	0.34	UJ	С	0.34	UJ	С	0.34	UJ	С
2-BUTANONE		1	U		1	U		1	U		1	U	
2-CHLOROETHYL VINYL	ETHER	0.65	UR	М	0.65	UR	М	0.65	UR	М	0.65	UR	M
2-CHLOROTOLUENE		0.28	U		0.28	U		0.28	U		0.28	U	
2-HEXANONE		1.2	U		1.2	U		1.2	U		1.2	U	
4-CHLOROTOLUENE		0.23	U		0.23	U		0.23	U		0.23	U	
4-ISOPROPYLTOLUENE		0.29	U		0.29	U		0.29	U		0.29	U	
4-METHYL-2-PENTANON	E	0.71	UJ	С	0.71	UJ	С	0.71	UJ	С	0.71	UJ	С
ACETONE		1.8	U		2.2	J	Р	1.8	U		1.8	U	
BENZENE		0.28	U		0.28	U		0.28	U		0.28	U	
BROMOBENZENE		0.31	U		0.31	U		0.31	U		0.31	U	
BROMOCHLOROMETHA	NE	0.47	UJ	С	0.47	UJ	С	0.47	UJ	С	0.47	UJ	С
BROMODICHLOROMETH	IANE	0.3	UJ	С	0.3	UJ	С	0.3	UJ	С	0.3	UJ	С
BROMOFORM		0.43	U		0.43	U		0.43	U		0.43	U	
BROMOMETHANE		0.42	UJ	С	0.42	UJ	С	0.42	UJ	С	0.42	UJ	С

PROJ_NO: 07776	NSAMPLE	TB-121316					
SDG: 240-73352-1	LAB_ID	240-73352-1					
FRACTION: OV	SAMP_DATE	12/13/2016					
MEDIA: WATER	QC_TYPE	NM					
	UNITS	UG/L					
	PCT_SOLIDS	0.0					
	DUP_OF						
PARAMETER		RESULT	VQL	QLCD			
1,1,1,2-TETRACHLOROETH	HANE	0.46	UJ	С			
1,1,1-TRICHLOROETHANE		0.23	UJ	С			
1,1,2,2-TETRACHLOROETH	HANE	0.32	U				
1,1,2-TRICHLOROTRIFLUC	ROETHANE	0.41	UJ	С			
1,1-DICHLOROETHANE		0.25	U				
1,1-DICHLOROETHENE		0.27	U				
1,1-DICHLOROPROPENE		0.28	U				
1,2,3-TRICHLOROBENZEN	E	0.35	UJ	С			
1,2,3-TRICHLOROPROPAN	E	0.54	U				
1,2,3-TRIMETHYLBENZEN	≣	0.22	U				
1,2,4-TRICHLOROBENZEN	E	0.27	UJ	С			
1,2,4-TRIMETHYLBENZEN	=	0.24	U				
1,2-DIBROMO-3-CHLOROP	ROPANE	0.47	U				
1,2-DIBROMOETHANE		0.23	U				
1,2-DICHLOROBENZENE		0.26	U				
1,2-DICHLOROETHANE		0.3	U				
1,2-DICHLOROPROPANE		0.3	U				
1,3-DICHLOROBENZENE		0.32	U				
1,3-DICHLOROPROPANE		0.29	U				
1,4-DICHLOROBENZENE		0.23	U				
2,2-DICHLOROPROPANE		0.34	UJ	С			
2-BUTANONE		1	U				
2-CHLOROETHYL VINYL E	THER	0.65	UR	М			
2-CHLOROTOLUENE		0.28					
2-HEXANONE		1.2	U				
4-CHLOROTOLUENE		0.23	U				
4-ISOPROPYLTOLUENE		0.29	U				
4-METHYL-2-PENTANONE		0.71	UJ	С			
ACETONE		1.8	U				
BENZENE		0.28	U				
BROMOBENZENE		0.31	U				
BROMOCHLOROMETHAN		0.47		С			
BROMODICHLOROMETHA	NE	0.3	UJ	С			
BROMOFORM		0.43	U				
BROMOMETHANE		0.42	UJ	С			

PROJ_NO: 07776	NSAMPLE	MRC-SW10A-I	D-1213	16	MRC-SW10A-	S-12131	16	MRC-SW10B-	D-12131	16	MRC-SW10B-	S-12131	6
SDG: 240-73352-1	LAB_ID	240-73352-2			240-73352-3			240-73352-4			240-73352-5		
FRACTION: OV	SAMP_DATE	12/13/2016			12/13/2016			12/13/2016			12/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER	•	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
CARBON DISULFIDE		0.34	U		0.34	U		0.34	U		0.34	U	
CARBON TETRACHLORII	DE	0.35	UJ	С	0.35	UJ	С	0.35	UJ	С	0.35	UJ	С
CHLOROBENZENE		0.32	U		0.32			0.32	U		0.32	U	
CHLORODIBROMOMETH	IANE	0.25	U		0.25	U		0.25	U		0.25	U	
CHLOROETHANE		0.41	UJ	С	0.41	UJ	С	0.41	UJ	С	0.41	UJ	С
CHLOROFORM		0.31	U		0.31	U		0.31	U		0.31	U	
CHLOROMETHANE		0.43	U		0.43	U		0.43			0.43		
CIS-1,2-DICHLOROETHE	NE	0.3	U		0.3	U		0.3	U		0.3	U	
CIS-1,3-DICHLOROPROP	ENE	0.26	U		0.26	U		0.26	U		0.26	U	
DIBROMOMETHANE		0.46	U		0.46	U		0.46	U		0.46	U	
DICHLORODIFLUOROME	THANE	0.5	UJ	С	0.5	UJ	С	0.5	UJ	С	0.5	UJ	С
DIISOPROPYL ETHER		0.44	U		0.44	U		0.44	U		0.44	U	
ETHYL TERT-BUTYL ETH	IER	0.35	U		0.35	U		0.35	U		0.35	U	
ETHYLBENZENE		0.26	U		0.26	U		0.26	U		0.26	U	
HEXACHLOROBUTADIEN	ΝE	0.36	UJ	С	0.36	UJ	С	0.36	UJ	С	0.36	UJ	С
ISOPROPYLBENZENE		0.21	UJ	С	0.21	UJ	С	0.21	UJ	С	0.21	UJ	С
METHYL TERT-BUTYL ET	ΓHER	0.27	UJ	С	0.27	UJ	С	0.27	UJ	С	0.27	UJ	С
METHYLENE CHLORIDE		0.53	UJ	С	0.53	UJ	С	0.53	UJ	С	0.53	UJ	С
NAPHTHALENE		0.25	U		0.25	U		0.25	U		0.25	U	
N-BUTYLBENZENE		0.21	U		0.21	U		0.21	U		0.21	U	
N-PROPYLBENZENE		0.45	U		0.45	U		0.45	U		0.45	U	
SEC-BUTYLBENZENE		0.27	U		0.27	U		0.27	U		0.27	U	
STYRENE		0.23	U		0.23	U		0.23	U		0.23		
TERT-AMYL METHYL ETI	HER	0.29	UJ	С	0.29		С	0.29	UJ	С	0.29	UJ	С
TERT-BUTYLBENZENE		0.26	U		0.26	U		0.26	U		0.26		
TERTIARY-BUTYL ALCOH	HOL	4.6	UJ	С	4.6	UJ	С	4.6	UJ	С	4.6	UJ	С
TETRACHLOROETHENE		0.3	U		0.3	U		0.3	U		0.3	U	
TOLUENE		0.23	U		0.41	J	Р	0.23	U		0.34	J	Р
TOTAL XYLENES		0.24	U		0.35	J	Р	0.24	U		0.33	J	Р
TRANS-1,2-DICHLOROET	THENE	0.29	U		0.29			0.29			0.29		
TRANS-1,3-DICHLOROPF	ROPENE	0.31	U		0.31	U		0.31	U		0.31	U	
TRICHLOROETHENE		0.7	J	СР	4.4	J	С	0.44	J	СР	1.2	J	С
TRICHLOROFLUOROME [*]	THANE	0.5		С	0.5	UJ	С	0.5	UJ	С	0.5		С
VINYL ACETATE		0.28	UJ	С	0.28	UJ	С	0.28	UJ	С	0.28	UJ	С
VINYL CHLORIDE		0.45	U		0.45	U		0.45	U		0.45	U	

PROJ_NO: 07776	NSAMPLE	MRC-SW11A-D-121316		MRC-SW11A-	S-12131	16	MRC-SW11B-	D-12131	6	MRC-SW11B-	S-12131	6	
SDG: 240-73352-1	LAB_ID	240-73352-6			240-73352-7			240-73352-8			240-73352-9		
FRACTION: OV	SAMP_DATE	12/13/2016			12/13/2016			12/13/2016			12/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
CARBON DISULFIDE		0.34	U		0.34	U		0.34	U		0.34	U	
CARBON TETRACHLORII	DE	0.35	UJ	С	0.35	UJ	С	0.35	UJ	С	0.35	UJ	С
CHLOROBENZENE		0.32	U		0.32	U		0.32	U		0.32	U	
CHLORODIBROMOMETH	ANE	0.25	U		0.25	U		0.25	U		0.25	U	
CHLOROETHANE		0.41	UJ	С	0.41	UJ	С	0.41	UJ	С	0.41	UJ	С
CHLOROFORM		0.31	U		0.31			0.31	U		0.31	U	
CHLOROMETHANE		0.43	U		0.43	U		0.43	U		0.43	U	
CIS-1,2-DICHLOROETHE	NE	0.49	J	Р	0.3	U		2.8			0.3	U	
CIS-1,3-DICHLOROPROP	ENE	0.26	U		0.26	U		0.26	U		0.26	U	
DIBROMOMETHANE		0.46	U		0.46	U		0.46	U		0.46		
DICHLORODIFLUOROME	THANE	0.5	UJ	С	0.5		С	0.5	UJ	С	0.5	UJ	С
DIISOPROPYL ETHER		0.44	U		0.44	U		0.44	U		0.44	U	
ETHYL TERT-BUTYL ETH	IER	0.35	U		0.35	U		0.35	U		0.35	U	
ETHYLBENZENE		0.26	U		0.26	U		0.26	U		0.26	U	
HEXACHLOROBUTADIEN	IE .	0.36	UJ	С	0.36	UJ	С	0.36	UJ	С	0.36	UJ	С
ISOPROPYLBENZENE		0.21	UJ	С	0.21	UJ	С	0.21	UJ	С	0.21	UJ	С
METHYL TERT-BUTYL ET	THER	0.27	UJ	С	0.27	UJ	С	0.27	UJ	С	0.27		С
METHYLENE CHLORIDE		0.53	UJ	С	0.53	UJ	С	0.53	UJ	С	0.53	UJ	С
NAPHTHALENE		0.25	U		0.25	U		0.25	U		0.25	U	
N-BUTYLBENZENE		0.21	U		0.21	U		0.21	U		0.21	U	
N-PROPYLBENZENE		0.45	U		0.45	U		0.45	U		0.45		
SEC-BUTYLBENZENE		0.27	U		0.27	U		0.27	U		0.27	U	
STYRENE		0.23	U		0.23	U		0.23	U		0.23	U	
TERT-AMYL METHYL ETH	HER	0.29	UJ	С	0.29	UJ	С	0.29	UJ	С	0.29	UJ	С
TERT-BUTYLBENZENE		0.26	U		0.26			0.26			0.26		
TERTIARY-BUTYL ALCOH	HOL	4.6		С	4.6	_	С	4.6		С	4.6		С
TETRACHLOROETHENE		0.3	U		0.3	U		0.3	U		0.3	U	
TOLUENE		0.23	U		0.66	J	Р	0.23	U		0.45	J	Р
TOTAL XYLENES		0.24			0.53		Р	0.24			0.37		Р
TRANS-1,2-DICHLOROET	HENE	0.29			0.29			0.29			0.29		
TRANS-1,3-DICHLOROPE	ROPENE	0.31	U		0.31	U		0.31	U		0.31	U	
TRICHLOROETHENE		2.7		С	4.1	J	С	3.7	J	С	1.2	J	С
TRICHLOROFLUOROMET	THANE	0.5	UJ	С	0.5	UJ	С	0.5		С	0.5	UJ	С
VINYL ACETATE		0.28		С	0.28		С	0.28	UJ	С	0.28		С
VINYL CHLORIDE		0.45	U		0.45	U		0.45	U		0.45	U	

PROJ_NO: 07776	NSAMPLE	MRC-SW12A-	D-1213	16	MRC-SW12A-	S-1213	16	MRC-SW12B-	D-1213	16	MRC-SW12B-	S-12131	6
SDG: 240-73352-1	LAB_ID	240-73352-10			240-73352-11			240-73352-12			240-73352-13		
FRACTION: OV	SAMP_DATE	12/13/2016			12/13/2016			12/13/2016			12/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
CARBON DISULFIDE		0.34	U		0.34	U		0.34	U		0.34	U	
CARBON TETRACHLORI	DE	0.35	UJ	С	0.35	UJ	С	0.35	UJ	С	0.35	UJ	С
CHLOROBENZENE		0.32	U		0.32			0.32	U		0.32	U	
CHLORODIBROMOMETH	IANE	0.25	U		0.25	U		0.25	U		0.25	U	
CHLOROETHANE		0.41	UJ	С	0.41	UJ	С	0.41	UJ	С	0.41	UJ	С
CHLOROFORM		0.31	U		0.31	U		0.31	U		0.31	U	
CHLOROMETHANE		0.43	U		0.43	U		0.43	U		0.43		
CIS-1,2-DICHLOROETHE	NE	0.45	J	Р	0.3	U		5.5			0.3	U	
CIS-1,3-DICHLOROPROF	PENE	0.26	U		0.26	U		0.26	U		0.26	U	
DIBROMOMETHANE		0.46	U		0.46	U		0.46	U		0.46	U	
DICHLORODIFLUOROME	THANE	0.5	UJ	С	0.5	UJ	С	0.5	UJ	С	0.5	UJ	С
DIISOPROPYL ETHER		0.44	U		0.44			0.44	U		0.44	U	
ETHYL TERT-BUTYL ETH	HER	0.35	U		0.35	U		0.35	U		0.35	U	
ETHYLBENZENE		0.26	U		0.26	U		0.26	U		0.26	U	
HEXACHLOROBUTADIE!	NE	0.36	UJ	С	0.36	UJ	С	0.36	UJ	С	0.36	UJ	С
ISOPROPYLBENZENE		0.21	UJ	С	0.21	UJ	С	0.21	UJ	С	0.21	UJ	С
METHYL TERT-BUTYL E	THER	0.27	UJ	С	0.27	UJ	С	0.27	UJ	С	0.27		С
METHYLENE CHLORIDE		0.53	UJ	С	0.53	UJ	С	0.53	UJ	С	0.53	UJ	С
NAPHTHALENE		0.25	U		0.25	U		0.25	U		0.25	U	
N-BUTYLBENZENE		0.21	U		0.21	U		0.21	U		0.21	U	
N-PROPYLBENZENE		0.45	U		0.45	U		0.45	U		0.45	U	
SEC-BUTYLBENZENE		0.27	U		0.27	U		0.27	U		0.27	U	
STYRENE		0.23			0.23	U		0.23	U		0.23		
TERT-AMYL METHYL ET	HER	0.29	UJ	С	0.29		С	0.29	UJ	С	0.29		С
TERT-BUTYLBENZENE		0.26	U		0.26	U		0.26	U		0.26		
TERTIARY-BUTYL ALCO	HOL	4.6	UJ	С	4.6		С	4.6	UJ	С	4.6		С
TETRACHLOROETHENE		0.3	U		0.3	U		0.3	U		0.3	U	
TOLUENE		0.23	U		0.29	J	Р	0.23	U		0.79	J	Р
TOTAL XYLENES		0.24	U		0.28	J	Р	0.24	U		0.9	J	Р
TRANS-1,2-DICHLOROE	THENE	0.29	U		0.29			0.29			0.29		
TRANS-1,3-DICHLOROPI	ROPENE	0.31	U		0.31	U		0.31	U		0.31	U	
TRICHLOROETHENE		2.4	-	С	4.1	-	С	7.8	J	С	1.4		С
TRICHLOROFLUOROME	THANE	0.5		С	0.5	UJ	С	0.5	UJ	С	0.5		С
VINYL ACETATE		0.28	UJ	С	0.28	UJ	С	0.28	UJ	С	0.28		С
VINYL CHLORIDE		0.45	U		0.45	U		0.45	U		0.45	U	

PROJ_NO: 07776	NSAMPLE	TB-121316						
SDG: 240-73352-1	LAB_ID	240-73352-1						
FRACTION: OV	SAMP_DATE	12/13/2016						
MEDIA: WATER	QC_TYPE	NM						
	UNITS	UG/L						
	PCT_SOLIDS	0.0						
	DUP_OF							
PARAMETER		RESULT	VQL	QLCD				
CARBON DISULFIDE		0.34	U					
CARBON TETRACHLORIDI	≣	0.35	UJ	С				
CHLOROBENZENE		0.32	U					
CHLORODIBROMOMETHA	NE	0.25	U					
CHLOROETHANE		0.41	UJ	С				
CHLOROFORM		0.31	U					
CHLOROMETHANE		0.43	U					
CIS-1,2-DICHLOROETHEN	E	0.3	U					
CIS-1,3-DICHLOROPROPE	NE	0.26	U					
DIBROMOMETHANE		0.46	U					
DICHLORODIFLUOROMET	HANE	0.5	UJ	С				
DIISOPROPYL ETHER		0.44	U					
ETHYL TERT-BUTYL ETHE	R	0.35	U					
ETHYLBENZENE		0.26	U					
HEXACHLOROBUTADIENE		0.36	UJ	С				
ISOPROPYLBENZENE		0.21	UJ	С				
METHYL TERT-BUTYL ETH	IER	0.27	UJ	С				
METHYLENE CHLORIDE		0.53	UJ	С				
NAPHTHALENE		0.25	U					
N-BUTYLBENZENE		0.21	U					
N-PROPYLBENZENE		0.45	U					
SEC-BUTYLBENZENE		0.27	U					
STYRENE		0.23	U					
TERT-AMYL METHYL ETH	ER	0.29	UJ	С				
TERT-BUTYLBENZENE		0.26	U					
TERTIARY-BUTYL ALCOHO	DL	4.6	UJ	С				
TETRACHLOROETHENE		0.3	U					
TOLUENE		0.23	U					
TOTAL XYLENES		0.24						
TRANS-1,2-DICHLOROETH	IENE	0.29	U					
TRANS-1,3-DICHLOROPRO	PENE	0.31						
TRICHLOROETHENE		0.33	UJ	С				
TRICHLOROFLUOROMETH	HANE	0.5		С				
VINYL ACETATE		0.28	UJ	С				
VINYL CHLORIDE		0.45	U					

Appendix B

Results as Reported by the Laboratory

Lab Name: TestAmerica Canton	Job No.: 240-73352-1							
SDG No.:								
Client Sample ID: TB-121316	Lab Sample ID: 240-73352-1							
Matrix: Water	Lab File ID: UXC0642.D							
Analysis Method: 8260B	Date Collected: 12/13/2016 00:00							
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 15:17							
Soil Aliquot Vol:	Dilution Factor: 1							
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)							
% Moisture:	Level: (low/med) Low							
Analysis Batch No.: 260599	Units: ug/L							

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	1.8	U	10	1.8
630-20-6	1,1,1,2-Tetrachloroethane	0.46	U	1.0	0.46
71-43-2	Benzene	0.28	U	1.0	0.28
75-27-4	Bromodichloromethane	0.30	U	1.0	0.30
75-25-2	Bromoform	0.43	U	1.0	0.43
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone (MEK)	1.0	U	10	1.0
75-15-0	Carbon disulfide	0.34	U	1.0	0.34
56-23-5	Carbon tetrachloride	0.35	U *	1.0	0.35
108-90-7	Chlorobenzene	0.32	U	1.0	0.32
75-00-3	Chloroethane	0.41	U	1.0	0.41
67-66-3	Chloroform	0.31	U	1.0	0.31
563-58-6	1,1-Dichloropropene	0.28	U	1.0	0.28
74-87-3	Chloromethane	0.43	U	1.0	0.43
75-34-3	1,1-Dichloroethane	0.25	U	1.0	0.25
87-61-6	1,2,3-Trichlorobenzene	0.35	U	1.0	0.35
96-18-4	1,2,3-Trichloropropane	0.54	U	1.0	0.54
107-06-2	1,2-Dichloroethane	0.30	U	1.0	0.30
75-35-4	1,1-Dichloroethene	0.27	U	1.0	0.27
526-73-8	1,2,3-Trimethylbenzene	0.22	U	5.0	0.22
78-87-5	1,2-Dichloropropane	0.30	U	1.0	0.30
95-63-6	1,2,4-Trimethylbenzene	0.24	U	1.0	0.24
10061-01-5	cis-1,3-Dichloropropene	0.26	U	1.0	0.26
10061-02-6	trans-1,3-Dichloropropene	0.31	U	1.0	0.31
100-41-4	Ethylbenzene	0.26	U	1.0	0.26
591-78-6	2-Hexanone	1.2	U	10	1.2
75-09-2	Methylene Chloride	0.53	U	1.0	0.53
108-10-1	4-Methyl-2-pentanone (MIBK)	0.71	U	10	0.71
100-42-5	Styrene	0.23	U	1.0	0.23
79-34-5	1,1,2,2-Tetrachloroethane	0.32	U	1.0	0.32
127-18-4	Tetrachloroethene	0.30	U	1.0	0.30
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	0.33	U	1.0	0.33
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.24	U	2.0	0.24
71-55-6	1,1,1-Trichloroethane	0.23	U	1.0	0.23

Lab Name: TestAmerica Canton Job No.: 240-73352-1 SDG No.: Client Sample ID: TB-121316 Lab Sample ID: 240-73352-1 Matrix: Water Lab File ID: UXC0642.D Analysis Method: 8260B Date Collected: 12/13/2016 00:00 Date Analyzed: 12/22/2016 15:17 Sample wt/vol: 5(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u> Level: (low/med) Low % Moisture: ____ Analysis Batch No.: 260599 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.29	Ū	1.0	0.29
96-12-8	1,2-Dibromo-3-Chloropropane	0.47	U	2.0	0.47
106-93-4	1,2-Dibromoethane	0.23	U	1.0	0.23
75-71-8	Dichlorodifluoromethane	0.50	U	1.0	0.50
156-59-2	cis-1,2-Dichloroethene	0.30	U	1.0	0.30
156-60-5	trans-1,2-Dichloroethene	0.29	U	1.0	0.29
98-82-8	Isopropylbenzene	0.21	U	1.0	0.21
1634-04-4	Methyl tert-butyl ether	0.27	U	1.0	0.27
76-13-1	1,1,2-Trichlorotrifluoroethane	0.41	U	1.0	0.41
120-82-1	1,2,4-Trichlorobenzene	0.27	U	1.0	0.27
594-20-7	2,2-Dichloropropane	0.34	U *	1.0	0.34
95-50-1	1,2-Dichlorobenzene	0.26	U	1.0	0.26
541-73-1	1,3-Dichlorobenzene	0.32	U	1.0	0.32
106-46-7	1,4-Dichlorobenzene	0.23	U	1.0	0.23
110-75-8	2-Chloroethyl vinyl ether	0.65	U	10	0.65
75-69-4	Trichlorofluoromethane	0.50	U	1.0	0.50
95-49-8	2-Chlorotoluene	0.28	U	1.0	0.28
124-48-1	Chlorodibromomethane	0.25	U	1.0	0.25
108-86-1	Bromobenzene	0.31	U	1.0	0.31
74-97-5	Bromochloromethane	0.47	U	1.0	0.47
106-43-4	4-Chlorotoluene	0.23	U	1.0	0.23
99-87-6	4-Isopropyltoluene	0.29	U	1.0	0.29
87-68-3	Hexachlorobutadiene	0.36	U	1.0	0.36
74-95-3	Dibromomethane	0.46	U	1.0	0.46
108-20-3	Diisopropyl ether	0.44	U	10	0.44
91-20-3	Naphthalene	0.25	U	1.0	0.25
104-51-8	n-Butylbenzene	0.21	U	1.0	0.21
103-65-1	N-Propylbenzene	0.45	U	1.0	0.45
135-98-8	sec-Butylbenzene	0.27	U	1.0	0.27
994-05-8	Tert-amyl methyl ether	0.29	U	5.0	0.29
637-92-3	Ethyl tert-butyl ether	0.35	U	5.0	0.35
98-06-6	tert-Butylbenzene	0.26	U	1.0	0.26
108-05-4	Vinyl acetate	0.28	U	2.0	0.28
75-65-0	tert-Butyl alcohol	4.6	U	50	4.6

Lab Name: TestAmerica Canton Job No.: 240-73352-1 SDG No.: Client Sample ID: TB-121316 Lab Sample ID: 240-73352-1 Matrix: Water Lab File ID: UXC0642.D Analysis Method: 8260B Date Collected: 12/13/2016 00:00 Date Analyzed: 12/22/2016 15:17 Sample wt/vol: 5(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u> Level: (low/med) Low % Moisture: ____ Analysis Batch No.: 260599 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	104		63-132
460-00-4	4-Bromofluorobenzene (Surr)	103		73-120
2037-26-5	Toluene-d8 (Surr)	98		73-124
1868-53-7	Dibromofluoromethane (Surr)	110		80-120

Lab Name: TestAmerica Canton	Job No.: 240-73352-1		
SDG No.:			
Client Sample ID: MRC-SW10A-D-121316	Lab Sample ID: 240-73352-2		
Matrix: Water	Lab File ID: UXC0643.D		
Analysis Method: 8260B	Date Collected: 12/13/2016 09:16		
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 15:39		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
<u> </u>			

Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	2.6	J	10	1.8
630-20-6	1,1,1,2-Tetrachloroethane	0.46	U	1.0	0.46
71-43-2	Benzene	0.28	U	1.0	0.28
75-27-4	Bromodichloromethane	0.30	U	1.0	0.30
75-25-2	Bromoform	0.43	U	1.0	0.43
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone (MEK)	1.0	U	10	1.0
75-15-0	Carbon disulfide	0.34	U	1.0	0.34
56-23-5	Carbon tetrachloride	0.35	Π *	1.0	0.35
108-90-7	Chlorobenzene	0.32	U	1.0	0.32
75-00-3	Chloroethane	0.41	U	1.0	0.41
67-66-3	Chloroform	0.31	U	1.0	0.31
563-58-6	1,1-Dichloropropene	0.28	U	1.0	0.28
74-87-3	Chloromethane	0.43	U	1.0	0.43
75-34-3	1,1-Dichloroethane	0.25	U	1.0	0.25
87-61-6	1,2,3-Trichlorobenzene	0.35	U	1.0	0.35
96-18-4	1,2,3-Trichloropropane	0.54	U	1.0	0.54
107-06-2	1,2-Dichloroethane	0.30	U	1.0	0.30
75-35-4	1,1-Dichloroethene	0.27	U	1.0	0.27
526-73-8	1,2,3-Trimethylbenzene	0.22	U	5.0	0.22
78-87-5	1,2-Dichloropropane	0.30	U	1.0	0.30
95-63-6	1,2,4-Trimethylbenzene	0.24	U	1.0	0.24
10061-01-5	cis-1,3-Dichloropropene	0.26	U	1.0	0.26
10061-02-6	trans-1,3-Dichloropropene	0.31	U	1.0	0.31
100-41-4	Ethylbenzene	0.26	U	1.0	0.26
591-78-6	2-Hexanone	1.2	U	10	1.2
75-09-2	Methylene Chloride	0.53	U	1.0	0.53
108-10-1	4-Methyl-2-pentanone (MIBK)	0.71	U	10	0.71
100-42-5	Styrene	0.23	U	1.0	0.23
79-34-5	1,1,2,2-Tetrachloroethane	0.32	U	1.0	0.32
127-18-4	Tetrachloroethene	0.30	U	1.0	0.30
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	0.70	J	1.0	0.33
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.24	U	2.0	0.24
71-55-6	1,1,1-Trichloroethane	0.23	U	1.0	0.23

Analysis Batch No.: 260599

Lab Name: TestAmerica Canton Job No.: 240-73352-1 SDG No.: Client Sample ID: MRC-SW10A-D-121316 Lab Sample ID: 240-73352-2 Matrix: Water Lab File ID: UXC0643.D Analysis Method: 8260B Date Collected: 12/13/2016 09:16 Sample wt/vol: 5(mL) Date Analyzed: 12/22/2016 15:39 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u> Level: (low/med) Low % Moisture: ____ Analysis Batch No.: 260599 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.29	Ū	1.0	0.29
96-12-8	1,2-Dibromo-3-Chloropropane	0.47	U	2.0	0.47
106-93-4	1,2-Dibromoethane	0.23	U	1.0	0.23
75-71-8	Dichlorodifluoromethane	0.50	U	1.0	0.50
156-59-2	cis-1,2-Dichloroethene	0.30	U	1.0	0.30
156-60-5	trans-1,2-Dichloroethene	0.29	U	1.0	0.29
98-82-8	Isopropylbenzene	0.21	U	1.0	0.21
1634-04-4	Methyl tert-butyl ether	0.27	U	1.0	0.27
76-13-1	1,1,2-Trichlorotrifluoroethane	0.41	U	1.0	0.41
120-82-1	1,2,4-Trichlorobenzene	0.27	U	1.0	0.27
594-20-7	2,2-Dichloropropane	0.34	U *	1.0	0.34
95-50-1	1,2-Dichlorobenzene	0.26	U	1.0	0.26
541-73-1	1,3-Dichlorobenzene	0.32	U	1.0	0.32
106-46-7	1,4-Dichlorobenzene	0.23	U	1.0	0.23
110-75-8	2-Chloroethyl vinyl ether	0.65	U	10	0.65
75-69-4	Trichlorofluoromethane	0.50	U	1.0	0.50
95-49-8	2-Chlorotoluene	0.28	U	1.0	0.28
124-48-1	Chlorodibromomethane	0.25	U	1.0	0.25
108-86-1	Bromobenzene	0.31	U	1.0	0.31
74-97-5	Bromochloromethane	0.47	U	1.0	0.47
106-43-4	4-Chlorotoluene	0.23	U	1.0	0.23
99-87-6	4-Isopropyltoluene	0.29	U	1.0	0.29
87-68-3	Hexachlorobutadiene	0.36	U	1.0	0.36
74-95-3	Dibromomethane	0.46	U	1.0	0.46
108-20-3	Diisopropyl ether	0.44	U	10	0.44
91-20-3	Naphthalene	0.25	U	1.0	0.25
104-51-8	n-Butylbenzene	0.21	U	1.0	0.21
103-65-1	N-Propylbenzene	0.45	U	1.0	0.45
135-98-8	sec-Butylbenzene	0.27	U	1.0	0.27
994-05-8	Tert-amyl methyl ether	0.29	U	5.0	0.29
637-92-3	Ethyl tert-butyl ether	0.35	U	5.0	0.35
98-06-6	tert-Butylbenzene	0.26	U	1.0	0.26
108-05-4	Vinyl acetate	0.28	U	2.0	0.28
75-65-0	tert-Butyl alcohol	4.6	U	50	4.6

Lab Name: TestAmerica Canton Job No.: 240-73352-1 SDG No.: Client Sample ID: MRC-SW10A-D-121316 Lab Sample ID: 240-73352-2 Matrix: Water Lab File ID: UXC0643.D Analysis Method: 8260B Date Collected: 12/13/2016 09:16 Sample wt/vol: 5(mL) Date Analyzed: 12/22/2016 15:39 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u> Level: (low/med) Low % Moisture: ____ Analysis Batch No.: 260599 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	107		63-132
460-00-4	4-Bromofluorobenzene (Surr)	102		73-120
2037-26-5	Toluene-d8 (Surr)	94		73-124
1868-53-7	Dibromofluoromethane (Surr)	115		80-120

Lab Name: TestAmerica Canton	Job No.: 240-73352-1			
SDG No.:				
Client Sample ID: MRC-SW10A-S-121316	Lab Sample ID: 240-73352	2-3		
Matrix: Water	Lab File ID: UXC0644.D			
Analysis Method: 8260B	Date Collected: 12/13/2016 09:17			
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 16:02			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			

Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	2.9	J	10	1.8
630-20-6	1,1,1,2-Tetrachloroethane	0.46	U	1.0	0.46
71-43-2	Benzene	0.28	U	1.0	0.28
75-27-4	Bromodichloromethane	0.30	U	1.0	0.30
75-25-2	Bromoform	0.43	U	1.0	0.43
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone (MEK)	1.0	U	10	1.0
75-15-0	Carbon disulfide	0.34	U	1.0	0.34
56-23-5	Carbon tetrachloride	0.35	U *	1.0	0.35
108-90-7	Chlorobenzene	0.32	U	1.0	0.32
75-00-3	Chloroethane	0.41	U	1.0	0.41
67-66-3	Chloroform	0.31	U	1.0	0.31
563-58-6	1,1-Dichloropropene	0.28	U	1.0	0.28
74-87-3	Chloromethane	0.43	U	1.0	0.43
75-34-3	1,1-Dichloroethane	0.25	U	1.0	0.25
87-61-6	1,2,3-Trichlorobenzene	0.35	U	1.0	0.35
96-18-4	1,2,3-Trichloropropane	0.54	U	1.0	0.54
107-06-2	1,2-Dichloroethane	0.30	U	1.0	0.30
75-35-4	1,1-Dichloroethene	0.27	U	1.0	0.27
526-73-8	1,2,3-Trimethylbenzene	0.22	U	5.0	0.22
78-87-5	1,2-Dichloropropane	0.30	U	1.0	0.30
95-63-6	1,2,4-Trimethylbenzene	0.24	U	1.0	0.24
10061-01-5	cis-1,3-Dichloropropene	0.26	U	1.0	0.26
10061-02-6	trans-1,3-Dichloropropene	0.31	U	1.0	0.31
100-41-4	Ethylbenzene	0.26	U	1.0	0.26
591-78-6	2-Hexanone	1.2	U	10	1.2
75-09-2	Methylene Chloride	0.53	U	1.0	0.53
108-10-1	4-Methyl-2-pentanone (MIBK)	0.71	U	10	0.71
100-42-5	Styrene	0.23	U	1.0	0.23
79-34-5	1,1,2,2-Tetrachloroethane	0.32	U	1.0	0.32
127-18-4	Tetrachloroethene	0.30	U	1.0	0.30
108-88-3	Toluene	0.41	J	1.0	0.23
79-01-6	Trichloroethene	4.4		1.0	0.33
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.35	J	2.0	0.24
71-55-6	1,1,1-Trichloroethane	0.23	IJ	1.0	0.23

Analysis Batch No.: 260599

Lab Name: TestAmerica Canton	Job No.: 240-73352-1		
SDG No.:			
Client Sample ID: MRC-SW10A-S-121316	Lab Sample ID: 240-73352-3		
Matrix: Water	Lab File ID: UXC0644.D		
Analysis Method: 8260B	Date Collected: 12/13/2016 09:17		
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 16:02		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 260599	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.29	U	1.0	0.29
96-12-8	1,2-Dibromo-3-Chloropropane	0.47	U	2.0	0.47
106-93-4	1,2-Dibromoethane	0.23	U	1.0	0.23
75-71-8	Dichlorodifluoromethane	0.50	U	1.0	0.50
156-59-2	cis-1,2-Dichloroethene	0.30	U	1.0	0.30
156-60-5	trans-1,2-Dichloroethene	0.29	U	1.0	0.29
98-82-8	Isopropylbenzene	0.21	U	1.0	0.21
1634-04-4	Methyl tert-butyl ether	0.27	U	1.0	0.27
76-13-1	1,1,2-Trichlorotrifluoroethane	0.41	U	1.0	0.41
120-82-1	1,2,4-Trichlorobenzene	0.27	U	1.0	0.27
594-20-7	2,2-Dichloropropane	0.34	U *	1.0	0.34
95-50-1	1,2-Dichlorobenzene	0.26	U	1.0	0.26
541-73-1	1,3-Dichlorobenzene	0.32	U	1.0	0.32
106-46-7	1,4-Dichlorobenzene	0.23	U	1.0	0.23
110-75-8	2-Chloroethyl vinyl ether	0.65	U	10	0.65
75-69-4	Trichlorofluoromethane	0.50	U	1.0	0.50
95-49-8	2-Chlorotoluene	0.28	U	1.0	0.28
124-48-1	Chlorodibromomethane	0.25	U	1.0	0.25
108-86-1	Bromobenzene	0.31	U	1.0	0.31
74-97-5	Bromochloromethane	0.47	U	1.0	0.47
106-43-4	4-Chlorotoluene	0.23	U	1.0	0.23
99-87-6	4-Isopropyltoluene	0.29	U	1.0	0.29
87-68-3	Hexachlorobutadiene	0.36	U	1.0	0.36
74-95-3	Dibromomethane	0.46	U	1.0	0.46
108-20-3	Diisopropyl ether	0.44	U	10	0.44
91-20-3	Naphthalene	0.25	U	1.0	0.25
104-51-8	n-Butylbenzene	0.21	U	1.0	0.21
103-65-1	N-Propylbenzene	0.45	U	1.0	0.45
135-98-8	sec-Butylbenzene	0.27	U	1.0	0.27
994-05-8	Tert-amyl methyl ether	0.29	U	5.0	0.29
637-92-3	Ethyl tert-butyl ether	0.35	U	5.0	0.35
98-06-6	tert-Butylbenzene	0.26	U	1.0	0.26
108-05-4	Vinyl acetate	0.28	U	2.0	0.28
75-65-0	tert-Butyl alcohol	4.6	U	50	4.6

Lab Name: TestAmerica Canton Job No.: 240-73352-1 SDG No.: Client Sample ID: MRC-SW10A-S-121316 Lab Sample ID: 240-73352-3 Matrix: Water Lab File ID: UXC0644.D Analysis Method: 8260B Date Collected: 12/13/2016 09:17 Sample wt/vol: 5(mL) Date Analyzed: 12/22/2016 16:02 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u> Level: (low/med) Low % Moisture: ____ Analysis Batch No.: 260599 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	109		63-132
460-00-4	4-Bromofluorobenzene (Surr)	104		73-120
2037-26-5	Toluene-d8 (Surr)	95		73-124
1868-53-7	Dibromofluoromethane (Surr)	115		80-120

Lab Name: TestAmerica Canton	Job No.: 240-73352-1				
SDG No.:					
Client Sample ID: MRC-SW10B-D-121316	Lab Sample ID: 240-73352	2-4			
Matrix: Water	Lab File ID: UXC0645.D				
Analysis Method: 8260B	Date Collected: 12/13/2016 09:41				
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 16:25				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18 (mm)				
% Moisture:	Level: (low/med) Low				

Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	2.4	J	10	1.8
630-20-6	1,1,1,2-Tetrachloroethane	0.46	U	1.0	0.46
71-43-2	Benzene	0.28	U	1.0	0.28
75-27-4	Bromodichloromethane	0.30	U	1.0	0.30
75-25-2	Bromoform	0.43	U	1.0	0.43
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone (MEK)	1.0	U	10	1.0
75-15-0	Carbon disulfide	0.34	U	1.0	0.34
56-23-5	Carbon tetrachloride	0.35	U *	1.0	0.35
108-90-7	Chlorobenzene	0.32	U	1.0	0.32
75-00-3	Chloroethane	0.41	U	1.0	0.41
67-66-3	Chloroform	0.31	U	1.0	0.31
563-58-6	1,1-Dichloropropene	0.28	U	1.0	0.28
74-87-3	Chloromethane	0.43	U	1.0	0.43
75-34-3	1,1-Dichloroethane	0.25	U	1.0	0.25
87-61-6	1,2,3-Trichlorobenzene	0.35	U	1.0	0.35
96-18-4	1,2,3-Trichloropropane	0.54	U	1.0	0.54
107-06-2	1,2-Dichloroethane	0.30	U	1.0	0.30
75-35-4	1,1-Dichloroethene	0.27	U	1.0	0.27
526-73-8	1,2,3-Trimethylbenzene	0.22	U	5.0	0.22
78-87-5	1,2-Dichloropropane	0.30	U	1.0	0.30
95-63-6	1,2,4-Trimethylbenzene	0.24	U	1.0	0.24
10061-01-5	cis-1,3-Dichloropropene	0.26	U	1.0	0.26
10061-02-6	trans-1,3-Dichloropropene	0.31	U	1.0	0.31
100-41-4	Ethylbenzene	0.26	U	1.0	0.26
591-78-6	2-Hexanone	1.2	U	10	1.2
75-09-2	Methylene Chloride	0.53	U	1.0	0.53
108-10-1	4-Methyl-2-pentanone (MIBK)	0.71	U	10	0.71
100-42-5	Styrene	0.23	U	1.0	0.23
79-34-5	1,1,2,2-Tetrachloroethane	0.32	U	1.0	0.32
127-18-4	Tetrachloroethene	0.30	U	1.0	0.30
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	0.44	J	1.0	0.33
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.24	U	2.0	0.24
71-55-6	1,1,1-Trichloroethane	0.23	U	1.0	0.23

Analysis Batch No.: 260599

Lab Name: TestAmerica Canton	Job No.: 240-73352-1			
SDG No.:				
Client Sample ID: MRC-SW10B-D-121316	Lab Sample ID: 240-73352-4			
Matrix: Water	Lab File ID: UXC0645.D			
Analysis Method: 8260B	Date Collected: 12/13/2016 09:41			
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 16:25			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18 (mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 260599	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.29	U	1.0	0.29
96-12-8	1,2-Dibromo-3-Chloropropane	0.47	U	2.0	0.47
106-93-4	1,2-Dibromoethane	0.23	U	1.0	0.23
75-71-8	Dichlorodifluoromethane	0.50	U	1.0	0.50
156-59-2	cis-1,2-Dichloroethene	0.30	U	1.0	0.30
156-60-5	trans-1,2-Dichloroethene	0.29	U	1.0	0.29
98-82-8	Isopropylbenzene	0.21	U	1.0	0.21
1634-04-4	Methyl tert-butyl ether	0.27	U	1.0	0.27
76-13-1	1,1,2-Trichlorotrifluoroethane	0.41	U	1.0	0.41
120-82-1	1,2,4-Trichlorobenzene	0.27	U	1.0	0.27
594-20-7	2,2-Dichloropropane	0.34	U *	1.0	0.34
95-50-1	1,2-Dichlorobenzene	0.26	U	1.0	0.26
541-73-1	1,3-Dichlorobenzene	0.32	U	1.0	0.32
106-46-7	1,4-Dichlorobenzene	0.23	U	1.0	0.23
110-75-8	2-Chloroethyl vinyl ether	0.65	U	10	0.65
75-69-4	Trichlorofluoromethane	0.50	U	1.0	0.50
95-49-8	2-Chlorotoluene	0.28	U	1.0	0.28
124-48-1	Chlorodibromomethane	0.25	U	1.0	0.25
108-86-1	Bromobenzene	0.31	U	1.0	0.31
74-97-5	Bromochloromethane	0.47	U	1.0	0.47
106-43-4	4-Chlorotoluene	0.23	U	1.0	0.23
99-87-6	4-Isopropyltoluene	0.29	U	1.0	0.29
87-68-3	Hexachlorobutadiene	0.36	U	1.0	0.36
74-95-3	Dibromomethane	0.46	U	1.0	0.46
108-20-3	Diisopropyl ether	0.44	U	10	0.44
91-20-3	Naphthalene	0.25	U	1.0	0.25
104-51-8	n-Butylbenzene	0.21	U	1.0	0.21
103-65-1	N-Propylbenzene	0.45	U	1.0	0.45
135-98-8	sec-Butylbenzene	0.27	U	1.0	0.27
994-05-8	Tert-amyl methyl ether	0.29	U	5.0	0.29
637-92-3	Ethyl tert-butyl ether	0.35	U	5.0	0.35
98-06-6	tert-Butylbenzene	0.26	U	1.0	0.26
108-05-4	Vinyl acetate	0.28	U	2.0	0.28
75-65-0	tert-Butyl alcohol	4.6	U	50	4.6

Lab Name: TestAmerica Canton Job No.: 240-73352-1 SDG No.: Client Sample ID: MRC-SW10B-D-121316 Lab Sample ID: 240-73352-4 Matrix: Water Lab File ID: UXC0645.D Analysis Method: 8260B Date Collected: 12/13/2016 09:41 Sample wt/vol: 5(mL) Date Analyzed: 12/22/2016 16:25 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18 (mm)</u> Level: (low/med) Low % Moisture: ____ Analysis Batch No.: 260599 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	107		63-132
460-00-4	4-Bromofluorobenzene (Surr)	103		73-120
2037-26-5	Toluene-d8 (Surr)	93		73-124
1868-53-7	Dibromofluoromethane (Surr)	115		80-120

Lab Name: TestAmerica Canton	Job No.: 240-73352-1		
SDG No.:			
Client Sample ID: MRC-SW10B-S-121316	Lab Sample ID: 240-73352-5		
Matrix: Water	Lab File ID: UXC0646.D		
Analysis Method: 8260B	Date Collected: 12/13/2016 09:45		
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 16:47		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		

Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	1.8	U	10	1.8
630-20-6	1,1,1,2-Tetrachloroethane	0.46	U	1.0	0.46
71-43-2	Benzene	0.28	U	1.0	0.28
75-27-4	Bromodichloromethane	0.30	U	1.0	0.30
75-25-2	Bromoform	0.43	U	1.0	0.43
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone (MEK)	1.0	U	10	1.0
75-15-0	Carbon disulfide	0.34	U	1.0	0.34
56-23-5	Carbon tetrachloride	0.35	U *	1.0	0.35
108-90-7	Chlorobenzene	0.32	U	1.0	0.32
75-00-3	Chloroethane	0.41	U	1.0	0.41
67-66-3	Chloroform	0.31	U	1.0	0.31
563-58-6	1,1-Dichloropropene	0.28	U	1.0	0.28
74-87-3	Chloromethane	0.43	U	1.0	0.43
75-34-3	1,1-Dichloroethane	0.25	U	1.0	0.25
87-61-6	1,2,3-Trichlorobenzene	0.35	U	1.0	0.35
96-18-4	1,2,3-Trichloropropane	0.54	U	1.0	0.54
107-06-2	1,2-Dichloroethane	0.30	U	1.0	0.30
75-35-4	1,1-Dichloroethene	0.27	U	1.0	0.27
526-73-8	1,2,3-Trimethylbenzene	0.22	U	5.0	0.22
78-87-5	1,2-Dichloropropane	0.30	U	1.0	0.30
95-63-6	1,2,4-Trimethylbenzene	0.24	U	1.0	0.24
10061-01-5	cis-1,3-Dichloropropene	0.26	U	1.0	0.26
10061-02-6	trans-1,3-Dichloropropene	0.31	U	1.0	0.31
100-41-4	Ethylbenzene	0.26	U	1.0	0.26
591-78-6	2-Hexanone	1.2	U	10	1.2
75-09-2	Methylene Chloride	0.53	U	1.0	0.53
108-10-1	4-Methyl-2-pentanone (MIBK)	0.71	U	10	0.71
100-42-5	Styrene	0.23	U	1.0	0.23
79-34-5	1,1,2,2-Tetrachloroethane	0.32	U	1.0	0.32
127-18-4	Tetrachloroethene	0.30	U	1.0	0.30
108-88-3	Toluene	0.34	J	1.0	0.23
79-01-6	Trichloroethene	1.2		1.0	0.33
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.33	J	2.0	0.24
71-55-6	1,1,1-Trichloroethane	0.23	U	1.0	0.23

Analysis Batch No.: 260599

Lab Name: TestAmerica Canton Job No.: 240-73352-1 SDG No.: Client Sample ID: MRC-SW10B-S-121316 Lab Sample ID: 240-73352-5 Matrix: Water Lab File ID: UXC0646.D Analysis Method: 8260B Date Collected: 12/13/2016 09:45 Sample wt/vol: 5(mL) Date Analyzed: 12/22/2016 16:47 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u> Level: (low/med) Low % Moisture: ____ Analysis Batch No.: 260599 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.29	Ū	1.0	0.29
96-12-8	1,2-Dibromo-3-Chloropropane	0.47	U	2.0	0.47
106-93-4	1,2-Dibromoethane	0.23	U	1.0	0.23
75-71-8	Dichlorodifluoromethane	0.50	U	1.0	0.50
156-59-2	cis-1,2-Dichloroethene	0.30	U	1.0	0.30
156-60-5	trans-1,2-Dichloroethene	0.29	U	1.0	0.29
98-82-8	Isopropylbenzene	0.21	U	1.0	0.21
1634-04-4	Methyl tert-butyl ether	0.27	U	1.0	0.27
76-13-1	1,1,2-Trichlorotrifluoroethane	0.41	U	1.0	0.41
120-82-1	1,2,4-Trichlorobenzene	0.27	U	1.0	0.27
594-20-7	2,2-Dichloropropane	0.34	U *	1.0	0.34
95-50-1	1,2-Dichlorobenzene	0.26	U	1.0	0.26
541-73-1	1,3-Dichlorobenzene	0.32	U	1.0	0.32
106-46-7	1,4-Dichlorobenzene	0.23	U	1.0	0.23
110-75-8	2-Chloroethyl vinyl ether	0.65	U	10	0.65
75-69-4	Trichlorofluoromethane	0.50	U	1.0	0.50
95-49-8	2-Chlorotoluene	0.28	U	1.0	0.28
124-48-1	Chlorodibromomethane	0.25	U	1.0	0.25
108-86-1	Bromobenzene	0.31	U	1.0	0.31
74-97-5	Bromochloromethane	0.47	U	1.0	0.47
106-43-4	4-Chlorotoluene	0.23	U	1.0	0.23
99-87-6	4-Isopropyltoluene	0.29	U	1.0	0.29
87-68-3	Hexachlorobutadiene	0.36	U	1.0	0.36
74-95-3	Dibromomethane	0.46	U	1.0	0.46
108-20-3	Diisopropyl ether	0.44	U	10	0.44
91-20-3	Naphthalene	0.25	U	1.0	0.25
104-51-8	n-Butylbenzene	0.21	U	1.0	0.21
103-65-1	N-Propylbenzene	0.45	U	1.0	0.45
135-98-8	sec-Butylbenzene	0.27	U	1.0	0.27
994-05-8	Tert-amyl methyl ether	0.29	U	5.0	0.29
637-92-3	Ethyl tert-butyl ether	0.35	U	5.0	0.35
98-06-6	tert-Butylbenzene	0.26	U	1.0	0.26
108-05-4	Vinyl acetate	0.28	U	2.0	0.28
75-65-0	tert-Butyl alcohol	4.6	U	50	4.6

Lab Name: TestAmerica Canton Job No.: 240-73352-1 SDG No.: Client Sample ID: MRC-SW10B-S-121316 Lab Sample ID: 240-73352-5 Matrix: Water Lab File ID: UXC0646.D Analysis Method: 8260B Date Collected: 12/13/2016 09:45 Sample wt/vol: 5(mL) Date Analyzed: 12/22/2016 16:47 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u> Level: (low/med) Low % Moisture: ____ Analysis Batch No.: 260599 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	106		63-132
460-00-4	4-Bromofluorobenzene (Surr)	100		73-120
2037-26-5	Toluene-d8 (Surr)	98		73-124
1868-53-7	Dibromofluoromethane (Surr)	109		80-120

Lab Name: TestAmerica Canton	Job No.: 240-73352-1				
SDG No.:					
Client Sample ID: MRC-SW11A-D-121316	Lab Sample ID: 240-73352-6				
Matrix: Water	Lab File ID: UXC0647.D				
Analysis Method: 8260B	Date Collected: 12/13/2016 09:53				
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 17:10				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				

Analysis Batch No.: 260599 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	2.0	J	10	1.8
630-20-6	1,1,1,2-Tetrachloroethane	0.46	U	1.0	0.46
71-43-2	Benzene	0.28	U	1.0	0.28
75-27-4	Bromodichloromethane	0.30	U	1.0	0.30
75-25-2	Bromoform	0.43	U	1.0	0.43
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone (MEK)	1.0	U	10	1.0
75-15-0	Carbon disulfide	0.34	U	1.0	0.34
56-23-5	Carbon tetrachloride	0.35	U *	1.0	0.35
108-90-7	Chlorobenzene	0.32	U	1.0	0.32
75-00-3	Chloroethane	0.41	U	1.0	0.41
67-66-3	Chloroform	0.31	U	1.0	0.31
563-58-6	1,1-Dichloropropene	0.28	U	1.0	0.28
74-87-3	Chloromethane	0.43	U	1.0	0.43
75-34-3	1,1-Dichloroethane	0.25	U	1.0	0.25
87-61-6	1,2,3-Trichlorobenzene	0.35	U	1.0	0.35
96-18-4	1,2,3-Trichloropropane	0.54	U	1.0	0.54
107-06-2	1,2-Dichloroethane	0.30	U	1.0	0.30
75-35-4	1,1-Dichloroethene	0.27	U	1.0	0.27
526-73-8	1,2,3-Trimethylbenzene	0.22	U	5.0	0.22
78-87-5	1,2-Dichloropropane	0.30	U	1.0	0.30
95-63-6	1,2,4-Trimethylbenzene	0.24	U	1.0	0.24
10061-01-5	cis-1,3-Dichloropropene	0.26	U	1.0	0.26
10061-02-6	trans-1,3-Dichloropropene	0.31	U	1.0	0.31
100-41-4	Ethylbenzene	0.26	U	1.0	0.26
591-78-6	2-Hexanone	1.2	U	10	1.2
75-09-2	Methylene Chloride	0.53	U	1.0	0.53
108-10-1	4-Methyl-2-pentanone (MIBK)	0.71	U	10	0.71
100-42-5	Styrene	0.23	U	1.0	0.23
79-34-5	1,1,2,2-Tetrachloroethane	0.32	U	1.0	0.32
127-18-4	Tetrachloroethene	0.30	U	1.0	0.30
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	2.7		1.0	0.33
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.24	U	2.0	0.24
71-55-6	1,1,1-Trichloroethane	0.23	U	1.0	0.23

Lab Name: TestAmerica Canton	Job No.: 240-73352-1				
SDG No.:					
Client Sample ID: MRC-SW11A-D-121316	Lab Sample ID: 240-73352-6				
Matrix: Water	Lab File ID: UXC0647.D				
Analysis Method: 8260B	Date Collected: 12/13/2016 09:53				
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 17:10				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18 (mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 260599	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.29	U	1.0	0.29
96-12-8	1,2-Dibromo-3-Chloropropane	0.47	U	2.0	0.47
106-93-4	1,2-Dibromoethane	0.23	U	1.0	0.23
75-71-8	Dichlorodifluoromethane	0.50	U	1.0	0.50
156-59-2	cis-1,2-Dichloroethene	0.49	J	1.0	0.30
156-60-5	trans-1,2-Dichloroethene	0.29	U	1.0	0.29
98-82-8	Isopropylbenzene	0.21	U	1.0	0.21
1634-04-4	Methyl tert-butyl ether	0.27	U	1.0	0.27
76-13-1	1,1,2-Trichlorotrifluoroethane	0.41	U	1.0	0.41
120-82-1	1,2,4-Trichlorobenzene	0.27	U	1.0	0.27
594-20-7	2,2-Dichloropropane	0.34	U *	1.0	0.34
95-50-1	1,2-Dichlorobenzene	0.26	U	1.0	0.26
541-73-1	1,3-Dichlorobenzene	0.32	U	1.0	0.32
106-46-7	1,4-Dichlorobenzene	0.23	U	1.0	0.23
110-75-8	2-Chloroethyl vinyl ether	0.65	U	10	0.65
75-69-4	Trichlorofluoromethane	0.50	U	1.0	0.50
95-49-8	2-Chlorotoluene	0.28	U	1.0	0.28
124-48-1	Chlorodibromomethane	0.25	U	1.0	0.25
108-86-1	Bromobenzene	0.31	U	1.0	0.31
74-97-5	Bromochloromethane	0.47	U	1.0	0.47
106-43-4	4-Chlorotoluene	0.23	U	1.0	0.23
99-87-6	4-Isopropyltoluene	0.29	U	1.0	0.29
87-68-3	Hexachlorobutadiene	0.36	U	1.0	0.36
74-95-3	Dibromomethane	0.46	U	1.0	0.46
108-20-3	Diisopropyl ether	0.44	U	10	0.44
91-20-3	Naphthalene	0.25	U	1.0	0.25
104-51-8	n-Butylbenzene	0.21	U	1.0	0.21
103-65-1	N-Propylbenzene	0.45	U	1.0	0.45
135-98-8	sec-Butylbenzene	0.27	U	1.0	0.27
994-05-8	Tert-amyl methyl ether	0.29	U	5.0	0.29
637-92-3	Ethyl tert-butyl ether	0.35	U	5.0	0.35
98-06-6	tert-Butylbenzene	0.26	U	1.0	0.26
108-05-4	Vinyl acetate	0.28	U	2.0	0.28
75-65-0	tert-Butyl alcohol	4.6	U	50	4.6

Lab Name: TestAmerica Canton Job No.: 240-73352-1 SDG No.: Client Sample ID: MRC-SW11A-D-121316 Lab Sample ID: 240-73352-6 Matrix: Water Lab File ID: UXC0647.D Analysis Method: 8260B Date Collected: 12/13/2016 09:53 Sample wt/vol: 5(mL) Date Analyzed: 12/22/2016 17:10 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u> Level: (low/med) Low % Moisture: ____ Analysis Batch No.: 260599 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	107		63-132
460-00-4	4-Bromofluorobenzene (Surr)	101		73-120
2037-26-5	Toluene-d8 (Surr)	94		73-124
1868-53-7	Dibromofluoromethane (Surr)	115		80-120

Lab Name: TestAmerica Canton	Job No.: 240-73352-1				
SDG No.:					
Client Sample ID: MRC-SW11A-S-121316	Lab Sample ID: 240-73352-7				
Matrix: Water	Lab File ID: UXC0648.D				
Analysis Method: 8260B	Date Collected: 12/13/2016 09:56				
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 17:33				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				

Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	2.1	J	10	1.8
630-20-6	1,1,1,2-Tetrachloroethane	0.46	U	1.0	0.46
71-43-2	Benzene	0.28	U	1.0	0.28
75-27-4	Bromodichloromethane	0.30	U	1.0	0.30
75-25-2	Bromoform	0.43	U	1.0	0.43
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone (MEK)	1.0	U	10	1.0
75-15-0	Carbon disulfide	0.34	U	1.0	0.34
56-23-5	Carbon tetrachloride	0.35	U *	1.0	0.35
108-90-7	Chlorobenzene	0.32	U	1.0	0.32
75-00-3	Chloroethane	0.41	U	1.0	0.41
67-66-3	Chloroform	0.31	U	1.0	0.31
563-58-6	1,1-Dichloropropene	0.28	U	1.0	0.28
74-87-3	Chloromethane	0.43	U	1.0	0.43
75-34-3	1,1-Dichloroethane	0.25	U	1.0	0.25
87-61-6	1,2,3-Trichlorobenzene	0.35	U	1.0	0.35
96-18-4	1,2,3-Trichloropropane	0.54	U	1.0	0.54
107-06-2	1,2-Dichloroethane	0.30	U	1.0	0.30
75-35-4	1,1-Dichloroethene	0.27	U	1.0	0.27
526-73-8	1,2,3-Trimethylbenzene	0.22	U	5.0	0.22
78-87-5	1,2-Dichloropropane	0.30	U	1.0	0.30
95-63-6	1,2,4-Trimethylbenzene	0.24	U	1.0	0.24
10061-01-5	cis-1,3-Dichloropropene	0.26	U	1.0	0.26
10061-02-6	trans-1,3-Dichloropropene	0.31	U	1.0	0.31
100-41-4	Ethylbenzene	0.26	U	1.0	0.26
591-78-6	2-Hexanone	1.2	U	10	1.2
75-09-2	Methylene Chloride	0.53	U	1.0	0.53
108-10-1	4-Methyl-2-pentanone (MIBK)	0.71	U	10	0.71
100-42-5	Styrene	0.23	U	1.0	0.23
79-34-5	1,1,2,2-Tetrachloroethane	0.32	U	1.0	0.32
127-18-4	Tetrachloroethene	0.30	U	1.0	0.30
108-88-3	Toluene	0.66	J	1.0	0.23
79-01-6	Trichloroethene	4.1		1.0	0.33
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.53	J	2.0	0.24
71-55-6	1,1,1-Trichloroethane	0.23	U	1.0	0.23

Analysis Batch No.: 260599

Lab Name: TestAmerica Canton	Job No.: 240-73352-1		
SDG No.:			
Client Sample ID: MRC-SW11A-S-121316	Lab Sample ID: 240-73352	2-7	
Matrix: Water	Lab File ID: UXC0648.D		
Analysis Method: 8260B	Date Collected: 12/13/2016 09:56		
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 17:33		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18(mm)	
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 260599	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.29	U	1.0	0.29
96-12-8	1,2-Dibromo-3-Chloropropane	0.47	U	2.0	0.47
106-93-4	1,2-Dibromoethane	0.23	U	1.0	0.23
75-71-8	Dichlorodifluoromethane	0.50	U	1.0	0.50
156-59-2	cis-1,2-Dichloroethene	0.30	U	1.0	0.30
156-60-5	trans-1,2-Dichloroethene	0.29	U	1.0	0.29
98-82-8	Isopropylbenzene	0.21	U	1.0	0.21
1634-04-4	Methyl tert-butyl ether	0.27	U	1.0	0.27
76-13-1	1,1,2-Trichlorotrifluoroethane	0.41	U	1.0	0.41
120-82-1	1,2,4-Trichlorobenzene	0.27	U	1.0	0.27
594-20-7	2,2-Dichloropropane	0.34	U *	1.0	0.34
95-50-1	1,2-Dichlorobenzene	0.26	U	1.0	0.26
541-73-1	1,3-Dichlorobenzene	0.32	U	1.0	0.32
106-46-7	1,4-Dichlorobenzene	0.23	U	1.0	0.23
110-75-8	2-Chloroethyl vinyl ether	0.65	U	10	0.65
75-69-4	Trichlorofluoromethane	0.50	U	1.0	0.50
95-49-8	2-Chlorotoluene	0.28	U	1.0	0.28
124-48-1	Chlorodibromomethane	0.25	U	1.0	0.25
108-86-1	Bromobenzene	0.31	U	1.0	0.31
74-97-5	Bromochloromethane	0.47	U	1.0	0.47
106-43-4	4-Chlorotoluene	0.23	U	1.0	0.23
99-87-6	4-Isopropyltoluene	0.29	U	1.0	0.29
87-68-3	Hexachlorobutadiene	0.36	U	1.0	0.36
74-95-3	Dibromomethane	0.46	U	1.0	0.46
108-20-3	Diisopropyl ether	0.44	U	10	0.44
91-20-3	Naphthalene	0.25	U	1.0	0.25
104-51-8	n-Butylbenzene	0.21	U	1.0	0.21
103-65-1	N-Propylbenzene	0.45	U	1.0	0.45
135-98-8	sec-Butylbenzene	0.27	U	1.0	0.27
994-05-8	Tert-amyl methyl ether	0.29	U	5.0	0.29
637-92-3	Ethyl tert-butyl ether	0.35	U	5.0	0.35
98-06-6	tert-Butylbenzene	0.26	U	1.0	0.26
108-05-4	Vinyl acetate	0.28	U	2.0	0.28
75-65-0	tert-Butyl alcohol	4.6	U	50	4.6

Lab Name: TestAmerica Canton Job No.: 240-73352-1 SDG No.: Client Sample ID: MRC-SW11A-S-121316 Lab Sample ID: 240-73352-7 Matrix: Water Lab File ID: UXC0648.D Analysis Method: 8260B Date Collected: 12/13/2016 09:56 Sample wt/vol: 5(mL) Date Analyzed: 12/22/2016 17:33 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u> ____ Level: (low/med) Low % Moisture: ____ Analysis Batch No.: 260599 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	107		63-132
460-00-4	4-Bromofluorobenzene (Surr)	102		73-120
2037-26-5	Toluene-d8 (Surr)	96		73-124
1868-53-7	Dibromofluoromethane (Surr)	115		80-120

Lab Name: TestAmerica Canton	Job No.: 240-73352-1
SDG No.:	
Client Sample ID: MRC-SW11B-D-121316	Lab Sample ID: 240-73352-8
Matrix: Water	Lab File ID: UXC0649.D
Analysis Method: 8260B	Date Collected: 12/13/2016 10:03
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 17:55
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18 (mm)
% Moisture:	Level: (low/med) Low

Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	1.8	U	10	1.8
630-20-6	1,1,1,2-Tetrachloroethane	0.46	U	1.0	0.46
71-43-2	Benzene	0.28	U	1.0	0.28
75-27-4	Bromodichloromethane	0.30	U	1.0	0.30
75-25-2	Bromoform	0.43	U	1.0	0.43
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone (MEK)	1.0	U	10	1.0
75-15-0	Carbon disulfide	0.34	U	1.0	0.34
56-23-5	Carbon tetrachloride	0.35	U *	1.0	0.35
108-90-7	Chlorobenzene	0.32	U	1.0	0.32
75-00-3	Chloroethane	0.41	U	1.0	0.41
67-66-3	Chloroform	0.31	U	1.0	0.31
563-58-6	1,1-Dichloropropene	0.28	U	1.0	0.28
74-87-3	Chloromethane	0.43	U	1.0	0.43
75-34-3	1,1-Dichloroethane	0.25	U	1.0	0.25
87-61-6	1,2,3-Trichlorobenzene	0.35	U	1.0	0.35
96-18-4	1,2,3-Trichloropropane	0.54	U	1.0	0.54
107-06-2	1,2-Dichloroethane	0.30	U	1.0	0.30
75-35-4	1,1-Dichloroethene	0.27	U	1.0	0.27
526-73-8	1,2,3-Trimethylbenzene	0.22	U	5.0	0.22
78-87-5	1,2-Dichloropropane	0.30	U	1.0	0.30
95-63-6	1,2,4-Trimethylbenzene	0.24	U	1.0	0.24
10061-01-5	cis-1,3-Dichloropropene	0.26	U	1.0	0.26
10061-02-6	trans-1,3-Dichloropropene	0.31	U	1.0	0.31
100-41-4	Ethylbenzene	0.26	U	1.0	0.26
591-78-6	2-Hexanone	1.2	U	10	1.2
75-09-2	Methylene Chloride	0.53	U	1.0	0.53
108-10-1	4-Methyl-2-pentanone (MIBK)	0.71	U	10	0.71
100-42-5	Styrene	0.23	U	1.0	0.23
79-34-5	1,1,2,2-Tetrachloroethane	0.32	U	1.0	0.32
127-18-4	Tetrachloroethene	0.30	U	1.0	0.30
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	3.7		1.0	0.33
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.24	U	2.0	0.24
71-55-6	1,1,1-Trichloroethane	0.23	U	1.0	0.23

Analysis Batch No.: 260599

Lab Name: TestAmerica Canton Job No.: 240-73352-1 SDG No.: Client Sample ID: MRC-SW11B-D-121316 Lab Sample ID: 240-73352-8 Matrix: Water Lab File ID: UXC0649.D Analysis Method: 8260B Date Collected: 12/13/2016 10:03 Sample wt/vol: 5(mL) Date Analyzed: 12/22/2016 17:55 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u> Level: (low/med) Low % Moisture: ____ Analysis Batch No.: 260599 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.29	U	1.0	0.29
96-12-8	1,2-Dibromo-3-Chloropropane	0.47	U	2.0	0.47
106-93-4	1,2-Dibromoethane	0.23	U	1.0	0.23
75-71-8	Dichlorodifluoromethane	0.50	U	1.0	0.50
156-59-2	cis-1,2-Dichloroethene	2.8		1.0	0.30
156-60-5	trans-1,2-Dichloroethene	0.29	U	1.0	0.29
98-82-8	Isopropylbenzene	0.21	U	1.0	0.21
1634-04-4	Methyl tert-butyl ether	0.27	U	1.0	0.27
76-13-1	1,1,2-Trichlorotrifluoroethane	0.41	U	1.0	0.41
120-82-1	1,2,4-Trichlorobenzene	0.27	U	1.0	0.27
594-20-7	2,2-Dichloropropane	0.34	U *	1.0	0.34
95-50-1	1,2-Dichlorobenzene	0.26	U	1.0	0.26
541-73-1	1,3-Dichlorobenzene	0.32	U	1.0	0.32
106-46-7	1,4-Dichlorobenzene	0.23	U	1.0	0.23
110-75-8	2-Chloroethyl vinyl ether	0.65	U	10	0.65
75-69-4	Trichlorofluoromethane	0.50	U	1.0	0.50
95-49-8	2-Chlorotoluene	0.28	U	1.0	0.28
124-48-1	Chlorodibromomethane	0.25	U	1.0	0.25
108-86-1	Bromobenzene	0.31	U	1.0	0.31
74-97-5	Bromochloromethane	0.47	U	1.0	0.47
106-43-4	4-Chlorotoluene	0.23	U	1.0	0.23
99-87-6	4-Isopropyltoluene	0.29	U	1.0	0.29
87-68-3	Hexachlorobutadiene	0.36	U	1.0	0.36
74-95-3	Dibromomethane	0.46	U	1.0	0.46
108-20-3	Diisopropyl ether	0.44	U	10	0.44
91-20-3	Naphthalene	0.25	U	1.0	0.25
104-51-8	n-Butylbenzene	0.21	U	1.0	0.21
103-65-1	N-Propylbenzene	0.45	U	1.0	0.45
135-98-8	sec-Butylbenzene	0.27	U	1.0	0.27
994-05-8	Tert-amyl methyl ether	0.29	U	5.0	0.29
637-92-3	Ethyl tert-butyl ether	0.35	U	5.0	0.35
98-06-6	tert-Butylbenzene	0.26	U	1.0	0.26
108-05-4	Vinyl acetate	0.28	U	2.0	0.28
75-65-0	tert-Butyl alcohol	4.6	U	50	4.6

Lab Name: TestAmerica Canton Job No.: 240-73352-1 SDG No.: Client Sample ID: MRC-SW11B-D-121316 Lab Sample ID: 240-73352-8 Matrix: Water Lab File ID: UXC0649.D Analysis Method: 8260B Date Collected: 12/13/2016 10:03 Sample wt/vol: 5(mL) Date Analyzed: 12/22/2016 17:55 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u> Level: (low/med) Low % Moisture: Analysis Batch No.: 260599 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	108		63-132
460-00-4	4-Bromofluorobenzene (Surr)	99		73-120
2037-26-5	Toluene-d8 (Surr)	96		73-124
1868-53-7	Dibromofluoromethane (Surr)	114		80-120

Lab Name: TestAmerica Canton	Job No.: 240-73352-1	
SDG No.:		
Client Sample ID: MRC-SW11B-S-121316	Lab Sample ID: 240-73352-9	
Matrix: Water	Lab File ID: UXC0650.D	
Analysis Method: 8260B	Date Collected: 12/13/2016 10:08	
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 18:17	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)	
% Moisture:	Level: (low/med) Low	

Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	1.8	U	10	1.8
630-20-6	1,1,1,2-Tetrachloroethane	0.46	U	1.0	0.46
71-43-2	Benzene	0.28	U	1.0	0.28
75-27-4	Bromodichloromethane	0.30	U	1.0	0.30
75-25-2	Bromoform	0.43	U	1.0	0.43
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone (MEK)	1.0	U	10	1.0
75-15-0	Carbon disulfide	0.34	U	1.0	0.34
56-23-5	Carbon tetrachloride	0.35	U *	1.0	0.35
108-90-7	Chlorobenzene	0.32	U	1.0	0.32
75-00-3	Chloroethane	0.41	U	1.0	0.41
67-66-3	Chloroform	0.31	U	1.0	0.31
563-58-6	1,1-Dichloropropene	0.28	U	1.0	0.28
74-87-3	Chloromethane	0.43	U	1.0	0.43
75-34-3	1,1-Dichloroethane	0.25	U	1.0	0.25
87-61-6	1,2,3-Trichlorobenzene	0.35	U	1.0	0.35
96-18-4	1,2,3-Trichloropropane	0.54	U	1.0	0.54
107-06-2	1,2-Dichloroethane	0.30	U	1.0	0.30
75-35-4	1,1-Dichloroethene	0.27	U	1.0	0.27
526-73-8	1,2,3-Trimethylbenzene	0.22	U	5.0	0.22
78-87-5	1,2-Dichloropropane	0.30	U	1.0	0.30
95-63-6	1,2,4-Trimethylbenzene	0.24	U	1.0	0.24
10061-01-5	cis-1,3-Dichloropropene	0.26	U	1.0	0.26
10061-02-6	trans-1,3-Dichloropropene	0.31	U	1.0	0.31
100-41-4	Ethylbenzene	0.26	U	1.0	0.26
591-78-6	2-Hexanone	1.2	U	10	1.2
75-09-2	Methylene Chloride	0.53	U	1.0	0.53
108-10-1	4-Methyl-2-pentanone (MIBK)	0.71	U	10	0.71
100-42-5	Styrene	0.23	U	1.0	0.23
79-34-5	1,1,2,2-Tetrachloroethane	0.32	U	1.0	0.32
127-18-4	Tetrachloroethene	0.30	U	1.0	0.30
108-88-3	Toluene	0.45	J	1.0	0.23
79-01-6	Trichloroethene	1.2		1.0	0.33
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.37	J	2.0	0.24
71-55-6	1,1,1-Trichloroethane	0.23	U	1.0	0.23

Analysis Batch No.: 260599

Lab Name: TestAmerica Canton	Job No.: 240-73352-1	
SDG No.:		
Client Sample ID: MRC-SW11B-S-121316	Lab Sample ID: 240-73352-9	
Matrix: Water	Lab File ID: UXC0650.D	
Analysis Method: 8260B	Date Collected: 12/13/2016 10:08	
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 18:17	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)	
% Moisture:	Level: (low/med) Low	
Analysis Batch No.: 260599	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.29	U	1.0	0.29
96-12-8	1,2-Dibromo-3-Chloropropane	0.47	U	2.0	0.47
106-93-4	1,2-Dibromoethane	0.23	U	1.0	0.23
75-71-8	Dichlorodifluoromethane	0.50	U	1.0	0.50
156-59-2	cis-1,2-Dichloroethene	0.30	U	1.0	0.30
156-60-5	trans-1,2-Dichloroethene	0.29	U	1.0	0.29
98-82-8	Isopropylbenzene	0.21	U	1.0	0.21
1634-04-4	Methyl tert-butyl ether	0.27	U	1.0	0.27
76-13-1	1,1,2-Trichlorotrifluoroethane	0.41	U	1.0	0.41
120-82-1	1,2,4-Trichlorobenzene	0.27	U	1.0	0.27
594-20-7	2,2-Dichloropropane	0.34	U *	1.0	0.34
95-50-1	1,2-Dichlorobenzene	0.26	U	1.0	0.26
541-73-1	1,3-Dichlorobenzene	0.32	U	1.0	0.32
106-46-7	1,4-Dichlorobenzene	0.23	U	1.0	0.23
110-75-8	2-Chloroethyl vinyl ether	0.65	U	10	0.65
75-69-4	Trichlorofluoromethane	0.50	U	1.0	0.50
95-49-8	2-Chlorotoluene	0.28	U	1.0	0.28
124-48-1	Chlorodibromomethane	0.25	U	1.0	0.25
108-86-1	Bromobenzene	0.31	U	1.0	0.31
74-97-5	Bromochloromethane	0.47	U	1.0	0.47
106-43-4	4-Chlorotoluene	0.23	U	1.0	0.23
99-87-6	4-Isopropyltoluene	0.29	U	1.0	0.29
87-68-3	Hexachlorobutadiene	0.36	U	1.0	0.36
74-95-3	Dibromomethane	0.46	U	1.0	0.46
108-20-3	Diisopropyl ether	0.44	U	10	0.44
91-20-3	Naphthalene	0.25	U	1.0	0.25
104-51-8	n-Butylbenzene	0.21	U	1.0	0.21
103-65-1	N-Propylbenzene	0.45	U	1.0	0.45
135-98-8	sec-Butylbenzene	0.27	U	1.0	0.27
994-05-8	Tert-amyl methyl ether	0.29	U	5.0	0.29
637-92-3	Ethyl tert-butyl ether	0.35	U	5.0	0.35
98-06-6	tert-Butylbenzene	0.26	U	1.0	0.26
108-05-4	Vinyl acetate	0.28	U	2.0	0.28
75-65-0	tert-Butyl alcohol	4.6	U	50	4.6

 Lab Name: TestAmerica Canton
 Job No.: 240-73352-1

 SDG No.:
 Client Sample ID: MRC-SW11B-S-121316
 Lab Sample ID: 240-73352-9

 Matrix: Water
 Lab File ID: UXC0650.D

 Analysis Method: 8260B
 Date Collected: 12/13/2016 10:08

 Sample wt/vol: 5(mL)
 Date Analyzed: 12/22/2016 18:17

 Soil Aliquot Vol:
 Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: DB-624 ID: 0.18 (mm)

 % Moisture:
 Level: (low/med) Low

 Analysis Batch No.: 260599
 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	108		63-132
460-00-4	4-Bromofluorobenzene (Surr)	98		73-120
2037-26-5	Toluene-d8 (Surr)	93		73-124
1868-53-7	Dibromofluoromethane (Surr)	119		80-120

Lab Name: TestAmerica Canton	Job No.: 240-73352-1
SDG No.:	
Client Sample ID: MRC-SW12A-D-121316	Lab Sample ID: 240-73352-10
Matrix: Water	Lab File ID: UXC0651.D
Analysis Method: 8260B	Date Collected: 12/13/2016 10:13
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 18:40
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low

Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	1.8	U	10	1.8
630-20-6	1,1,1,2-Tetrachloroethane	0.46	U	1.0	0.46
71-43-2	Benzene	0.28	U	1.0	0.28
75-27-4	Bromodichloromethane	0.30	U	1.0	0.30
75-25-2	Bromoform	0.43	U	1.0	0.43
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone (MEK)	1.0	U	10	1.0
75-15-0	Carbon disulfide	0.34	U	1.0	0.34
56-23-5	Carbon tetrachloride	0.35	U *	1.0	0.35
108-90-7	Chlorobenzene	0.32	U	1.0	0.32
75-00-3	Chloroethane	0.41	U	1.0	0.41
67-66-3	Chloroform	0.31	U	1.0	0.31
563-58-6	1,1-Dichloropropene	0.28	U	1.0	0.28
74-87-3	Chloromethane	0.43	U	1.0	0.43
75-34-3	1,1-Dichloroethane	0.25	U	1.0	0.25
87-61-6	1,2,3-Trichlorobenzene	0.35	U	1.0	0.35
96-18-4	1,2,3-Trichloropropane	0.54	U	1.0	0.54
107-06-2	1,2-Dichloroethane	0.30	U	1.0	0.30
75-35-4	1,1-Dichloroethene	0.27	U	1.0	0.27
526-73-8	1,2,3-Trimethylbenzene	0.22	U	5.0	0.22
78-87-5	1,2-Dichloropropane	0.30	U	1.0	0.30
95-63-6	1,2,4-Trimethylbenzene	0.24	U	1.0	0.24
10061-01-5	cis-1,3-Dichloropropene	0.26	U	1.0	0.26
10061-02-6	trans-1,3-Dichloropropene	0.31	U	1.0	0.31
100-41-4	Ethylbenzene	0.26	U	1.0	0.26
591-78-6	2-Hexanone	1.2	U	10	1.2
75-09-2	Methylene Chloride	0.53	U	1.0	0.53
108-10-1	4-Methyl-2-pentanone (MIBK)	0.71	U	10	0.71
100-42-5	Styrene	0.23	U	1.0	0.23
79-34-5	1,1,2,2-Tetrachloroethane	0.32	U	1.0	0.32
127-18-4	Tetrachloroethene	0.30	U	1.0	0.30
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	2.4		1.0	0.33
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.24	U	2.0	0.24
71-55-6	1,1,1-Trichloroethane	0.23	U	1.0	0.23

Analysis Batch No.: 260599

Lab Name: TestAmerica Canton	Job No.: <u>240-73352-1</u>
SDG No.:	
Client Sample ID: MRC-SW12A-D-121316	Lab Sample ID: 240-73352-10
Matrix: Water	Lab File ID: UXC0651.D
Analysis Method: 8260B	Date Collected: 12/13/2016 10:13
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 18:40
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 260599	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.29	Ū	1.0	0.29
96-12-8	1,2-Dibromo-3-Chloropropane	0.47	U	2.0	0.47
106-93-4	1,2-Dibromoethane	0.23	U	1.0	0.23
75-71-8	Dichlorodifluoromethane	0.50	U	1.0	0.50
156-59-2	cis-1,2-Dichloroethene	0.45	J	1.0	0.30
156-60-5	trans-1,2-Dichloroethene	0.29	U	1.0	0.29
98-82-8	Isopropylbenzene	0.21	U	1.0	0.21
1634-04-4	Methyl tert-butyl ether	0.27	U	1.0	0.27
76-13-1	1,1,2-Trichlorotrifluoroethane	0.41	U	1.0	0.41
120-82-1	1,2,4-Trichlorobenzene	0.27	U	1.0	0.27
594-20-7	2,2-Dichloropropane	0.34	U *	1.0	0.34
95-50-1	1,2-Dichlorobenzene	0.26	U	1.0	0.26
541-73-1	1,3-Dichlorobenzene	0.32	U	1.0	0.32
106-46-7	1,4-Dichlorobenzene	0.23	U	1.0	0.23
110-75-8	2-Chloroethyl vinyl ether	0.65	U	10	0.65
75-69-4	Trichlorofluoromethane	0.50	U	1.0	0.50
95-49-8	2-Chlorotoluene	0.28	U	1.0	0.28
124-48-1	Chlorodibromomethane	0.25	U	1.0	0.25
108-86-1	Bromobenzene	0.31	U	1.0	0.31
74-97-5	Bromochloromethane	0.47	U	1.0	0.47
106-43-4	4-Chlorotoluene	0.23	U	1.0	0.23
99-87-6	4-Isopropyltoluene	0.29	U	1.0	0.29
87-68-3	Hexachlorobutadiene	0.36	U	1.0	0.36
74-95-3	Dibromomethane	0.46	U	1.0	0.46
108-20-3	Diisopropyl ether	0.44	U	10	0.44
91-20-3	Naphthalene	0.25	U	1.0	0.25
104-51-8	n-Butylbenzene	0.21	U	1.0	0.21
103-65-1	N-Propylbenzene	0.45	U	1.0	0.45
135-98-8	sec-Butylbenzene	0.27	U	1.0	0.27
994-05-8	Tert-amyl methyl ether	0.29	U	5.0	0.29
637-92-3	Ethyl tert-butyl ether	0.35	U	5.0	0.35
98-06-6	tert-Butylbenzene	0.26	U	1.0	0.26
108-05-4	Vinyl acetate	0.28	U	2.0	0.28
75-65-0	tert-Butyl alcohol	4.6	U	50	4.6

Lab Name: TestAmerica Canton Job No.: 240-73352-1 SDG No.: Client Sample ID: MRC-SW12A-D-121316 Lab Sample ID: 240-73352-10 Matrix: Water Lab File ID: UXC0651.D Analysis Method: 8260B Date Collected: 12/13/2016 10:13 Sample wt/vol: 5(mL) Date Analyzed: 12/22/2016 18:40 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u> Level: (low/med) Low % Moisture: ____ Analysis Batch No.: 260599 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	111		63-132
460-00-4	4-Bromofluorobenzene (Surr)	100		73-120
2037-26-5	Toluene-d8 (Surr)	95		73-124
1868-53-7	Dibromofluoromethane (Surr)	120		80-120

Lab Name: TestAmerica Canton	Job No.: 240-73352-1	
SDG No.:		
Client Sample ID: MRC-SW12A-S-121316	Lab Sample ID: 240-73352-11	
Matrix: Water	Lab File ID: UXC0652.D	
Analysis Method: 8260B	Date Collected: 12/13/2016 10:18	
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 19:02	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)	
% Moisture:	Level: (low/med) Low	

Analysis Batch No.: 260599 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	2.2	J	10	1.8
630-20-6	1,1,1,2-Tetrachloroethane	0.46	U	1.0	0.46
71-43-2	Benzene	0.28	U	1.0	0.28
75-27-4	Bromodichloromethane	0.30	U	1.0	0.30
75-25-2	Bromoform	0.43	U	1.0	0.43
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone (MEK)	1.0	U	10	1.0
75-15-0	Carbon disulfide	0.34	U	1.0	0.34
56-23-5	Carbon tetrachloride	0.35	U *	1.0	0.35
108-90-7	Chlorobenzene	0.32	U	1.0	0.32
75-00-3	Chloroethane	0.41	U	1.0	0.41
67-66-3	Chloroform	0.31	U	1.0	0.31
563-58-6	1,1-Dichloropropene	0.28	U	1.0	0.28
74-87-3	Chloromethane	0.43	U	1.0	0.43
75-34-3	1,1-Dichloroethane	0.25	U	1.0	0.25
87-61-6	1,2,3-Trichlorobenzene	0.35	U	1.0	0.35
96-18-4	1,2,3-Trichloropropane	0.54	U	1.0	0.54
107-06-2	1,2-Dichloroethane	0.30	U	1.0	0.30
75-35-4	1,1-Dichloroethene	0.27	U	1.0	0.27
526-73-8	1,2,3-Trimethylbenzene	0.22	U	5.0	0.22
78-87-5	1,2-Dichloropropane	0.30	U	1.0	0.30
95-63-6	1,2,4-Trimethylbenzene	0.24	U	1.0	0.24
10061-01-5	cis-1,3-Dichloropropene	0.26	U	1.0	0.26
10061-02-6	trans-1,3-Dichloropropene	0.31	U	1.0	0.31
100-41-4	Ethylbenzene	0.26	U	1.0	0.26
591-78-6	2-Hexanone	1.2	U	10	1.2
75-09-2	Methylene Chloride	0.53	U	1.0	0.53
108-10-1	4-Methyl-2-pentanone (MIBK)	0.71	U	10	0.71
100-42-5	Styrene	0.23	U	1.0	0.23
79-34-5	1,1,2,2-Tetrachloroethane	0.32	U	1.0	0.32
127-18-4	Tetrachloroethene	0.30	U	1.0	0.30
108-88-3	Toluene	0.29	J	1.0	0.23
79-01-6	Trichloroethene	4.1		1.0	0.33
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.28	J	2.0	0.24
71-55-6	1,1,1-Trichloroethane	0.23	IJ	1.0	0.23

Lab Name: TestAmerica Canton Job No.: 240-73352-1 SDG No.: Client Sample ID: MRC-SW12A-S-121316 Lab Sample ID: 240-73352-11 Matrix: Water Lab File ID: UXC0652.D Analysis Method: 8260B Date Collected: 12/13/2016 10:18 Sample wt/vol: 5(mL) Date Analyzed: 12/22/2016 19:02 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm) % Moisture: ____ Level: (low/med) Low Analysis Batch No.: 260599 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.29	U	1.0	0.29
96-12-8	1,2-Dibromo-3-Chloropropane	0.47	U	2.0	0.47
106-93-4	1,2-Dibromoethane	0.23	U	1.0	0.23
75-71-8	Dichlorodifluoromethane	0.50	U	1.0	0.50
156-59-2	cis-1,2-Dichloroethene	0.30	U	1.0	0.30
156-60-5	trans-1,2-Dichloroethene	0.29	U	1.0	0.29
98-82-8	Isopropylbenzene	0.21	U	1.0	0.21
1634-04-4	Methyl tert-butyl ether	0.27	U	1.0	0.27
76-13-1	1,1,2-Trichlorotrifluoroethane	0.41	U	1.0	0.41
120-82-1	1,2,4-Trichlorobenzene	0.27	U	1.0	0.27
594-20-7	2,2-Dichloropropane	0.34	U *	1.0	0.34
95-50-1	1,2-Dichlorobenzene	0.26	U	1.0	0.26
541-73-1	1,3-Dichlorobenzene	0.32	U	1.0	0.32
106-46-7	1,4-Dichlorobenzene	0.23	U	1.0	0.23
110-75-8	2-Chloroethyl vinyl ether	0.65	U	10	0.65
75-69-4	Trichlorofluoromethane	0.50	U	1.0	0.50
95-49-8	2-Chlorotoluene	0.28	U	1.0	0.28
124-48-1	Chlorodibromomethane	0.25	U	1.0	0.25
108-86-1	Bromobenzene	0.31	U	1.0	0.31
74-97-5	Bromochloromethane	0.47	U	1.0	0.47
106-43-4	4-Chlorotoluene	0.23	U	1.0	0.23
99-87-6	4-Isopropyltoluene	0.29	U	1.0	0.29
87-68-3	Hexachlorobutadiene	0.36	U	1.0	0.36
74-95-3	Dibromomethane	0.46	U	1.0	0.46
108-20-3	Diisopropyl ether	0.44	U	10	0.44
91-20-3	Naphthalene	0.25	U	1.0	0.25
104-51-8	n-Butylbenzene	0.21	U	1.0	0.21
103-65-1	N-Propylbenzene	0.45	U	1.0	0.45
135-98-8	sec-Butylbenzene	0.27	U	1.0	0.27
994-05-8	Tert-amyl methyl ether	0.29	U	5.0	0.29
637-92-3	Ethyl tert-butyl ether	0.35	U	5.0	0.35
98-06-6	tert-Butylbenzene	0.26	U	1.0	0.26
108-05-4	Vinyl acetate	0.28	U	2.0	0.28
75-65-0	tert-Butyl alcohol	4.6	U	50	4.6

Lab Name: TestAmerica Canton Job No.: 240-73352-1 SDG No.: Client Sample ID: MRC-SW12A-S-121316 Lab Sample ID: 240-73352-11 Matrix: Water Lab File ID: UXC0652.D Analysis Method: 8260B Date Collected: 12/13/2016 10:18 Sample wt/vol: 5(mL) Date Analyzed: 12/22/2016 19:02 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u> Level: (low/med) Low % Moisture: ____ Analysis Batch No.: 260599 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	110		63-132
460-00-4	4-Bromofluorobenzene (Surr)	104		73-120
2037-26-5	Toluene-d8 (Surr)	95		73-124
1868-53-7	Dibromofluoromethane (Surr)	116		80-120

Lab Name: TestAmerica Canton	Job No.: 240-73352-1
SDG No.:	
Client Sample ID: MRC-SW12B-D-121316	Lab Sample ID: 240-73352-12
Matrix: Water	Lab File ID: UXC0653.D
Analysis Method: 8260B	Date Collected: 12/13/2016 10:24
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 19:24
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low

Analysis Batch No.: 260599 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	1.8	U	10	1.8
630-20-6	1,1,1,2-Tetrachloroethane	0.46	U	1.0	0.46
71-43-2	Benzene	0.28	U	1.0	0.28
75-27-4	Bromodichloromethane	0.30	U	1.0	0.30
75-25-2	Bromoform	0.43	U	1.0	0.43
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone (MEK)	1.0	U	10	1.0
75-15-0	Carbon disulfide	0.34	U	1.0	0.34
56-23-5	Carbon tetrachloride	0.35	U *	1.0	0.35
108-90-7	Chlorobenzene	0.32	U	1.0	0.32
75-00-3	Chloroethane	0.41	U	1.0	0.41
67-66-3	Chloroform	0.31	U	1.0	0.31
563-58-6	1,1-Dichloropropene	0.28	U	1.0	0.28
74-87-3	Chloromethane	0.43	U	1.0	0.43
75-34-3	1,1-Dichloroethane	0.25	U	1.0	0.25
87-61-6	1,2,3-Trichlorobenzene	0.35	U	1.0	0.35
96-18-4	1,2,3-Trichloropropane	0.54	U	1.0	0.54
107-06-2	1,2-Dichloroethane	0.30	U	1.0	0.30
75-35-4	1,1-Dichloroethene	0.27	U	1.0	0.27
526-73-8	1,2,3-Trimethylbenzene	0.22	U	5.0	0.22
78-87-5	1,2-Dichloropropane	0.30	U	1.0	0.30
95-63-6	1,2,4-Trimethylbenzene	0.24	U	1.0	0.24
10061-01-5	cis-1,3-Dichloropropene	0.26	U	1.0	0.26
10061-02-6	trans-1,3-Dichloropropene	0.31	U	1.0	0.31
100-41-4	Ethylbenzene	0.26	U	1.0	0.26
591-78-6	2-Hexanone	1.2	U	10	1.2
75-09-2	Methylene Chloride	0.53	U	1.0	0.53
108-10-1	4-Methyl-2-pentanone (MIBK)	0.71	U	10	0.71
100-42-5	Styrene	0.23	U	1.0	0.23
79-34-5	1,1,2,2-Tetrachloroethane	0.32	U	1.0	0.32
127-18-4	Tetrachloroethene	0.30	U	1.0	0.30
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	7.8		1.0	0.33
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.24	U	2.0	0.24
71-55-6	1,1,1-Trichloroethane	0.23	U	1.0	0.23

Lab Name: TestAmerica Canton	Job No.: <u>240-73352-1</u>								
SDG No.:									
Client Sample ID: MRC-SW12B-D-121316	Lab Sample ID: 240-73352	2-12							
Matrix: Water	Lab File ID: UXC0653.D								
Analysis Method: 8260B	Date Collected: 12/13/2016 10:24								
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 19:24								
Soil Aliquot Vol:	Dilution Factor: 1								
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18 (mm)							
% Moisture:	Level: (low/med) Low								
Analysis Batch No.: 260599	Units: ug/L								

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.29	U	1.0	0.29
96-12-8	1,2-Dibromo-3-Chloropropane	0.47	U	2.0	0.47
106-93-4	1,2-Dibromoethane	0.23	U	1.0	0.23
75-71-8	Dichlorodifluoromethane	0.50	U	1.0	0.50
156-59-2	cis-1,2-Dichloroethene	5.5		1.0	0.30
156-60-5	trans-1,2-Dichloroethene	0.29	U	1.0	0.29
98-82-8	Isopropylbenzene	0.21	U	1.0	0.21
1634-04-4	Methyl tert-butyl ether	0.27	U	1.0	0.27
76-13-1	1,1,2-Trichlorotrifluoroethane	0.41	U	1.0	0.41
120-82-1	1,2,4-Trichlorobenzene	0.27	U	1.0	0.27
594-20-7	2,2-Dichloropropane	0.34	U *	1.0	0.34
95-50-1	1,2-Dichlorobenzene	0.26	U	1.0	0.26
541-73-1	1,3-Dichlorobenzene	0.32	U	1.0	0.32
106-46-7	1,4-Dichlorobenzene	0.23	U	1.0	0.23
110-75-8	2-Chloroethyl vinyl ether	0.65	U	10	0.65
75-69-4	Trichlorofluoromethane	0.50	U	1.0	0.50
95-49-8	2-Chlorotoluene	0.28	U	1.0	0.28
124-48-1	Chlorodibromomethane	0.25	U	1.0	0.25
108-86-1	Bromobenzene	0.31	U	1.0	0.31
74-97-5	Bromochloromethane	0.47	U	1.0	0.47
106-43-4	4-Chlorotoluene	0.23	U	1.0	0.23
99-87-6	4-Isopropyltoluene	0.29	U	1.0	0.29
87-68-3	Hexachlorobutadiene	0.36	U	1.0	0.36
74-95-3	Dibromomethane	0.46	U	1.0	0.46
108-20-3	Diisopropyl ether	0.44	U	10	0.44
91-20-3	Naphthalene	0.25	U	1.0	0.25
104-51-8	n-Butylbenzene	0.21	U	1.0	0.21
103-65-1	N-Propylbenzene	0.45	U	1.0	0.45
135-98-8	sec-Butylbenzene	0.27	U	1.0	0.27
994-05-8	Tert-amyl methyl ether	0.29	U	5.0	0.29
637-92-3	Ethyl tert-butyl ether	0.35	U	5.0	0.35
98-06-6	tert-Butylbenzene	0.26	U	1.0	0.26
108-05-4	Vinyl acetate	0.28	U	2.0	0.28
75-65-0	tert-Butyl alcohol	4.6	U	50	4.6

Lab Name: TestAmerica Canton Job No.: 240-73352-1 SDG No.: Client Sample ID: MRC-SW12B-D-121316 Lab Sample ID: 240-73352-12 Matrix: Water Lab File ID: UXC0653.D Analysis Method: 8260B Date Collected: 12/13/2016 10:24 Sample wt/vol: 5(mL) Date Analyzed: 12/22/2016 19:24 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u> Level: (low/med) Low % Moisture: ____ Analysis Batch No.: 260599 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	109		63-132
460-00-4	4-Bromofluorobenzene (Surr)	93		73-120
2037-26-5	Toluene-d8 (Surr)	96		73-124
1868-53-7	Dibromofluoromethane (Surr)	119		80-120

Lab Name: TestAmerica Canton	Job No.: <u>240-73352-1</u>								
SDG No.:									
Client Sample ID: MRC-SW12B-S-121316	Lab Sample ID: 240-73352-13								
Matrix: Water	Lab File ID: UXC0654.D								
Analysis Method: 8260B	Date Collected: 12/13/2016 10:30								
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 19:46								
Soil Aliquot Vol:	Dilution Factor: 1								
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)								
% Moisture:	Level: (low/med) Low								
·									

Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	1.8	U	10	1.8
630-20-6	1,1,1,2-Tetrachloroethane	0.46	U	1.0	0.46
71-43-2	Benzene	0.28	U	1.0	0.28
75-27-4	Bromodichloromethane	0.30	U	1.0	0.30
75-25-2	Bromoform	0.43	U	1.0	0.43
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone (MEK)	1.0	U	10	1.0
75-15-0	Carbon disulfide	0.34	U	1.0	0.34
56-23-5	Carbon tetrachloride	0.35	U *	1.0	0.35
108-90-7	Chlorobenzene	0.32	U	1.0	0.32
75-00-3	Chloroethane	0.41	U	1.0	0.41
67-66-3	Chloroform	0.31	U	1.0	0.31
563-58-6	1,1-Dichloropropene	0.28	U	1.0	0.28
74-87-3	Chloromethane	0.43	U	1.0	0.43
75-34-3	1,1-Dichloroethane	0.25	U	1.0	0.25
87-61-6	1,2,3-Trichlorobenzene	0.35	U	1.0	0.35
96-18-4	1,2,3-Trichloropropane	0.54	U	1.0	0.54
107-06-2	1,2-Dichloroethane	0.30	U	1.0	0.30
75-35-4	1,1-Dichloroethene	0.27	U	1.0	0.27
526-73-8	1,2,3-Trimethylbenzene	0.22	U	5.0	0.22
78-87-5	1,2-Dichloropropane	0.30	U	1.0	0.30
95-63-6	1,2,4-Trimethylbenzene	0.24	J	1.0	0.24
10061-01-5	cis-1,3-Dichloropropene	0.26	U	1.0	0.26
10061-02-6	trans-1,3-Dichloropropene	0.31	U	1.0	0.31
100-41-4	Ethylbenzene	0.26	U	1.0	0.26
591-78-6	2-Hexanone	1.2	U	10	1.2
75-09-2	Methylene Chloride	0.53	U	1.0	0.53
108-10-1	4-Methyl-2-pentanone (MIBK)	0.71	U	10	0.71
100-42-5	Styrene	0.23	U	1.0	0.23
79-34-5	1,1,2,2-Tetrachloroethane	0.32	U	1.0	0.32
127-18-4	Tetrachloroethene	0.30	U	1.0	0.30
108-88-3	Toluene	0.79	J	1.0	0.23
79-01-6	Trichloroethene	1.4		1.0	0.33
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.90	J	2.0	0.24
71-55-6	1,1,1-Trichloroethane	0.23	U	1.0	0.23

Analysis Batch No.: 260599

Lab Name: TestAmerica Canton	Job No.: <u>240-73352-1</u>								
SDG No.:									
Client Sample ID: MRC-SW12B-S-121316	Lab Sample ID: 240-73352-13								
Matrix: Water	Lab File ID: UXC0654.D								
Analysis Method: 8260B	Date Collected: 12/13/2016 10:30								
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 19:46								
Soil Aliquot Vol:	Dilution Factor: 1								
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)								
% Moisture:	Level: (low/med) Low								
Analysis Batch No.: 260599	Units: ug/L								

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.29	U	1.0	0.29
96-12-8	1,2-Dibromo-3-Chloropropane	0.47	U	2.0	0.47
106-93-4	1,2-Dibromoethane	0.23	U	1.0	0.23
75-71-8	Dichlorodifluoromethane	0.50	U	1.0	0.50
156-59-2	cis-1,2-Dichloroethene	0.30	U	1.0	0.30
156-60-5	trans-1,2-Dichloroethene	0.29	U	1.0	0.29
98-82-8	Isopropylbenzene	0.21	U	1.0	0.21
1634-04-4	Methyl tert-butyl ether	0.27	U	1.0	0.27
76-13-1	1,1,2-Trichlorotrifluoroethane	0.41	U	1.0	0.41
120-82-1	1,2,4-Trichlorobenzene	0.27	U	1.0	0.27
594-20-7	2,2-Dichloropropane	0.34	U *	1.0	0.34
95-50-1	1,2-Dichlorobenzene	0.26	U	1.0	0.26
541-73-1	1,3-Dichlorobenzene	0.32	U	1.0	0.32
106-46-7	1,4-Dichlorobenzene	0.23	U	1.0	0.23
110-75-8	2-Chloroethyl vinyl ether	0.65	U	10	0.65
75-69-4	Trichlorofluoromethane	0.50	U	1.0	0.50
95-49-8	2-Chlorotoluene	0.28	U	1.0	0.28
124-48-1	Chlorodibromomethane	0.25	U	1.0	0.25
108-86-1	Bromobenzene	0.31	U	1.0	0.31
74-97-5	Bromochloromethane	0.47	U	1.0	0.47
106-43-4	4-Chlorotoluene	0.23	U	1.0	0.23
99-87-6	4-Isopropyltoluene	0.29	U	1.0	0.29
87-68-3	Hexachlorobutadiene	0.36	U	1.0	0.36
74-95-3	Dibromomethane	0.46	U	1.0	0.46
108-20-3	Diisopropyl ether	0.44	U	10	0.44
91-20-3	Naphthalene	0.25	U	1.0	0.25
104-51-8	n-Butylbenzene	0.21	U	1.0	0.21
103-65-1	N-Propylbenzene	0.45	U	1.0	0.45
135-98-8	sec-Butylbenzene	0.27	U	1.0	0.27
994-05-8	Tert-amyl methyl ether	0.29	U	5.0	0.29
637-92-3	Ethyl tert-butyl ether	0.35	U	5.0	0.35
98-06-6	tert-Butylbenzene	0.26	U	1.0	0.26
108-05-4	Vinyl acetate	0.28	U	2.0	0.28
75-65-0	tert-Butyl alcohol	4.6	U	50	4.6

Lab Name: TestAmerica Canton Job No.: 240-73352-1 SDG No.: Client Sample ID: MRC-SW12B-S-121316 Lab Sample ID: 240-73352-13 Matrix: Water Lab File ID: UXC0654.D Analysis Method: 8260B Date Collected: 12/13/2016 10:30 Sample wt/vol: 5(mL) Date Analyzed: 12/22/2016 19:46 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u> Level: (low/med) Low % Moisture: ____ Analysis Batch No.: 260599 Units: ug/L

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	108		63-132
460-00-4	4-Bromofluorobenzene (Surr)	94		73-120
2037-26-5	Toluene-d8 (Surr)	98		73-124
1868-53-7	Dibromofluoromethane (Surr)	117		80-120

Appendix C

Support Documentation

CASE NARRATIVE

Client: Tetra Tech, Inc.

Project: Middle River Center SW

Report Number: 240-73352-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

RECEIPT

The samples were received on 12/14/2016 9:55 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.4° C.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples TB-121316 (240-73352-1), MRC-SW10A-D-121316 (240-73352-2), MRC-SW10A-S-121316 (240-73352-3), MRC-SW10B-D-121316 (240-73352-4), MRC-SW10B-S-121316 (240-73352-5), MRC-SW11A-D-121316 (240-73352-6), MRC-SW11A-S-121316 (240-73352-7), MRC-SW11B-D-121316 (240-73352-8), MRC-SW11B-S-121316 (240-73352-9), MRC-SW12A-D-121316 (240-73352-10), MRC-SW12A-S-121316 (240-73352-11), MRC-SW12B-D-121316 (240-73352-12) and MRC-SW12B-S-121316 (240-73352-13) were analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 12/22/2016.

The laboratory control sample (LCS) for 260599 recovered outside control limits for the following analytes: Carbon Tetrachloride and 2,2-Dichloropropane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported: TB-121316 (240-73352-1), MRC-SW10A-D-121316 (240-73352-2), MRC-SW10A-S-121316 (240-73352-3), MRC-SW10B-D-121316 (240-73352-4), MRC-SW10B-S-121316 (240-73352-5), MRC-SW11A-D-121316 (240-73352-6), MRC-SW11A-S-121316 (240-73352-7), MRC-SW11B-D-121316 (240-73352-8), MRC-SW11B-S-121316 (240-73352-9), MRC-SW12A-D-121316 (240-73352-10), MRC-SW12A-S-121316 (240-73352-11), MRC-SW12B-D-121316 (240-73352-12), MRC-SW12B-S-121316 (240-73352-13) and (LCS 240-260599/4).

2-Chloroethyl vinyl ether cannot be reliably recovered in an acid preserved sample: TB-121316 (240-73352-1), MRC-SW10A-D-121316 (240-73352-2), MRC-SW10A-S-121316 (240-73352-3), MRC-SW10B-D-121316 (240-73352-4), MRC-SW10B-S-121316 (240-73352-5), MRC-SW11A-D-121316 (240-73352-6), MRC-SW11A-D-121316 (240-73352-6), MRC-SW11B-D-121316 (240-73352-8), MRC-SW11B-S-121316 (240-73352-9), MRC-SW12A-D-121316 (240-73352-10), MRC-SW12A-S-121316 (240-73352-11), MRC-SW12B-D-121316 (240-73352-12) and MRC-SW12B-S-121316 (240-73352-13).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Definitions/Glossary

Client: Tetra Tech, Inc.

TestAmerica Job ID: 240-73352-1

Project/Site: Middle River Center SW

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

LCS or LCSD is outside acceptance limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

TEF

TEQ

These commonly used abbreviations may or may not be present in this report.
Listed under the "D" column to designate that the result is reported on a dry weight basis
Percent Recovery
Contains Free Liquid
Contains no Free Liquid
Duplicate error ratio (normalized absolute difference)
Dilution Factor
Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
Decision level concentration
Minimum detectable activity
Estimated Detection Limit
Minimum detectable concentration
Method Detection Limit
Minimum Level (Dioxin)
Not Calculated
Not detected at the reporting limit (or MDL or EDL if shown)
Practical Quantitation Limit
Quality Control
Relative error ratio
Reporting Limit or Requested Limit (Radiochemistry)
Relative Percent Difference, a measure of the relative difference between two points

Method Summary

Client: Tetra Tech, Inc.

Project/Site: Middle River Center SW

TestAmerica Job ID: 240-73352-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Client: Tetra Tech, Inc.

Project/Site: Middle River Center SW

Lab Sample ID Client Sample ID Matrix Collected Received 240-73352-1 TB-121316 Water 12/13/16 00:00 12/14/16 09:55 Water 240-73352-2 MRC-SW10A-D-121316 12/13/16 09:16 12/14/16 09:55 240-73352-3 MRC-SW10A-S-121316 Water 12/13/16 09:17 12/14/16 09:55 240-73352-4 MRC-SW10B-D-121316 Water 12/13/16 09:41 12/14/16 09:55 MRC-SW10B-S-121316 240-73352-5 Water 12/13/16 09:45 12/14/16 09:55 240-73352-6 MRC-SW11A-D-121316 Water 12/13/16 09:53 12/14/16 09:55 240-73352-7 MRC-SW11A-S-121316 Water 12/13/16 09:56 12/14/16 09:55 240-73352-8 MRC-SW11B-D-121316 Water 12/13/16 10:03 12/14/16 09:55 240-73352-9 MRC-SW11B-S-121316 Water 12/13/16 10:08 12/14/16 09:55 240-73352-10 MRC-SW12A-D-121316 Water 12/13/16 10:13 12/14/16 09:55 240-73352-11 MRC-SW12A-S-121316 Water 12/13/16 10:18 12/14/16 09:55 240-73352-12 MRC-SW12B-D-121316 Water 12/13/16 10:24 12/14/16 09:55 240-73352-13 MRC-SW12B-S-121316 Water 12/13/16 10:30 12/14/16 09:55

TestAmerica Job ID: 240-73352-1

TŁ	Tetra Tech, Inc.	
----	------------------	--

CHAIN OF CUSTODY

No. 0320

PAGE _ 1 OF _ 1

PR	OJE	CT NO:		Middle Piven	center	PROJE	CT MA	NAGER	Vase	P	HONE N	UMBER	021	Ļ	ABORA'	TORY	NAMEA	ND CON	TOLAN	Mc fadden
SA	MPL	ERS (SIG	SNATURE)			FIELD (OPERA	IJONS	LEADER	P	PHONE NUMBER 301 991 - 3914			Á	Test America John Mcfadden ADDRESS 4101 Shuffel ST N.W.					
		W	It Be			CARRIER/WAYBILL NUMBER						С	CITY, STATE North Canton, OH 44720							
		,				-1	Fed EX CONTAINER TYPE PLASTIC (P) or GLASS (G)						/	1	/	11/20				
STANDARD TAT				4 day			D, QC,				SERVAT			HU	//	//	//	/	///	
DATE 301/	2000	TIME		AMPLE ID	LOCATION ID	тор бертн (FT)	ВОТТОМ DEPTH (FT)	MATRIX (GW, SO, SW, SD, ETC.)	COLLECTION METHOD GRAB (G) COMP (C)	No. OF CONTAINERS	THE	Jour Jour	85 20 B	5/						COMMENTS
Page 144 of 145	113	-	TB-121		TB	_	_	SW	G	2	2		ĺĺ							
age		0916	MRC-SWI	OA-D-121316		_	-	1	1	3	3			240-						
4		0917	MRC-SW10	A-5-121316	SULLA	_	-			3	3			/335						
9		0941	MRC-SWID	B-D-12131L	SWIUB	_	-			3	3			2 Cha						
45		0945	mc.5W10	B-5-121316	SWIOB	_	-			3	3			in of o						
		0953	mc-54111	4-0-121316	5~ 1/A	_	-			3	3			Custo						
		0956	MC-SVIII	4-5-121314	SWILA	1	-			3	3			dy						
1		1003	MAC-SWILL	3-0-121316	SWIIB	_	-			3	3									
		1008	mac. Swill E	3-5-121316	SWIB	_	-			3	3									
		1013	MC-5W12	A-D-121316	54124	_	-			3	3									
		1018	MR1-5W121	7-5-121316	SWIZA	_	-			3	3									
		1024	MRC-5W121	3-0-121316	5W12B	_	-			3	3									
	1	1030	Mnc-SW12	B-5-121316	SW 12B	_	-	1	1	3	3									
1.	RE	INQUISH	BO BY			PATE	13-10	0	1500) 1.	RECEIV	BBY						DA	-14-16	9/55
2. RELINQUISHED BY					DATE			TIME		RECEIV	ED BY						DA	TE	TIME	
3.	REI	INQUISH	HED BY			DATE			TIME	3.	RECEIV	ED BY						DA	TE	TIME
C	OMN	MENTS																		I

restrancina Canton Sample recorp	in#: <u> </u>
Canton Facility	Cooler uppacked by:
Client ETRA TECH Site Name	(2)()
Cooler Received on 17-14-16 Opened on 12-14-16	Other
FedEx: 1st Grd Exp UPS FAS Stetson Client Drop Off TestAmerica Courier	Office
Receipt After-hours: Drop-off Date/Time Storage Location Test America Cooler # Feam Box Client Cooler Box Other	
TestAmerica Cooler # Foam Box Chient Cooler Box Other	
I deking material used. Discore may	
COOLANT: Wet Ice Blue Ice Dry Ice Water None	No. of the Control of
1. Cooler temperature upon receipt	01/90
IR GUN# IR-8 (CF +0 °C) Observed Cooler Temp. O. 4 °C Corrected Cooler Te IR GUN#36 (CF +1.1°C) Observed Cooler Temp. °C Corrected Cooler Temp.	empC
Z. Welle custody seals off the outside of the contexts.	s No
-Were custody seals on the outside of the cooler(s) signed & dated?	No NA
-Were custody seals on the bottle(s) or bottle kits (LLHg/MeHg)?	No
	es No
4. Did custody papers accompany the sample(s)?	es No
5. Were the custody papers relinquished & signed in the appropriate place?	® No
6. Was/were the person(s) who collected the samples clearly identified on the COC?	No No
7. Did all bottles arrive in good condition (Unbroken)?	No No
8 Could all bottle labels be reconciled with the COC?	s) No
9. Were correct bottle(s) used for the test(s) indicated?	No No
10. Sufficient quantity received to perform indicated analyses?	es No
11. Are these work share samples?	es No
If yes, Questions 11-15 have been checked at the originating laboratory.	
11. Were sample(s) at the correct pH upon receipt?	es No NA pH Strip Lot# HC682547
12 Were VOAs on the COC?	No No
	es (No NA
13 Were air hubbles >6 mm in any VOA VIAIS!	SCIND INA
13. Well all bubbles of this in any 1 321 1 and	
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	es No es No
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	es No
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	es No
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	es No
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	es No
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	es No Voice Mail Other
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	es No Voice Mail Other
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	es No Voice Mail Other
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	es No Voice Mail Other
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	es No Voice Mail Other
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	es No Voice Mail Other
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	es No Voice Mail Other
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	es No Voice Mail Other
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	es No Voice Mail Other
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	es No Voice Mail Other
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	es No Voice Mail Other
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	es No Voice Mail Other
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	Samples processed by:
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	Samples processed by: ding time had expired.
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	Samples processed by: ding time had expired. ed in a broken container.
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	Samples processed by: ding time had expired. ed in a broken container.
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	Samples processed by: ding time had expired. ed in a broken container.
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	Samples processed by: Samples processed by: ding time had expired. ed in a broken container. in diameter. (Notify PM)
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	Samples processed by: ding time had expired. ed in a broken container.

QC Association Summary

Client: Tetra Tech, Inc.

TestAmerica Job ID: 240-73352-1

Project/Site: Middle River Center SW

GC/MS VOA

Analysis Batch: 260599

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-73352-1	TB-121316	Total/NA	Water	8260B	
240-73352-2	MRC-SW10A-D-121316	Total/NA	Water	8260B	
240-73352-3	MRC-SW10A-S-121316	Total/NA	Water	8260B	
240-73352-4	MRC-SW10B-D-121316	Total/NA	Water	8260B	
240-73352-5	MRC-SW10B-S-121316	Total/NA	Water	8260B	
240-73352-6	MRC-SW11A-D-121316	Total/NA	Water	8260B	
240-73352-7	MRC-SW11A-S-121316	Total/NA	Water	8260B	
240-73352-8	MRC-SW11B-D-121316	Total/NA	Water	8260B	
240-73352-9	MRC-SW11B-S-121316	Total/NA	Water	8260B	
240-73352-10	MRC-SW12A-D-121316	Total/NA	Water	8260B	
240-73352-11	MRC-SW12A-S-121316	Total/NA	Water	8260B	
240-73352-12	MRC-SW12B-D-121316	Total/NA	Water	8260B	
240-73352-13	MRC-SW12B-S-121316	Total/NA	Water	8260B	
MB 240-260599/7	Method Blank	Total/NA	Water	8260B	
LCS 240-260599/4	Lab Control Sample	Total/NA	Water	8260B	

Method 8260B

Volatile Organic Compounds (GC/MS) by Method 8260B

FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TestAmerica Canton Job No.: 240-73352-1

SDG No.:

Lab File ID: BFB619.D BFB Injection Date: 06/23/2016

Instrument ID: A3UX15 BFB Injection Time: 11:35

Analysis Batch No.: 235700

M/E	ION ABUNDANCE CRITERIA		LATIVE DANCE
50	15.0 - 40.0 % of mass 95	16.7	
75	30.0 - 60.0 % of mass 95	46.2	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	7.2	
173	Less than 2.0 % of mass 174	0.4	(0.4) 1
174	50.0 - 120.00 % of mass 95	90.4	
175	5.0 - 9.0 % of mass 174	6.2	(6.8) 1
176	95.0 - 101.0 % of mass 174	87.8	(97.1) 1
177	5.0 - 9.0 % of mass 176	5.4	(6.1) 2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	STD8260 240-235700/2	UXC9008.D	06/23/2016	12:01
	STD8260 240-235700/3	UXC9009.D	06/23/2016	12:23
	STD8260 240-235700/4	UXC9010.D	06/23/2016	12:46
	STD8260 240-235700/5	UXC9011.D	06/23/2016	13:08
	STD8260 240-235700/6	UXC9012.D	06/23/2016	13:31
	STD8260 240-235700/7	UXC9013.D	06/23/2016	13:53
	ICV 240-235700/14	UXC9014.D	06/23/2016	14:16
	STD 240-235700/8	UXC9015.D	06/23/2016	14:38
	STD 240-235700/9	UXC9016.D	06/23/2016	15:00
	STD 240-235700/10	UXC9017.D	06/23/2016	15:22
	STD 240-235700/11	UXC9018.D	06/23/2016	15:45
	STD 240-235700/12	UXC9019.D	06/23/2016	16:07
	STD 240-235700/13	UXC9020.D	06/23/2016	16:30
	ICV 240-235700/15	UXC9021.D	06/23/2016	16:52

FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TestAmerica Canton Job No.: 240-73352-1

SDG No.:

Lab File ID: BFB61222.D BFB Injection Date: 12/22/2016

Instrument ID: A3UX15 BFB Injection Time: 08:59

Analysis Batch No.: 260599

M/E	ION ABUNDANCE CRITERIA	% REL ABUNI	ATIVE DANCE
50	15.0 - 40.0 % of mass 95	15.5	
75	30.0 - 60.0 % of mass 95	46.0	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.1	
173	Less than 2.0 % of mass 174	0.3	(0.4) 1
174	50.0 - 120.00 % of mass 95	91.6	
175	5.0 - 9.0 % of mass 174	6.0	(6.5) 1
176	95.0 - 101.0 % of mass 174	89.9	(98.2) 1
177	5.0 - 9.0 % of mass 176	5.9	(6.5) 2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB	DATE	TIME
CHIENI SAMFLE ID	LAD SAMELE ID	FILE ID	ANALYZED	ANALYZED
	LCS 240-260599/4	UXC0628.D	12/22/2016	10:03
	CCV 240-260599/3	UXC0629.D	12/22/2016	10:25
	CCVIS 240-260599/2	UXC0630.D	12/22/2016	10:48
	MB 240-260599/7	UXC0632.D	12/22/2016	11:33
TB-121316	240-73352-1	UXC0642.D	12/22/2016	15:17
MRC-SW10A-D-121316	240-73352-2	UXC0643.D	12/22/2016	15:39
MRC-SW10A-S-121316	240-73352-3	UXC0644.D	12/22/2016	16:02
MRC-SW10B-D-121316	240-73352-4	UXC0645.D	12/22/2016	16:25
MRC-SW10B-S-121316	240-73352-5	UXC0646.D	12/22/2016	16:47
MRC-SW11A-D-121316	240-73352-6	UXC0647.D	12/22/2016	17:10
MRC-SW11A-S-121316	240-73352-7	UXC0648.D	12/22/2016	17:33
MRC-SW11B-D-121316	240-73352-8	UXC0649.D	12/22/2016	17:55
MRC-SW11B-S-121316	240-73352-9	UXC0650.D	12/22/2016	18:17
MRC-SW12A-D-121316	240-73352-10	UXC0651.D	12/22/2016	18:40
MRC-SW12A-S-121316	240-73352-11	UXC0652.D	12/22/2016	19:02
MRC-SW12B-D-121316	240-73352-12	UXC0653.D	12/22/2016	19:24
MRC-SW12B-S-121316	240-73352-13	UXC0654.D	12/22/2016	19:46

Lab Name: TestAmerica Canton Job No.: 240-73352-1 Analy Batch No.: 235700

SDG No.:

Instrument ID: A3UX15 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 06/23/2016 12:01 Calibration End Date: 06/23/2016 13:53 Calibration ID: 34930

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	STD8260 240-235700/7	UXC9013.D
Level 2	STD8260 240-235700/6	UXC9012.D
Level 3	STD8260 240-235700/5	UXC9011.D
Level 4	STD8260 240-235700/4	UXC9010.D
Level 5	STD8260 240-235700/3	UXC9009.D
Level 6	STD8260 240-235700/2	UXC9008.D

ANALYTE			RRF			CURVE		COEFFICIE	NT	# MIN RRF	%RSD			 MIN R^2
	LVL 1 LVL 6			LVL 4	LVL 5	TYPE	В	B M1 M				%RSI	OR COD	OR COD
Dichlorodifluoromethane	0.3321	0.3168	0.3294	0.3233	0.3421	Ave		0.3296			2.7	15.	0	
Chloromethane	0.5208 0.4361	0.4774	0.4696	0.4288	0.4654	Ave		0.4664		0.1000	7.1	15.	0	
Vinyl chloride	0.4391 0.4197	0.4151	0.4242	0.3962	0.4333	Ave		0.4213			3.6	15.	0	
Butadiene	0.4013 0.3963	0.3836	0.3985	0.3823	0.4088	Ave		0.3951			2.6	15.	0	
Bromomethane	0.1340 0.1484	0.1393	0.1381	0.1229	0.1534	Ave		0.1393			7.7	15.	0	
Chloroethane	0.2365	0.2232	0.2271	0.2108	0.2270	Ave		0.2241			3.8	15.	0	
Dichlorofluoromethane	0.5040	0.5039	0.4975	0.4540	0.5047	Ave		0.4924			4.0	15.	0	
Trichlorofluoromethane	0.2480	0.2535	0.2474	0.2379	0.2614	Ave		0.2524			4.1	15.	0	
Ethyl ether	0.2476 0.2339	0.2449	0.2241	0.2370	0.2362	Ave		0.2373			3.5	15.	0	
Acrolein	0.0273 0.0276	0.0269	0.0279	0.0278	0.0281	Ave		0.0276			1.5	15.	0	
1,1-Dichloroethene	0.2949	0.2936	0.2845	0.2901	0.3022	Ave		0.2948			2.4	15.	0	
1,1,2-Trichlorotrifluoroethane	0.2043 0.2209	0.2241	0.2068	0.1967	0.2302	Ave		0.2139			6.1	15.	0	
Acetone	0.1395 0.0726	0.1118	0.0878	0.0765	0.0741	Lin1	0.1478	0.0706					1.0000	0.9900
Iodomethane	0.4298 0.4393	0.4742	0.4386	0.4552	0.4550	Ave		0.4487			3.6	15.	0	
Carbon disulfide	0.8263 0.9010	0.8422	0.8083	0.8576	0.9046	Ave		0.8567			4.6	15.	0	

Lab Name: TestAmerica Canton Job No.: 240-73352-1 Analy Batch No.: 235700

SDG No.:

Instrument ID: $\underline{A3UX15}$ GC Column: $\underline{DB-624}$ ID: $\underline{0.18}$ (mm) Heated Purge: (Y/N) N

Calibration Start Date: 06/23/2016 12:01 Calibration End Date: 06/23/2016 13:53 Calibration ID: 34930

ANALYTE			RRF			CURVE TYPE		COEFFICI	ENT	#	MIN RRF	%RSD	# MAX %RSD	R^2 OR COD	# MIN R^2 OR COD
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TIPE	В	M1	M2				*KSD	OR COD	OR COD
	LVL 6														
3-Chloro-1-propene	0.1554	0.1576	0.1559	0.1742	0.1827	Ave		0.1674				7.4	15.0		
	0.1784														
Methyl acetate	0.1618	0.1598	0.1514	0.1507	0.1555	Ave		0.1562				2.9	15.0		
	0.1580														
Methylene Chloride	0.4936	0.4248	0.3449	0.3381	0.3268	Lin1	0.1973	0.3119						1.0000	0.9900
	0.3132	0.0101	0.0097	0 0001	0 0000	_		0 0005					15.0		
tert-Butyl alcohol	0.0096	0.0101	0.0097	0.0091	0.0098	Ave		0.0095				5.9	15.0		
Methyl tert-butyl ether	0.5514	0.5838	0 5560	0.5860	0.5987	70		0.5780				3.4	15.0		
Methyl telt-butyl ethel	0.5919	0.3030	0.3302	0.3000	0.3307	Ave		0.3780				3.4	13.0		
Acrylonitrile	0.0865	0.0907	0.0851	0.0849	0.0870	Ave		0.0871				2.5	15.0		
	0.0883														
trans-1,2-Dichloroethene	0.3240	0.3275	0.3102	0.3200	0.3216	Ave		0.3190				2.2	15.0		
	0.3105														
Hexane	0.0821	0.0794	0.0711	0.0762	0.0800	Ave		0.0781				5.0	15.0		
	0.0795														
1,1-Dichloroethane	0.5384	0.5585	0.5285	0.5452	0.5510	Ave		0.5441			0.1000	1.9	15.0		
	0.5434														
Vinyl acetate	0.3327	0.3342	0.3408	0.3597	0.3885	Ave		0.3607				8.7	15.0		
0.0.=1.1.7	0.4085	0 1 6 5 0	0.1650	0.1001	0 4004	_		0 4 5 0 5				0 0	4.5.0		
2,2-Dichloropropane	0.1567 0.1717	0.1672	0.1652	0.1881	0.1921	Ave		0.1735				8.0	15.0		
cis-1,2-Dichloroethene	0.1717	0.3547	0.3327	0.3418	0.3441	70		0.3431				2.4	15.0		
CIS-1, 2-DICHIOTOETHENE	0.3493	0.3347	0.3327	0.3418	0.3441	Ave		0.3431				2.4	15.0		
2-Butanone (MEK)	0.3361	0.1075	0 0977	0.0935	0.0974	Δττο		0.1018				8.1	15.0		
2 Ducanone (Pilit)	0.0989	0.1075	0.0377	0.0555	0.03/1	7100		0.1010				0.1	13.0		
Bromochloromethane	0.1540	0.1555	0.1493	0.1527	0.1537	Ave		0.1527				1.5	15.0		
	0.1507														
Tetrahydrofuran	0.0572	0.0583	0.0537	0.0538	0.0574	Ave		0.0568				4.7	15.0		
-	0.0606														
Chloroform	0.5050	0.5301	0.4888	0.5048	0.5160	Ave		0.5085				2.7	15.0		
	0.5062														
1,1,1-Trichloroethane	0.2852	0.3011	0.2949	0.3230	0.3345	Ave		0.3093				6.0	15.0		
	0.3173														
Cyclohexane	0.5215	0.5316	0.5133	0.5316	0.5628	Ave		0.5356				3.5	15.0		
1.1.51.1.1	0.5527	0 401:	0 4054	0 400.1	0 4055	_		0 4005			1	0.5	15.0		
1,1-Dichloropropene	0.4167	0.4314	0.4054	0.4204	0.4364	Ave		0.4235				2.7	15.0		
Carbon tetrachloride	0.4309	0.2395	0 2262	0.2634	0.2833	7		0.2551				9.0	15.0		
Carbon Letrachioride	0.2299	∪.∠395	0.2362	0.2634	0.2833	Ave		0.2331				9.0	15.0		

Lab Name: TestAmerica Canton Job No.: 240-73352-1 Analy Batch No.: 235700

SDG No.:

Instrument ID: A3UX15 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 06/23/2016 12:01 Calibration End Date: 06/23/2016 13:53 Calibration ID: 34930

ANALYTE			RRF			CURVE		COEFFICIE	NT :	# MIN RRF	%RSD					N R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%RS	SD	OR COD	OF	R COD
	LVL 6															
Isobutyl alcohol	0.0044	0.0050	0.0049	0.0045	0.0052	Ave		0.0048			6.2	15	.0			
	0.0049															
Benzene	1.2947 1.3224	1.3476	1.2332	1.2686	1.3184	Ave		1.2975			3.2	15	.0			
1,2-Dichloroethane	0.3772	0.3872	0.3588	0.3580	0.3701	7770		0.3701			3.0	15	. 0			
1,2 Dichioloechane	0.3692	0.3072	0.5500	0.3300	0.5701	Ave		0.3701			3.0	13	. 0			
n-Heptane	0.0707	0.0678	0.0671	0.0694	0.0748	Ave		0.0709			5.0	15	.0			
-	0.0754															
Trichloroethene	0.3257	0.3303	0.3132	0.3205	0.3298	Ave		0.3242			2.0	15	.0			
	0.3255															
Methylcyclohexane	0.4725	0.4829	0.4609	0.4756	0.5114	Ave		0.4846			4.0	15	.0			
	0.5041															
1,2-Dichloropropane	0.2716	0.2967	0.2760	0.2859	0.2981	Ave		0.2882			4.3	15	.0			
	0.3011															
Dibromomethane	0.1477 0.1578	0.1546	0.1476	0.1507	0.1554	Ave		0.1523			2.8	15	.0			
1,4-Dioxane	0.1378	0.0021	0.0022	0.0020	0.0024	7110		0.0021			10.4	15	0			
1,4-Dioxane	0.0018	0.0021	0.0022	0.0020	0.0024	Ave		0.0021			10.4	1	• •			
Bromodichloromethane	0.2755	0.2939	0.2900	0.3099	0.3353	Ave		0.3088			9.1	15	.0			
	0.3482															
2-Chloroethyl vinyl ether	0.1285	0.1385	0.1373	0.1440	0.1608	Ave		0.1461			10.3	15	.0			
	0.1675															
cis-1,3-Dichloropropene	0.2821	0.3138	0.3239	0.3522	0.4012	Lin1	-0.207	0.4144						0.9960	0	.9900
	0.4251															
4-Methyl-2-pentanone (MIBK)	0.1559	0.1659	0.1670	0.1782	0.1883	Ave		0.1749			8.3	15	.0			
	0.1939	1 0050	1 6070	1.7996	1.8461	_		1 0007			2 0	1-				
Toluene	1.8454 1.8440	1.8252	1.6979	1./996	1.8461	Ave		1.8097			3.2	15	.0			
trans-1,3-Dichloropropene	0.2726	0.3002	0.3104	0.3649	0.4144	Tin1	0.265	0.4348						0.9930		9900
crans-1,3-Dichioropropene	0.2728	0.3002	0.3104	0.3649	0.4144	PTIIT	-0.203	0.4340						0.9930	0	.9900
Ethyl methacrylate	0.3014	0.3234	0.3291	0.3763	0.4067	Δττο		0.3599			13.7	15	Λ			
Benyi meenaeryiaee	0.4225	0.5251	0.3231	0.3703	0.4007	7100		0.3333			13.7	1	• •			
1,1,2-Trichloroethane	0.3188	0.3102	0.2977	0.3101	0.3157	Ave		0.3112			2.4	15	.0			
	0.3147															
Tetrachloroethene	0.3611	0.3544	0.3269	0.3481	0.3554	Ave		0.3500			3.4	15	.0			-
	0.3541															
1,3-Dichloropropane	0.5883	0.5978	0.5552	0.5681	0.5922	Ave		0.5823			2.9	15	.0			
	0.5924															
2-Hexanone	0.1386	0.1470	0.1601	0.1648	0.1828	Ave		0.1630			11.4	15	.0			
	0.1847															

Lab Name: TestAmerica Canton Job No.: 240-73352-1 Analy Batch No.: 235700

SDG No.:

Instrument ID: A3UX15 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 06/23/2016 12:01 Calibration End Date: 06/23/2016 13:53 Calibration ID: 34930

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD	#	MAX			MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2					%RSD	OR COD		OR COD
	LVL 6																
Chlorodibromomethane	0.2261	0.2475	0.2505	0.2847	0.3137	Ave		0.2750				14.6		15.0			
1,2-Dibromoethane	0.2774	0.2927	0.2790	0.2998	0.3114	Ave		0.2951				5.0		15.0			
Chlorobenzene	1.1961 1.1713	1.1891	1.1210	1.1448	1.1639	Ave		1.1644			0.3000	2.4		15.0			
1,1,1,2-Tetrachloroethane		0.2873	0.2883	0.3111	0.3365	Ave		0.3072				9.7		15.0			
Ethylbenzene		0.6212	0.5904	0.6147	0.6332	Ave		0.6168				2.8		15.0			
m-Xylene & p-Xylene		1.5565	1.4594	1.5035	1.5590	Ave		1.5266				2.7		15.0			
o-Xylene		0.7369	0.7052	0.7149	0.7489	Ave		0.7251				3.3		15.0			
Styrene	1.0918	1.2017	1.1803	1.2357	1.2846	Ave		1.2173				6.4		15.0			
Bromoform		0.1173	0.1240	0.1392	0.1569	Lin1	-0.095	0.1654			0.1000				0.9940		0.9900
Isopropylbenzene		1.7054	1.6662	1.6882	1.7718	Ave		1.7152				3.4		15.0			
1,1,2,2-Tetrachloroethane		0.7987	0.7374	0.7885	0.8054	Ave		0.7771			0.3000	3.4		15.0			
Bromobenzene	0.9784 1.0520	1.0763	0.9992	1.0201	1.0915	Ave		1.0362				4.3		15.0			
1,2,3-Trichloropropane	0.2309	0.2509	0.2407	0.2509	0.2552	Ave		0.2460				3.6		15.0			
trans-1,4-Dichloro-2-butene	0.2006	0.2147	0.2001	0.2165	0.2397	Ave		0.2183				8.0		15.0			
N-Propylbenzene	0.9622	1.0815	1.0048	1.0306	1.1185	Ave		1.0464				5.5		15.0			
2-Chlorotoluene		0.9561	0.8891	0.9079	0.9420	Ave		0.9116				4.1		15.0			
1,3,5-Trimethylbenzene		2.9843	2.8406	2.9341	3.0812	Ave		2.9642				3.4		15.0			
4-Chlorotoluene		3.3117	3.0525	3.1150	3.2501	Ave		3.1573				3.5		15.0			
tert-Butylbenzene	2.2647 2.5252	2.3995	2.3043	2.3833	2.5293	Ave		2.4010				4.6		15.0			
1,2,4-Trimethylbenzene		3.0523	2.8941	2.9667	3.0688	Ave		3.0065				2.2		15.0			

Lab Name: TestAmerica Canton Job No.: 240-73352-1 Analy Batch No.: 235700

SDG No.:

Instrument ID: A3UX15 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 06/23/2016 12:01 Calibration End Date: 06/23/2016 13:53 Calibration ID: 34930

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD		R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR COD
sec-Butylbenzene	3.0231 3.4048	3.2243	3.0768	3.1838	3.3627	Ave		3.2126				4.7	15.0		
1,3-Dichlorobenzene	1.7546 1.7099	1.7746	1.6796	1.7043	1.7149	Ave		1.7230				2.0	15.0		
4-Isopropyltoluene	2.5011 2.9007	2.6300	2.6148	2.7211	2.8304	Ave		2.6997				5.5	15.0		
1,4-Dichlorobenzene	1.8619 1.7322	1.8194	1.7077	1.7335	1.7343	Ave		1.7648				3.5	15.0		
n-Butylbenzene	2.0048	2.0827	2.0417	2.1624	2.2859	Ave		2.1514				6.2	15.0		
1,2-Dichlorobenzene	1.6369 1.5498	1.6372	1.5209	1.5641	1.5550	Ave		1.5773				3.1	15.0		
1,2-Dibromo-3-Chloropropane	0.0713 0.0968	0.0775	0.0764	0.0877	0.0937	Ave		0.0839				12.3	15.0		
1,2,4-Trichlorobenzene	0.8718 0.7845	0.8230	0.8095	0.8148	0.8000	Ave		0.8173				3.6	15.0		
Hexachlorobutadiene	0.4286 0.3302	0.4026	0.3714	0.3683	0.3604	Ave		0.3769				9.1	15.0		
Naphthalene	1.6356 1.6877	1.6077	1.7526	1.8425	1.8273	Ave		1.7256				5.7	15.0		
1,2,3-Trichlorobenzene	0.7978 0.6410	0.7359	0.7435	0.7184	0.7003	Ave		0.7228				7.2	15.0		
Dibromofluoromethane (Surr)	0.2526 0.2636	0.2509	0.2605	0.2635	0.2693	Ave		0.2601				2.7	15.0		
1,2-Dichloroethane-d4 (Surr)	0.3324 0.3123	0.3098	0.3131	0.3078	0.3160	Ave		0.3152				2.8	15.0		
Toluene-d8 (Surr)	1.5529 1.5694	1.4893	1.5049	1.5498	1.5942	Ave		1.5434				2.6	15.0		
4-Bromofluorobenzene (Surr)	0.5282 0.5273	0.5194	0.5346	0.5225	0.5355	Ave		0.5279				1.2	15.0		

Lab Name: TestAmerica Canton Job No.: 240-73352-1 Analy Batch No.: 235700

SDG No.:

Instrument ID: A3UX15 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:	
Level 1	STD 240-235700/13	UXC9020.D	
Level 2	STD 240-235700/12	UXC9019.D	
Level 3	STD 240-235700/11	UXC9018.D	
Level 4	STD 240-235700/10	UXC9017.D	
Level 5	STD 240-235700/9	UXC9016.D	
Level 6	STD 240-235700/8	UXC9015.D	

ANALYTE		RRF			CURVE		COEFFICIE	NT #	MIN RRF	%RSD		MAX	R^2	# MIN R^2
	LVL 1 LVL 1 LVL 6	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			2	RSD	OR COD	OR COD
Acetonitrile	0.0371 0.028 0.0231	0.0274	0.0194	0.0290	Ave		0.0274			21.8	*	15.0		
Diisopropyl ether	0.2497 0.243 0.2582	.9 0.2443	0.2635	0.2625	Ave		0.2533			3.7		15.0		
2-Chloro-1,3-butadiene	0.4420 0.420 0.4704	0.4511	0.4740	0.4713	Ave		0.4549			4.6		15.0		
Ethyl tert-butyl ether	0.6211 0.58° 0.6584	0.6198	0.6492	0.6651	Ave		0.6336			4.6		15.0		
Ethyl acetate	0.1632 0.150 0.1658	0.1495	0.1390	0.1611	Ave		0.1549			6.6		15.0		
Propionitrile	0.0323 0.028 0.0304	0.0316	0.0274	0.0314	Ave		0.0303			6.3		15.0		
Methacrylonitrile	0.1405 0.120 0.1382	0.1332	0.1307	0.1364	Ave		0.1342			3.9		15.0		
Tert-amyl methyl ether	0.4696 0.442 0.5053	0.4624	0.4953	0.5015	Ave		0.4794			5.3		15.0		
n-Butanol	0.0033 0.002 0.0036	0.0035	0.0026	0.0039	Ave		0.0033			14.8		15.0		
Ethyl acrylate	0.1948 0.192 0.2549	0.2166	0.2112	0.2430	Ave		0.2188			11.6		15.0		
Methyl methacrylate	0.1627 0.155 0.1910	0.1754	0.1669	0.1881	Ave		0.1732			8.3		15.0		
2-Nitropropane	0.0209 0.019 0.0282	0.0215	0.0212	0.0248	Ave		0.0227			14.0		15.0		
n-Butyl acetate	0.1945 0.184 0.2865	0.2185	0.2229	0.2597	Lin1	-0.151	0.2749						0.9930	0.9900
1-Chlorohexane	0.4540 0.423 0.4857	0.4478	0.4555	0.4907	Ave		0.4595			5.5		15.0		
Cyclohexanone	0.0135 0.012 0.0138	0.0152	0.0121	0.0159	Ave		0.0138			10.8		15.0		

Lab Name: TestAmerica Canton Job No.: 240-73352-1 Analy Batch No.: 235700

SDG No.:

Instrument ID: A3UX15 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE		RRF				CURVE		COEFFICIENT			MIN RRF	%RSD	#	MAX	R^2	# MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2					%RSD	OR COD	OR COD
	LVL 6															
Pentachloroethane	0.0921	0.0900	0.1037	0.0991	0.1534	Qua	-0.330	0.1448	0.0001243						0.9930	0.9900
	0.1497															
1,2,3-Trimethylbenzene	2.9918	2.6781	2.8844	2.7917	3.1763	Ave		2.9181				6.0		15.0		
	2.9864															
Benzyl chloride	0.0675	0.0593	0.0659	0.0672	0.0896	Qua	-0.025	0.0660	0.0011122						0.9990	0.9900
	0.1096															
1,3,5-Trichlorobenzene	1.2280	0.9726	0.9640	0.9309	1.1773	Ave		1.0266				13.7		15.0		
	0.8870															
2-Methylnaphthalene	1.0982	0.7226	0.7098	1.2187	0.9000	Ave		0.8699				28.7	*	15.0		
	0.5699															

Lab Name: TestAmerica Canton Job No.: 240-73352-1

SDG No.:

Lab Sample ID: ICV 240-235700/14 Calibration Date: 06/23/2016 14:16

Instrument ID: A3UX15 Calib Start Date: 06/23/2016 12:01

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 06/23/2016 13:53

Lab File ID: UXC9014.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.3296	0.3164		0.00960	0.0100	-4.0	50.0
Chloromethane	Ave	0.4664	0.4448	0.1000	0.00954	0.0100	-4.6	50.0
Vinyl chloride	Ave	0.4213	0.4126		0.00979	0.0100	-2.1	20.0
Butadiene	Ave	0.3951	0.3681		0.00932	0.0100	-6.8	50.0
Bromomethane	Ave	0.1393	0.1386		0.00995	0.0100	-0.5	50.0
Chloroethane	Ave	0.2241	0.2155		0.00962	0.0100	-3.8	50.0
Dichlorofluoromethane	Ave	0.4924	0.4860		0.00987	0.0100	-1.3	50.0
Trichlorofluoromethane	Ave	0.2524	0.2694		0.0107	0.0100	6.8	50.0
Ethyl ether	Ave	0.2373	0.2405		0.0101	0.0100	1.4	50.0
Acrolein	Ave	0.0276	0.0413		0.0749	0.0500	49.8	50.0
1,1,2-Trichlorotrifluoroetha	Ave	0.2139	0.2353		0.0110	0.0100	10.0	50.0
1,1-Dichloroethene	Ave	0.2948	0.3180		0.0108	0.0100	7.9	20.0
Acetone	Lin1		0.0617		0.0154	0.0200	-23.0	50.0
Iodomethane	Ave	0.4487	0.5028		0.0112	0.0100	12.1	50.0
Carbon disulfide	Ave	0.8567	0.9472		0.0111	0.0100	10.6	50.0
3-Chloro-1-propene	Ave	0.1674	0.1872		0.0112	0.0100	11.9	50.0
Methyl acetate	Ave	0.1562	0.1548		0.0495	0.0500	-0.9	50.0
Methylene Chloride	Lin1		0.3544		0.0107	0.0100	7.3	50.0
tert-Butyl alcohol	Ave	0.0095	0.0086		0.0907	0.100	-9.3	50.0
Acrylonitrile	Ave	0.0871	0.0893		0.103	0.100	2.6	50.0
Methyl tert-butyl ether	Ave	0.5780	0.6020		0.0104	0.0100	4.1	50.0
trans-1,2-Dichloroethene	Ave	0.3190	0.3457		0.0108	0.0100	8.4	50.0
Hexane	Ave	0.0781	0.0849		0.0109	0.0100	8.7	20.0
1,1-Dichloroethane	Ave	0.5441	0.5576	0.1000	0.0102	0.0100	2.5	50.0
Vinyl acetate	Ave	0.3607	0.4002		0.0111	0.0100	10.9	50.0
2,2-Dichloropropane	Ave	0.1735	0.1819		0.0105	0.0100	4.8	50.0
cis-1,2-Dichloroethene	Ave	0.3431	0.3582		0.0104	0.0100	4.4	50.0
2-Butanone (MEK)	Ave	0.1018	0.0930		0.0183	0.0200	-8.6	50.0
Bromochloromethane	Ave	0.1527	0.1581		0.0104	0.0100	3.6	50.0
Tetrahydrofuran	Ave	0.0568	0.0553		0.0195	0.0200	-2.6	50.0
Chloroform	Ave	0.5085	0.5370		0.0106	0.0100	5.6	20.0
1,1,1-Trichloroethane	Ave	0.3093	0.3345		0.0108	0.0100	8.1	50.0
Cyclohexane	Ave	0.5356	0.5820		0.0109	0.0100	8.7	50.0
1,1-Dichloropropene	Ave	0.4235	0.4371		0.0103	0.0100	3.2	50.0
Carbon tetrachloride	Ave	0.2551	0.2760		0.0108	0.0100	8.2	50.0
Isobutyl alcohol	Ave	0.0048	0.0045		0.231	0.250	-7.7	50.0
Benzene	Ave	1.297	1.346		0.0104	0.0100	3.7	50.0
1,2-Dichloroethane	Ave	0.3701	0.3803		0.0103	0.0100	2.8	50.0
n-Heptane	Ave	0.0709	0.0751		0.0106	0.0100	6.0	50.0
Trichloroethene	Ave	0.3242	0.3424		0.0106	0.0100	5.6	50.0

Lab Name: TestAmerica Canton Job No.: 240-73352-1

SDG No.:

Lab Sample ID: ICV 240-235700/14 Calibration Date: 06/23/2016 14:16

Instrument ID: A3UX15 Calib Start Date: 06/23/2016 12:01

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 06/23/2016 13:53

Lab File ID: UXC9014.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	0.4846	0.5143		0.0106	0.0100	6.1	50.0
1,2-Dichloropropane	Ave	0.2882	0.3125		0.0108	0.0100	8.4	20.0
Dibromomethane	Ave	0.1523	0.1580		0.0104	0.0100	3.7	50.0
1,4-Dioxane	Ave	0.0021	0.0016		0.153	0.200	-23.6	50.0
Bromodichloromethane	Ave	0.3088	0.3286		0.0106	0.0100	6.4	50.0
2-Chloroethyl vinyl ether	Ave	0.1461	0.1547		0.0106	0.0100	5.9	50.0
cis-1,3-Dichloropropene	Lin1		0.3799		0.00967	0.0100	-3.3	50.0
4-Methyl-2-pentanone (MIBK)	Ave	0.1749	0.1785		0.0204	0.0200	2.1	50.0
Toluene	Ave	1.810	1.889		0.0104	0.0100	4.4	20.0
trans-1,3-Dichloropropene	Lin1		0.3654		0.00901	0.0100	-9.9	50.0
Ethyl methacrylate	Ave	0.3599	0.4014		0.0112	0.0100	11.5	50.0
1,1,2-Trichloroethane	Ave	0.3112	0.3226		0.0104	0.0100	3.7	50.0
Tetrachloroethene	Ave	0.3500	0.3627		0.0104	0.0100	3.6	50.0
1,3-Dichloropropane	Ave	0.5823	0.6023		0.0103	0.0100	3.4	50.0
2-Hexanone	Ave	0.1630	0.1674		0.0205	0.0200	2.7	50.0
Chlorodibromomethane	Ave	0.2750	0.2891		0.0105	0.0100	5.1	50.0
1,2-Dibromoethane	Ave	0.2951	0.3176		0.0108	0.0100	7.6	50.0
Chlorobenzene	Ave	1.164	1.192	0.3000	0.0102	0.0100	2.3	50.0
1,1,1,2-Tetrachloroethane	Ave	0.3072	0.3146		0.0102	0.0100	2.4	50.0
Ethylbenzene	Ave	0.6168	0.6406		0.0104	0.0100	3.9	20.0
m-Xylene & p-Xylene	Ave	1.527	1.578		0.0103	0.0100	3.3	50.0
o-Xylene	Ave	0.7251	0.7431		0.0102	0.0100	2.5	50.0
Styrene	Ave	1.217	1.297		0.0107	0.0100	6.6	50.0
Bromoform	Lin1		0.1506	0.1000	0.00968	0.0100	-3.2	50.0
Isopropylbenzene	Ave	1.715	1.785		0.0104	0.0100	4.1	50.0
1,1,2,2-Tetrachloroethane	Ave	0.7771	0.8287	0.3000	0.0107	0.0100	6.6	50.0
Bromobenzene	Ave	1.036	1.111		0.0107	0.0100	7.2	50.0
1,2,3-Trichloropropane	Ave	0.2460	0.2711		0.0110	0.0100	10.2	50.0
trans-1,4-Dichloro-2-butene	Ave	0.2183	0.2313		0.0106	0.0100	5.9	50.0
N-Propylbenzene	Ave	1.046	1.121		0.0107	0.0100	7.2	50.0
2-Chlorotoluene	Ave	0.9116	0.9667		0.0106	0.0100	6.0	50.0
1,3,5-Trimethylbenzene	Ave	2.964	3.080		0.0104	0.0100	3.9	50.0
4-Chlorotoluene	Ave	3.157	3.319		0.0105	0.0100	5.1	50.0
tert-Butylbenzene	Ave	2.401	2.534		0.0106	0.0100	5.6	50.0
1,2,4-Trimethylbenzene	Ave	3.007	3.055		0.0102	0.0100	1.6	50.0
sec-Butylbenzene	Ave	3.213	3.336		0.0104	0.0100	3.8	50.0
1,3-Dichlorobenzene	Ave	1.723	1.718		0.00997	0.0100	-0.3	50.0
4-Isopropyltoluene	Ave	2.700	2.773		0.0103	0.0100	2.7	50.0
1,4-Dichlorobenzene	Ave	1.765	1.763		0.00999	0.0100	-0.1	50.0
n-Butylbenzene	Ave	2.151	2.130		0.00990	0.0100	-1.0	50.0
1,2-Dichlorobenzene	Ave	1.577	1.548		0.00981	0.0100	-1.9	50.0

Lab Name: TestAmerica Canton Job No.: 240-73352-1

SDG No.:

Lab Sample ID: <u>ICV 240-235700/14</u> Calibration Date: <u>06/23/2016</u> 14:16

Instrument ID: A3UX15 Calib Start Date: 06/23/2016 12:01

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 06/23/2016 13:53

Lab File ID: UXC9014.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.0839	0.0824		0.00982	0.0100	-1.8	50.0
1,2,4-Trichlorobenzene	Ave	0.8173	0.7237		0.00885	0.0100	-11.5	50.0
Hexachlorobutadiene	Ave	0.3769	0.3089		0.00820	0.0100	-18.0	50.0
Naphthalene	Ave	1.726	1.505		0.00872	0.0100	-12.8	50.0
1,2,3-Trichlorobenzene	Ave	0.7228	0.5970		0.00826	0.0100	-17.4	50.0
Dibromofluoromethane (Surr)	Ave	0.2601	0.2609		0.00804	0.00801	0.3	50.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.3152	0.3049		0.00775	0.00801	-3.3	50.0
Toluene-d8 (Surr)	Ave	1.543	1.568		0.00814	0.00801	1.6	50.0
4-Bromofluorobenzene (Surr)	Ave	0.5279	0.5475		0.00831	0.00801	3.7	50.0

Lab Name: TestAmerica Canton Job No.: 240-73352-1

SDG No.:

Lab Sample ID: <u>ICV 240-235700/15</u> Calibration Date: <u>06/23/2016</u> 16:52

Instrument ID: A3UX15 Calib Start Date: 06/23/2016 14:38

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 06/23/2016 16:30

Lab File ID: UXC9021.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Acetonitrile	Ave	0.0274	0.0239		0.0873	0.100	-12.7	50.0
Diisopropyl ether	Ave	0.2533	0.2592		0.0102	0.0100	2.3	50.0
2-Chloro-1,3-butadiene	Ave	0.4549	0.4689		0.0103	0.0100	3.1	50.0
Ethyl tert-butyl ether	Ave	0.6336	0.6351		0.0100	0.0100	0.2	50.0
Ethyl acetate	Ave	0.1549	0.1602		0.0207	0.0200	3.4	50.0
Propionitrile	Ave	0.0303	0.0294		0.0970	0.100	-3.0	50.0
Methacrylonitrile	Ave	0.1342	0.1343		0.100	0.100	0.0	50.0
Tert-amyl methyl ether	Ave	0.4794	0.4766		0.00994	0.0100	-0.6	50.0
n-Butanol	Ave	0.0033	0.0025		0.189	0.250	-24.4	50.0
Ethyl acrylate	Ave	0.2188	0.2186		0.00999	0.0100	-0.0	50.0
Methyl methacrylate	Ave	0.1732	0.1774		0.0205	0.0200	2.4	50.0
2-Nitropropane	Ave	0.0227	0.0209		0.0183	0.0200	-8.3	50.0
n-Butyl acetate	Lin1		0.2371		0.00917	0.0100	-8.3	50.0
1-Chlorohexane	Ave	0.4595	0.4468		0.00973	0.0100	-2.7	50.0
Cyclohexanone	Ave	0.0138	0.0107		0.0771	0.100	-22.9	50.0
Pentachloroethane	Qua		0.0896		0.0145	0.0200	-27.7	50.0
1,2,3-Trimethylbenzene	Ave	2.918	2.777		0.00952	0.0100	-4.8	50.0
Benzyl chloride	Qua		0.0650		0.00889	0.0100	-11.1	50.0
1,3,5-Trichlorobenzene	Ave	1.027	0.8443		0.00822	0.0100	-17.8	50.0
2-Methylnaphthalene	Ave	0.8699	0.4078		0.00938	0.0200	-53.1*	50.0

Lab Name: TestAmerica Canton Job No.: 240-73352-1

SDG No.:

Lab Sample ID: CCV 240-260599/3 Calibration Date: 12/22/2016 10:25

Instrument ID: A3UX15 Calib Start Date: 06/23/2016 14:38

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 06/23/2016 16:30

Lab File ID: UXC0629.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Acetonitrile	Ave	0.0274	0.0238		0.0871	0.100	-12.9	50.0
Diisopropyl ether	Ave	0.2533	0.2743		0.0108	0.0100	8.3	50.0
2-Chloro-1,3-butadiene	Ave	0.4549	0.4827		0.0106	0.0100	6.1	50.0
Ethyl tert-butyl ether	Ave	0.6336	0.7235		0.0114	0.0100	14.2	50.0
Ethyl acetate	Ave	0.1549	0.1767		0.0228	0.0200	14.1	50.0
Propionitrile	Ave	0.0303	0.0315		0.104	0.100	3.9	50.0
Methacrylonitrile	Ave	0.1342	0.1408		0.105	0.100	4.9	50.0
Tert-amyl methyl ether	Ave	0.4794	0.5958		0.0124	0.0100	24.3	50.0
n-Butanol	Ave	0.0033	0.0036		0.273	0.250	9.4	50.0
Ethyl acrylate	Ave	0.2188	0.2419		0.0111	0.0100	10.5	50.0
Methyl methacrylate	Ave	0.1732	0.1835		0.0212	0.0200	6.0	50.0
2-Nitropropane	Ave	0.0227	0.0309		0.0272	0.0200	35.9	50.0
n-Butyl acetate	Lin1		0.2702		0.0104	0.0100	3.8	50.0
1-Chlorohexane	Ave	0.4595	0.4589		0.00999	0.0100	-0.1	50.0
Cyclohexanone	Ave	0.0138	0.0106		0.0765	0.100	-23.5	50.0
Pentachloroethane	Qua		0.2123		0.0308	0.0200	53.9*	50.0
1,2,3-Trimethylbenzene	Ave	2.918	2.793		0.00957	0.0100	-4.3	50.0
Benzyl chloride	Qua		0.0942		0.0122	0.0100	21.6	50.0
1,3,5-Trichlorobenzene	Ave	1.027	1.111		0.0108	0.0100	8.2	50.0
2-Methylnaphthalene	Ave	0.8699	0.4644		0.0107	0.0200	-46.6	50.0

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Canton Job No.: 240-73352-1

SDG No.:

Lab Sample ID CCVIS 240-260599/2 Calibration Date: 12/22/2016 10:48

Instrument ID: A3UX15 Calib Start Date: 06/23/2016 12:01

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 06/23/2016 13:53

Lab File ID: UXC0630.D Conc. Units: ng/uL Heated Purge: (Y/N) N

Chioromethane	ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Vinyl chloride	Dichlorodifluoromethane	Ave	0.3296	0.5307		0.0161	0.0100	61.0*	50.0
Butadiene	Chloromethane	Ave	0.4664	0.4380	0.1000	0.00939	0.0100	-6.1	50.0
Stromomethane Ave 0.1393 0.0771 0.00554 0.0100 -44.6 50.0 Chloroethane Ave 0.2241 0.0718 0.00320 0.0100 -68.0 50.0 Dichlorofluoromethane Ave 0.4924 0.3948 0.00680 0.0100 -32.0 50.0 Trichlorofluoromethane Ave 0.4224 0.3961 0.0157 0.0100 -32.0 50.0 Sthyl ether Ave 0.2274 0.3961 0.0157 0.0100 -52.7 50.0 Sthyl ether Ave 0.2373 0.1833 0.00773 0.0100 -52.7 50.0 Sthyl ether Ave 0.2373 0.1833 0.00773 0.0100 -52.7 50.0 Acrolein Ave 0.0276 0.0257 0.0465 0.0500 -7.0 50.0 1,1-15chloroethene Ave 0.2348 0.3298 0.0112 0.0100 11.9 20.0 1,1-17chloroethene Ave 0.2139 0.2941 0.0138 0.0100 37.5 50.0 ether 1.0	Vinyl chloride	Ave	0.4213	0.3528		0.00837	0.0100	-16.3	20.0
Chloroethane	Butadiene	Ave	0.3951	0.2753		0.00697	0.0100	-30.3	50.0
Dichlorofiuoromethane Ave 0.4924 0.3348 0.00680 0.0100 -32.0 50.0	Bromomethane	Ave	0.1393	0.0771		0.00554	0.0100	-44.6	50.0
Trichlorofluoromethane	Chloroethane	Ave	0.2241	0.0718		0.00320	0.0100	-68.0*	50.0
Ethyl ether	Dichlorofluoromethane	Ave	0.4924	0.3348		0.00680	0.0100	-32.0	50.0
Acrolein Ave 0.0276 0.0257 0.0465 0.0500 -7.0 50.0 1,1-Dichloroethene Ave 0.2948 0.3298 0.0112 0.0100 11.9 20.0 11.1,2-Trichlorotrifluoroetha Ave 0.2139 0.2941 0.0138 0.0100 37.5 50.0 ne 0.0138 0.0100 11.9 20.0 11.1,2-Trichlorotrifluoroetha Ave 0.2139 0.0941 0.0138 0.0100 37.5 50.0 ne 0.0138 0.0100 37.5 50.0 ne 0.0138 0.0100 37.5 50.0 ne 0.0138 0.0100 37.5 50.0 ne 0.0138 0.0100 37.5 50.0 ne 0.0138 0.0100 37.5 50.0 ne 0.0138 0.0100 37.5 50.0 ne 0.0138 0.0100 37.5 50.0 ne 0.0138 0.0100 37.5 50.0 ne 0.0138 0.0200 -9.2 50.0 ne 0.0250 0.0127 0.0100 26.6 50.0 ne 0.0250 0.0127 0.0100 26.6 50.0 ne 0.0250 0.0127 0.0100 26.6 50.0 ne 0.0250 0.0127 0.0100 26.6 50.0 ne 0.0250 0.0127 0.0100 26.6 50.0 ne 0.0250 0.0127 0.0100 26.6 50.0 ne 0.0250 0.0127 0.0100 26.6 50.0 ne 0.0250 0.0127 0.0100 26.6 50.0 ne 0.0250 0.0250 0.0250 0.0599 0.0500 9.7 50.0 ne 0.0250 0.0599 0.0500 9.7 50.0 ne 0.0250 0.0	Trichlorofluoromethane	Ave	0.2524	0.3961		0.0157	0.0100	56.9*	50.0
1,1-Dichloroethene	Ethyl ether	Ave	0.2373	0.1833		0.00773	0.0100	-22.7	50.0
1,1,2-Trichlorotrifluoroethane Ave	Acrolein	Ave	0.0276	0.0257		0.0465	0.0500	-7.0	50.0
Acetone Linii 0.0715 0.0182 0.0200 -9.2 50.0 Todomethane Ave 0.4487 0.5682 0.0127 0.0100 26.6 50.0 Carbon disulfide Ave 0.8567 1.003 0.0117 0.0100 17.1 50.0 3-Chloro-1-propene Ave 0.1674 0.1944 0.0116 0.0100 16.2 50.0 Methyl acetate Ave 0.1562 0.1714 0.0549 0.0500 9.7 50.0 Methylene Chloride Lini 0.4066 0.0124 0.0100 24.0 50.0 Methyl text-butyl ether Ave 0.0580 0.7015 0.0121 0.0100 26.5 50.0 Acrylonitrile Ave 0.0871 0.0951 0.0102 0.102 0.102 21.4 50.0 Acrylonitrile Ave 0.3190 0.3805 0.0119 0.0100 19.3 50.0 Itaras=1,2-Dichloroethene Ave 0.341 0.6180 0.1000 <t< td=""><td>1,1-Dichloroethene</td><td>Ave</td><td>0.2948</td><td>0.3298</td><td></td><td>0.0112</td><td>0.0100</td><td>11.9</td><td>20.0</td></t<>	1,1-Dichloroethene	Ave	0.2948	0.3298		0.0112	0.0100	11.9	20.0
Acetane	1,1,2-Trichlorotrifluoroetha	Ave	0.2139	0.2941		0.0138	0.0100	37.5	50.0
Todomethane		Lin1		0 0715		0 0182	0.0200	-9 2	50.0
Carbon disulfide Ave 0.8567 1.003 0.0117 0.0100 17.1 50.0 3-Chloro-1-propene Ave 0.1674 0.1944 0.0116 0.0100 16.2 50.0 Methyl acetate Ave 0.1562 0.1714 0.0549 0.0500 9.7 50.0 Methylene Chloride Linl 0.4066 0.0124 0.0100 24.0 50.0 tert-Butyl alcohol Ave 0.0995 0.0120 0.126 0.100 26.5 50.0 Methyl tert-butyl ether Ave 0.5780 0.7015 0.0121 0.0100 21.4 50.0 Acrylonitrile Ave 0.3190 0.3805 0.0119 0.0100 9.2 50.0 Acrylonitrile Ave 0.3190 0.3805 0.0119 0.0100 19.3 50.0 Hexane Ave 0.0781 0.0976 0.0125 0.0100 25.0* 20.0 1,1-Dichloroethane Ave 0.1735 0.2825 0.0162			0 4487						
3-Chloro-1-propene		_							
Methyl acetate Ave 0.1562 0.1714 0.0549 0.0500 9.7 50.0 Methylene Chloride Lin1 0.4066 0.0124 0.0100 24.0 50.0 tert-Butyl alcohol Ave 0.0095 0.0120 0.126 0.100 26.5 50.0 Methyl tert-butyl ether Ave 0.5780 0.7015 0.0121 0.0100 21.4 50.0 Acrylonitrile Ave 0.0871 0.0951 0.0109 0.100 9.2 50.0 trans-1,2-Dichloroethene Ave 0.3190 0.3805 0.0119 0.0100 19.3 50.0 Hexane Ave 0.0781 0.0976 0.0125 0.0100 25.0* 20.0 1,1-Dichloroethane Ave 0.5441 0.6180 0.1000 0.0114 0.0100 13.6 50.0 2,2-Dichloropropane Ave 0.3607 0.4336 0.0126 0.0100 25.7 50.0 2,2-Dichloropropane Ave 0.3431 0.4041 <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		_							
Methylene Chloride Lin1 0.4066 0.0124 0.0100 24.0 50.0 tert-Butyl alcohol Ave 0.0995 0.0120 0.126 0.100 26.5 50.0 Methyl tert-butyl ether Ave 0.5780 0.7015 0.0121 0.0100 21.4 50.0 Acrylonitrile Ave 0.0871 0.0951 0.109 0.1000 9.2 50.0 trans-1,2-Dichloroethene Ave 0.3190 0.3805 0.0119 0.0100 19.3 50.0 Hexane Ave 0.0781 0.0976 0.0125 0.0100 25.0* 20.0 1,1-Dichloroethane Ave 0.3607 0.4536 0.0126 0.0100 25.7* 50.0 2,2-Dichloropropane Ave 0.1735 0.2825 0.0163 0.0100 62.8* 50.0 2,2-Dichloropropane Ave 0.1341 0.4041 0.0118 0.0100 62.8* 50.0 2,2-Dichloropropane Ave 0.13431 0.4041 <td< td=""><td>= =</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	= =	_							
tert-Butyl alcohol Ave 0.0095 0.0120 0.126 0.100 26.5 50.0 Methyl tert-butyl ether Ave 0.5780 0.7015 0.0121 0.0100 21.4 50.0 Acrylonitrile Ave 0.0871 0.0951 0.109 0.100 9.2 50.0 trans-1,2-Dichloroethene Ave 0.3190 0.3805 0.0119 0.0100 19.3 50.0 1,1-Dichloroethane Ave 0.0781 0.0976 0.0125 0.0100 25.0* 20.0 1,1-Dichloroethane Ave 0.3607 0.4536 0.1000 0.0114 0.0100 13.6 50.0 Vinyl acetate Ave 0.3607 0.4536 0.0126 0.0100 25.7 50.0 2,2-Dichloropropane Ave 0.1735 0.2825 0.0163 0.0100 62.8* 50.0 cis-1,2-Dichloroethene Ave 0.3431 0.4041 0.0118 0.0100 17.8 50.0 2-Butanone (MEK) Ave <			0.1302						
Methyl tert-butyl ether Ave 0.5780 0.7015 0.0121 0.0100 21.4 50.0 Acrylonitrile Ave 0.0871 0.0951 0.109 0.100 9.2 50.0 trans-1,2-Dichloroethene Ave 0.3190 0.3805 0.0119 0.0100 19.3 50.0 Hexane Ave 0.0781 0.0976 0.0125 0.0100 25.0* 20.0 1,1-Dichloroethane Ave 0.5441 0.6180 0.1000 0.0114 0.0100 25.0* 20.0 2,2-Dichloropropane Ave 0.3607 0.4536 0.0126 0.0100 25.7 50.0 2,2-Dichloropropane Ave 0.1735 0.2825 0.0163 0.0100 62.8* 50.0 cis-1,2-Dichloroethene Ave 0.3431 0.4041 0.0118 0.0100 17.8 50.0 2-Butanone (MEK) Ave 0.1527 0.1922 0.0126 0.0100 25.9 50.0 Bromochloromethane Ave	_		0 0095					/	1
Acrylonitrile Ave 0.0871 0.0951 0.109 0.100 9.2 50.0 trans-1,2-Dichloroethene Ave 0.3190 0.3805 0.0119 0.0100 19.3 50.0 Hexane Ave 0.0781 0.0976 0.0125 0.0100 25.0* 20.0 1,1-Dichloroethane Ave 0.5441 0.6180 0.1000 0.0114 0.0100 13.6 50.0 Vinyl acetate Ave 0.3607 0.4536 0.0126 0.0100 25.7 50.0 2,2-Dichloropropane Ave 0.1735 0.2825 0.0163 0.0100 62.8* 50.0 2,2-Dichloroethene Ave 0.13431 0.4041 0.0118 0.0100 17.8 50.0 2-Butanone (MEK) Ave 0.1527 0.1922 0.0126 0.0100 25.9 50.0 Bromochloromethane Ave 0.1527 0.1922 0.0126 0.0100 25.9 50.0 Chloroform Ave 0.5085 <td< td=""><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>/</td></td<>	_	_						1	/
trans-1,2-Dichloroethene Ave 0.3190 0.3805 0.0119 0.0100 19.3 50.0 Hexane Ave 0.0781 0.0976 0.0125 0.0100 25.0* 20.0 1,1-Dichloroethane Ave 0.5441 0.6180 0.1000 0.0114 0.0100 13.6 50.0 Vinyl acetate Ave 0.3607 0.4536 0.0126 0.0100 25.7 50.0 2,2-Dichloropropane Ave 0.1735 0.2825 0.0163 0.0100 62.8* 50.0 cis-1,2-Dichloroethene Ave 0.3431 0.4041 0.0118 0.0100 17.8 50.0 2-Butanone (MEK) Ave 0.1018 0.1042 0.0205 0.0200 2.4 50.0 Bromochloromethane Ave 0.1527 0.1922 0.0126 0.0100 25.9 50.0 Tetrahydrofuran Ave 0.0568 0.0636 0.0224 0.0200 11.9 50.0 Chloroform Ave 0.5085		_							
Hexane Ave 0.0781 0.0976 0.0125 0.0100 25.0* 20.0 1,1-Dichloroethane Ave 0.5441 0.6180 0.1000 0.0114 0.0100 13.6 50.0 Vinyl acetate Ave 0.3607 0.4536 0.0126 0.0100 25.7 50.0 2,2-Dichloropropane Ave 0.1735 0.2825 0.0163 0.0100 62.8* 50.0 cis-1,2-Dichloroethene Ave 0.3431 0.4041 0.0118 0.0100 17.8 50.0 2-Butanone (MEK) Ave 0.1018 0.1042 0.0205 0.0200 2.4 50.0 Bromochloromethane Ave 0.1527 0.1922 0.0126 0.0100 25.9 50.0 Tetrahydrofuran Ave 0.5688 0.0636 0.0224 0.0200 11.9 50.0 Chloroform Ave 0.5085 0.5986 0.0118 0.0100 17.7 20.0 1,1-1-Trichloroethane Ave 0.5356		_							
1,1-Dichloroethane Ave 0.5441 0.6180 0.1000 0.0114 0.0100 13.6 50.0 Viny1 acetate Ave 0.3607 0.4536 0.0126 0.0100 25.7 50.0 2,2-Dichloropropane Ave 0.1735 0.2825 0.0163 0.0100 62.8* 50.0 cis-1,2-Dichloroethene Ave 0.3431 0.4041 0.0118 0.0100 17.8 50.0 2-Butanone (MEK) Ave 0.1018 0.1042 0.0205 0.0200 2.4 50.0 Bromochloromethane Ave 0.1527 0.1922 0.0126 0.0100 25.9 50.0 Tetrahydrofuran Ave 0.0568 0.0636 0.0224 0.0200 11.9 50.0 Chloroform Ave 0.5085 0.5986 0.0118 0.0100 17.7 20.0 1,1,1-Trichloroethane Ave 0.3093 0.4500 0.0145 0.0100 45.5 50.0 Cyclohexane Ave 0.4235		_							
Vinyl acetate Ave 0.3607 0.4536 0.0126 0.0100 25.7 50.0 2,2-Dichloropropane Ave 0.1735 0.2825 0.0163 0.0100 62.8* 50.0 cis-1,2-Dichloroethene Ave 0.3431 0.4041 0.0118 0.0100 17.8 50.0 2-Butanone (MEK) Ave 0.1018 0.1042 0.0205 0.0200 2.4 50.0 Bromochloromethane Ave 0.1527 0.1922 0.0126 0.0100 25.9 50.0 Tetrahydrofuran Ave 0.0568 0.0636 0.0224 0.0200 11.9 50.0 Chloroform Ave 0.5085 0.5986 0.0118 0.0100 17.7 20.0 1,1,1-Trichloroethane Ave 0.3093 0.4500 0.0145 0.0100 45.5 50.0 Cyclohexane Ave 0.5356 0.6466 0.0121 0.0100 20.7 50.0 1,1-Dichloropropene Ave 0.4235 0.4994		_			0 1000				
Ave 0.1735 0.2825 0.0163 0.0100 62.8 50.0	·				0.1000				
cis-1,2-Dichloroethene Ave 0.3431 0.4041 0.0118 0.0100 17.8 50.0 2-Butanone (MEK) Ave 0.1018 0.1042 0.0205 0.0200 2.4 50.0 Bromochloromethane Ave 0.1527 0.1922 0.0126 0.0100 25.9 50.0 Tetrahydrofuran Ave 0.0568 0.0636 0.0224 0.0200 11.9 50.0 Chloroform Ave 0.5085 0.5986 0.0118 0.0100 17.7 20.0 1,1,1-Trichloroethane Ave 0.3093 0.4500 0.0145 0.0100 45.5 50.0 Cyclohexane Ave 0.5356 0.6466 0.0121 0.0100 20.7 50.0 1,1-Dichloropropene Ave 0.4235 0.4994 0.0118 0.0100 17.9 50.0 Carbon tetrachloride Ave 0.2551 0.4166 0.0163 0.0100 63.3* 50.0 Benzene Ave 0.0048 0.0053		_							
2-Butanone (MEK) Ave 0.1018 0.1042 0.0205 0.0200 2.4 50.0 Bromochloromethane Ave 0.1527 0.1922 0.0126 0.0100 25.9 50.0 Tetrahydrofuran Ave 0.0568 0.0636 0.0224 0.0200 11.9 50.0 Chloroform Ave 0.5085 0.5986 0.0118 0.0100 17.7 20.0 1,1,1-Trichloroethane Ave 0.3093 0.4500 0.0145 0.0100 45.5 50.0 Cyclohexane Ave 0.5356 0.6466 0.0121 0.0100 20.7 50.0 1,1-Dichloropropene Ave 0.4235 0.4994 0.0118 0.0100 17.9 50.0 Carbon tetrachloride Ave 0.2551 0.4166 0.0163 0.0100 63.3* 50.0 Isobutyl alcohol Ave 0.0048 0.0053 0.276 0.250 10.2 50.0 1,2-Dichloroethane Ave 0.3701 0.4107		_							
Bromochloromethane Ave 0.1527 0.1922 0.0126 0.0100 25.9 50.0 Tetrahydrofuran Ave 0.0568 0.0636 0.0224 0.0200 11.9 50.0 Chloroform Ave 0.5085 0.5986 0.0118 0.0100 17.7 20.0 1,1,1-Trichloroethane Ave 0.3093 0.4500 0.0145 0.0100 45.5 50.0 Cyclohexane Ave 0.5356 0.6466 0.0121 0.0100 20.7 50.0 1,1-Dichloropropene Ave 0.4235 0.4994 0.0118 0.0100 17.9 50.0 Carbon tetrachloride Ave 0.2551 0.4166 0.0163 0.0100 63.3* 50.0 Isobutyl alcohol Ave 0.0048 0.0053 0.276 0.250 10.2 50.0 Benzene Ave 0.3701 0.4107 0.0117 0.0100 16.5 50.0 1,2-Dichloroethane Ave 0.0709 0.0887		_							
Tetrahydrofuran Ave 0.0568 0.0636 0.0224 0.0200 11.9 50.0 Chloroform Ave 0.5085 0.5986 0.0118 0.0100 17.7 20.0 1,1,1-Trichloroethane Ave 0.3093 0.4500 0.0145 0.0100 45.5 50.0 Cyclohexane Ave 0.5356 0.6466 0.0121 0.0100 20.7 50.0 1,1-Dichloropropene Ave 0.4235 0.4994 0.0118 0.0100 17.9 50.0 Carbon tetrachloride Ave 0.2551 0.4166 0.0163 0.0100 63.3* 50.0 Isobutyl alcohol Ave 0.0048 0.0053 0.276 0.250 10.2 50.0 Benzene Ave 1.297 1.512 0.0117 0.0100 16.5 50.0 1,2-Dichloroethane Ave 0.3701 0.4107 0.0111 0.0100 25.1 50.0 n-Heptane Ave 0.0709 0.0887 0.0125	· · ·	_							
Chloroform Ave 0.5085 0.5986 0.0118 0.0100 17.7 20.0 1,1,1-Trichloroethane Ave 0.3093 0.4500 0.0145 0.0100 45.5 50.0 Cyclohexane Ave 0.5356 0.6466 0.0121 0.0100 20.7 50.0 1,1-Dichloropropene Ave 0.4235 0.4994 0.0118 0.0100 17.9 50.0 Carbon tetrachloride Ave 0.2551 0.4166 0.0163 0.0100 63.3* 50.0 Isobutyl alcohol Ave 0.0048 0.0053 0.276 0.250 10.2 50.0 Benzene Ave 1.297 1.512 0.0117 0.0100 16.5 50.0 1,2-Dichloroethane Ave 0.3701 0.4107 0.0111 0.0100 25.1 50.0 n-Heptane Ave 0.0709 0.0887 0.0125 0.0100 25.1 50.0		_							
1,1,1-Trichloroethane Ave 0.3093 0.4500 0.0145 0.0100 45.5 50.0 Cyclohexane Ave 0.5356 0.6466 0.0121 0.0100 20.7 50.0 1,1-Dichloropropene Ave 0.4235 0.4994 0.0118 0.0100 17.9 50.0 Carbon tetrachloride Ave 0.2551 0.4166 0.0163 0.0100 63.3* 50.0 Isobutyl alcohol Ave 0.0048 0.0053 0.276 0.250 10.2 50.0 Benzene Ave 1.297 1.512 0.0117 0.0100 16.5 50.0 1,2-Dichloroethane Ave 0.3701 0.4107 0.0111 0.0100 11.0 50.0 n-Heptane Ave 0.0709 0.0887 0.0125 0.0100 25.1 50.0		_							
Cyclohexane Ave 0.5356 0.6466 0.0121 0.0100 20.7 50.0 1,1-Dichloropropene Ave 0.4235 0.4994 0.0118 0.0100 17.9 50.0 Carbon tetrachloride Ave 0.2551 0.4166 0.0163 0.0100 63.3* 50.0 Isobutyl alcohol Ave 0.0048 0.0053 0.276 0.250 10.2 50.0 Benzene Ave 1.297 1.512 0.0117 0.0100 16.5 50.0 1,2-Dichloroethane Ave 0.3701 0.4107 0.0111 0.0100 11.0 50.0 n-Heptane Ave 0.0709 0.0887 0.0125 0.0100 25.1 50.0	***************************************								
1,1-Dichloropropene Ave 0.4235 0.4994 0.0118 0.0100 17.9 50.0 Carbon tetrachloride Ave 0.2551 0.4166 0.0163 0.0100 63.3* 50.0 Isobutyl alcohol Ave 0.0048 0.0053 0.276 0.250 10.2 50.0 Benzene Ave 1.297 1.512 0.0117 0.0100 16.5 50.0 1,2-Dichloroethane Ave 0.3701 0.4107 0.0111 0.0100 11.0 50.0 n-Heptane Ave 0.0709 0.0887 0.0125 0.0100 25.1 50.0	· ·	_							
Carbon tetrachloride Ave 0.2551 0.4166 0.0163 0.0100 63.3* 50.0 Isobutyl alcohol Ave 0.0048 0.0053 0.276 0.250 10.2 50.0 Benzene Ave 1.297 1.512 0.0117 0.0100 16.5 50.0 1,2-Dichloroethane Ave 0.3701 0.4107 0.0111 0.0100 11.0 50.0 n-Heptane Ave 0.0709 0.0887 0.0125 0.0100 25.1 50.0	•								
Isobutyl alcohol Ave 0.0048 0.0053 0.276 0.250 10.2 50.0 Benzene Ave 1.297 1.512 0.0117 0.0100 16.5 50.0 1,2-Dichloroethane Ave 0.3701 0.4107 0.0111 0.0100 11.0 50.0 n-Heptane Ave 0.0709 0.0887 0.0125 0.0100 25.1 50.0	= =								
Benzene Ave 1.297 1.512 0.0117 0.0100 16.5 50.0 1,2-Dichloroethane Ave 0.3701 0.4107 0.0111 0.0100 11.0 50.0 n-Heptane Ave 0.0709 0.0887 0.0125 0.0100 25.1 50.0									
1,2-Dichloroethane Ave 0.3701 0.4107 0.0111 0.0100 11.0 50.0 n-Heptane Ave 0.0709 0.0887 0.0125 0.0100 25.1 50.0									
n-Heptane Ave 0.0709 0.0887 0.0125 0.0100 25.1 50.0									
	•								
	Trichloroethene	Ave	0.3242	0.4023		0.0123	0.0100	24.1	50.0

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Canton Job No.: 240-73352-1

SDG No.:

Lab Sample ID: CCVIS 240-260599/2 Calibration Date: 12/22/2016 10:48

Instrument ID: A3UX15 Calib Start Date: 06/23/2016 12:01

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 06/23/2016 13:53

Lab File ID: UXC0630.D Conc. Units: ng/uL Heated Purge: (Y/N) N

1,2-Dichloropropane									
1,2-Dichioropropane Ave 0.2882 0.3398 0.0118 0.0100 17.9 22.0	ANALYTE		AVE RRF	RRF	MIN RRF			%D	
1,2-Dichioropropane Ave 0.2882 0.3398 0.0118 0.0100 17.9 22.0	Methylcyclohexane	Ave	0.4846	0.6155		0.0127	0.0100	27.0	50.0
Dibbromomethane		Ave	0.2882	0.3398		0.0118	0.0100	17.9	20.0
Beromodichloromethane Ave 0.3988 0.3740 0.0121 0.0100 21.1 50.0 22-Chlorochtyl vinjether Ave 0.1461 0.1650 0.0226 0.0200 12.9 50.0 12.9	Dibromomethane	Ave	0.1523	0.1746		0.0115	0.0100	14.6	50.0
Beromodichloromethane Ave 0.3988 0.3740 0.0121 0.0100 21.1 50.0 22-Chlorochtyl vinjether Ave 0.1461 0.1650 0.0226 0.0200 12.9 50.0 12.9	1,4-Dioxane	Ave	0.0021	0.0024		0.231	0.200	15.6	50.0
cis-1,3-Dichloropropene Lin1 0.4380 0.0111 0.0100 10.7 50.0 4-Methyl-Z-pentanome (MIEK) Ave 0.1749 0.2111 0.0241 0.0200 20.7 50.0 Colume Ave 1.810 1.934 0.0108 0.0100 8.0 20.0 trans-1,3-Dichloropropene Lin1 0.3955 0.00971 0.0100 -2.9 50.0 Rithyl methacrylate Ave 0.3599 0.3972 0.0110 0.0100 10.4 50.0 50.0 60.0 70.0	Bromodichloromethane	Ave	0.3088	0.3740		0.0121	0.0100	21.1	50.0
cis-1,3-Dichloropropene Lin1 0.4380 0.0111 0.0100 10.7 50.0 4-Methyl-Z-pentanome (MIEK) Ave 0.1749 0.2111 0.0241 0.0200 20.7 50.0 Colume Ave 1.810 1.934 0.0108 0.0100 8.0 20.0 trans-1,3-Dichloropropene Lin1 0.3955 0.00971 0.0100 -2.9 50.0 Rithyl methacrylate Ave 0.3599 0.3972 0.0110 0.0100 10.4 50.0 50.0 60.0 70.0	2-Chloroethyl vinyl ether	Ave	0.1461	0.1650		0.0226	0.0200	12.9	50.0
Toluene Ave 1.810 1.954 0.0108 0.0100 8.0 20.0 trans-1,3-Dichloropropene Lini 0.3955 0.00971 0.0100 -2.9 50.0 1.1,1.2-Trichlorocthane Ave 0.3599 0.3972 0.0101 0.0100 0.0100 10.4 50.0 1.1,2-Trichlorocthane Ave 0.3590 0.4201 0.0102 0.0100 20.0 56.0 1.3-Dichloropropane Ave 0.5500 0.4201 0.0120 0.0100 0.000 1.2 50.0 1.3-Dichloropropane Ave 0.5523 0.5892 0.0101 0.0100 0.102 50.0 50.0 1.2-Examone Ave 0.1630 0.1718 0.0211 0.0200 5.4 50.0 0.0107 0.0100 0.1.2 50.0 0.0107 0.0100 0.0100 0.1.2 50.0 0.0107 0.0100 0.0100 0.1.2 50.0 0.0107 0.0100 0.0	cis-1,3-Dichloropropene	Lin1		0.4380		0.0111	0.0100	10.7	50.0
Toluene Ave 1.810 1.954 0.0108 0.0100 8.0 20.0 trans-1,3-Dichloropropene Lini 0.3955 0.00971 0.0100 -2.9 50.0 1.1,1.2-Trichlorocthane Ave 0.3599 0.3972 0.0101 0.0100 0.0100 10.4 50.0 1.1,2-Trichlorocthane Ave 0.3590 0.4201 0.0102 0.0100 20.0 56.0 1.3-Dichloropropane Ave 0.5500 0.4201 0.0120 0.0100 0.000 1.2 50.0 1.3-Dichloropropane Ave 0.5523 0.5892 0.0101 0.0100 0.102 50.0 50.0 1.2-Examone Ave 0.1630 0.1718 0.0211 0.0200 5.4 50.0 0.0107 0.0100 0.1.2 50.0 0.0107 0.0100 0.0100 0.1.2 50.0 0.0107 0.0100 0.0100 0.1.2 50.0 0.0107 0.0100 0.0	4-Methyl-2-pentanone (MIBK)	Ave	0.1749	0.2111		0.0241	0.0200	20.7	50.0
Ethyl methacrylate	Toluene	Ave	1.810	1.954		0.0108	0.0100	8.0	20.0
Ethyl methacrylate Ave 0.3599 0.3972 0.0110 0.0100 10.4 50.0 1,1,2-Trichloroethane Ave 0.3112 0.3288 0.0106 0.0100 5.6 50.0 1,3-Dichloropethane Ave 0.3500 0.4201 0.0120 0.0100 20.0 50.0 1,3-Dichloropropane Ave 0.5823 0.5892 0.0101 0.0120 0.0100 1.2 50.0 1,3-Dichloropropane Ave 0.6350 0.1718 0.0211 0.0200 5.4 50.0 1,2-Dibromoethane Ave 0.2750 0.3161 0.0115 0.0100 14.9 50.0 1,2-Dibromoethane Ave 0.2951 0.3173 0.0108 0.0100 7.5 50.0 1,2-Dibromoethane Ave 0.2951 0.3173 0.0108 0.0100 7.5 50.0 1,1-1,1-2-Tetrachloroethane Ave 0.3072 0.3944 0.0128 0.0100 12.8 50.0 1,1,1,2-Tetrachloroethane Ave 0.3072 0.3944 0.0128 0.0100 12.4 50.0 m-Xylene & p-Xylene & ve 0.5668 0.6932 0.0112 0.0100 12.4 50.0 o.Xylene & ve 0.7251 0.8439 0.0110 0.0100 12.4 50.0 o.Xylene Ave 0.7251 0.8439 0.0116 0.0100 16.4 50.0 Eyrene Ave 1.11 0.159 0.1000 0.0100 17.5 50.0 Eryene Ave 1.11 0.0159 0.0100 0.0100 17.5 50.0 Eryene Ave 1.11 0.0159 0.0100 0.0100 0.110 0.110 17.6 50.0 Eryene Ave 1.111 0.0159 0.0100 0.0100 17.5 50.0 Eryene Ave 1.111 0.0159 0.0100 0.0100 0.110 0.0100 17.6 50.0 Eryene Ave 0.7771 0.6435 0.3000 0.0089 0.0100 17.7 50.0 Eromobenzene Ave 1.036 0.9319 0.0009 0.0000 1.1.7 50.0 Eromobenzene Ave 0.2460 0.2022 0.00822 0.0100 17.7 8 50.0 Eromobenzene Ave 0.2460 0.2022 0.00822 0.0100 17.7 8 50.0 N-Propylbenzene Ave 0.2460 0.2022 0.00822 0.0100 17.7 8 50.0 N-Propylbenzene Ave 0.916 0.8448 0.00937 0.0100 -3.9 50.0 N-Propylbenzene Ave 0.916 0.8448 0.00937 0.0100 -7.3 50.0 N-Propylbenzene Ave 0.916 0.8448 0.00937 0.0100 -7.3 50.0 N-Propylbenzene Ave 0.916 0.8448 0.00937 0.0100 -7.3 50.0 N-Propylbenzene Ave 0.916 0.8448 0.00937 0.0100 -7.3 50.0 N-Propylbenzene Ave 0.916 0.8448 0.00937 0.0100 -7.3 50.0 N-Propylbenzene Ave 0.916 0.8448 0.00937 0.0100 -7.3 50.0 N-Propylbenzene Ave 0.916 0.8448 0.00937 0.0100 -7.3 50.0 N-Propylbenzene Ave 0.916 0.8448 0.00937 0.0100 -7.3 50.0 N-Propylbenzene Ave 0.916 0.8448 0.00937 0.0100 -7.3 50.0 N-Propylbenzene Ave 0.916 0.8448 0.00937 0.0100 -7.3 50.0 N-Propylbenzene Ave 0.916 0.8448 0.00937 0.0100 0.0100 3.0 50.	trans-1,3-Dichloropropene	Lin1		0.3955		0.00971	0.0100	-2.9	50.0
Tetrachloroethene	Ethyl methacrylate	Ave	0.3599	0.3972		0.0110	0.0100	10.4	50.0
1,3-Dichloropropane Ave 0.5823 0.5892 0.0101 0.0100 1.2 50.0 2-Hexanone Ave 0.1630 0.1718 0.0211 0.0200 5.4 50.0 Chlorodibromomethane Ave 0.2750 0.3161 0.0115 0.0100 14.9 50.0 1,2-Dibromoethane Ave 0.2951 0.3173 0.0108 0.0100 7.5 50.0 Chlorobenzene Ave 1.164 1.290 0.3000 0.0111 0.0100 10.8 1,1,1,2-Tetrachloroethane Ave 0.3072 0.3944 0.0128 0.0100 28.4 50.0 50.0 50.0 50.0 1,1,1,2-Tetrachloroethane Ave 0.6168 0.6932 0.0112 0.0100 12.4 1,2-Dibromoethane Ave 0.6168 0.6932 0.0112 0.0100 12.4 1,2-Dibromoethane Ave 0.6168 0.6932 0.0112 0.0100 12.4 1,2-Dibromoethane Ave 0.6168 0.6932 0.0112 0.0100 12.4 1,2-Dibromoethane Ave 0.7251 0.8439 0.0116 0.0100 10.5 50.0 1,2-Dibromoethane Ave 0.7251 0.8439 0.0116 0.0100 10.5 50.0 1,2-Dibromoethane Ave 0.7251 0.8439 0.0116 0.0100 16.4 50.0 1,2-Dibromoethane Ave 0.7251 0.8439 0.0102 0.0100 17.6 50.0 1,2-Dibromoethane Ave 0.1599 0.1000 0.0102 0.0100 2.4 50.0 1,2-Dibromoethane Ave 0.7771 0.6435 0.3000 0.00828 0.0100 -17.2 50.0 1,1,2,2-Tetrachloroethane Ave 0.2460 0.2022 0.00822 0.0100 -17.8 50.0 1,2-3-Trichloropropane Ave 0.2460 0.2022 0.00822 0.0100 -17.8 50.0 1,2-3-Trichloro-2-butene Ave 0.2183 0.1513 0.00693 0.0100 -3.7 50.0 1,3-5-Trimethylbenzene Ave 0.9460 0.9745 0.00931 0.0100 -6.9 50.0 1,3-5-Trimethylbenzene Ave 0.9460 0.9745 0.00931 0.0100 -7.3 50.0 1,3-5-Trimethylbenzene Ave 0.9460 0.9480 0.00997 0.0100 -7.3 50.0 1,3-5-Trimethylbenzene Ave 0.9460 0.9480 0.00997 0.0100 -7.3 50.0 1,3-5-Trimethylbenzene Ave 0.9460 0.9475 0.00997 0.0100 -7.3 50.0 1,3-5-Trimethylbenzene Ave 0.9460 0.9497 0.00997 0.0100 -7.3 50.0 1,3-5-Dichlorobenzene Ave 0.9400 0.0101 0.0100 3.0 50.0 1,3-5	1,1,2-Trichloroethane	Ave	0.3112	0.3288		0.0106	0.0100	5.6	50.0
2-Hexanone Ave 0.1630 0.1718 0.0211 0.0200 5.4 50.0 Chlorodibromomethane Ave 0.2750 0.3161 0.0115 0.0100 14.9 50.0 1,2-Dibromoethane Ave 0.2951 0.3173 0.0108 0.0100 7.5 50.0 Chlorobenzene Ave 1.164 1.290 0.3000 0.0111 0.0100 10.8 50.0 1,1,1,2-Tetrachloroethane Ave 0.3072 0.3944 0.0128 0.0100 28.4 50.0 1,1,1,2-Tetrachloroethane Ave 0.3072 0.3944 0.0128 0.0100 28.4 50.0 Ethylbenzene Ave 0.6168 0.6932 0.0112 0.0100 12.4 20.0 m-Xylene & p-Xylene Ave 1.527 1.687 0.0110 0.0100 10.5 50.0 Styrene Ave 0.7251 0.8439 0.0116 0.0100 16.4 50.0 Styrene Ave 1.217 1.432 0.0118 0.0100 17.6 50.0 Bromoform 1.11 0.127 1.432 0.0118 0.0100 17.6 50.0 Bromoform 1.11 0.12,2-Tetrachloroethane Ave 0.7771 0.6435 0.3000 0.00828 0.0100 23.2 50.0 1,1,2,2-Tetrachloroethane Ave 1.036 0.9319 0.00089 0.0100 -17.2 50.0 Bromobenzene Ave 1.036 0.9319 0.00082 0.0100 -17.2 50.0 1,2,3-Trichloropropane Ave 0.2460 0.2022 0.00822 0.0100 -17.8 50.0 1,2,3-Trichloropropane Ave 0.2460 0.2022 0.00822 0.0100 -17.8 50.0 1,2,3-Trichloropropane Ave 0.2183 0.1513 0.0093 0.0100 -30.7 50.0 N-Propylbenzene Ave 0.9116 0.8448 0.00927 0.0100 -7.3 50.0 1,3,5-Trimethylbenzene Ave 0.9116 0.8448 0.00927 0.0100 -7.3 50.0 1,3,5-Trimethylbenzene Ave 0.9116 0.8448 0.00927 0.0100 -7.7 50.0 1,2,4-Trimethylbenzene Ave 3.157 2.852 0.00903 0.0100 -7.7 50.0 1,2,4-Trimethylbenzene Ave 3.157 2.852 0.00903 0.0100 -7.7 50.0 1,2,4-Trimethylbenzene Ave 3.157 2.852 0.00903 0.0100 -7.7 50.0 1,2,4-Trimethylbenzene Ave 3.213 3.309 0.0103 0.0100 -0.3 50.0 1,2,4-Trimethylbenzene Ave 3.213 3.309 0.0103 0.0100 3.0 50.0 4-Isopropyltoluene Ave 3.213 3.309 0.0103 0.0100 3.0 50.0 4-Isopropyltoluene Ave 3.213 3.309 0.0103 0.0100 3.0 50.0 4-Isopropyltoluene Ave 3.213 3.309 0.0103 0.0100 3.0 50.0 50.0 1,3-Dichlorobenzene Ave 3.213 3.309 0.0101 0.0100 3.0 50.0 50.0 1,3-Dichlorobenzene Ave 3.213 3.309 0.0101 0.0100 3.0 50.0 50.0 50.0 50.0 50.0 50.0 50.	Tetrachloroethene	Ave	0.3500	0.4201		0.0120	0.0100	20.0	50.0
Chlorodibromomethane Ave 0.2750 0.3161 0.0115 0.0100 14.9 50.0 1,2-Dibromoethane Ave 0.2951 0.3173 0.0108 0.0100 7.5 50.0 Chlorobenzene Ave 1.164 1.290 0.3000 0.0111 0.0100 10.8 50.0 1,1,1,2-Tetrachloroethane Ave 0.3072 0.3944 0.0128 0.0100 28.4 50.0 Ethylbenzene Ave 0.6168 0.6932 0.0112 0.0100 12.4 20.0 m-Xylene & p-Xylene Ave 0.7251 0.8439 0.0116 0.0100 10.5 50.0 0-Xylene Ave 0.7251 0.8439 0.0116 0.0100 16.4 50.0 Styrene Ave 1.217 1.432 0.0116 0.0100 17.6 50.0 Espropylbenzene Ave 1.715 2.113 0.0123 0.0100 23.2 50.0 1,1,2,2-Tetrachloroethane Ave 0.7771 0.6435 0.3000 0.00828 0.0100 -17.2 50.0 Espropylbenzene Ave 1.036 0.3319 0.00829 0.0100 -10.1 50.0 Example 1,2,3-Trichloropropane Ave 0.2460 0.2022 0.00822 0.0100 -17.8 50.0 N-Propylbenzene Ave 1.046 0.9745 0.00931 0.0100 -6.9 50.0 N-Propylbenzene Ave 1.046 0.9745 0.00931 0.0100 -7.3 50.0 N-Propylbenzene Ave 1.046 0.9745 0.00931 0.0100 -7.3 50.0 N-Propylbenzene Ave 2.964 2.849 0.00931 0.0100 -7.3 50.0 N-Propylbenzene Ave 2.964 2.849 0.00931 0.0100 -7.3 50.0 N-2-Chlorotoluene Ave 2.964 2.849 0.00931 0.0100 -7.3 50.0 N-2-Chlorotoluene Ave 3.157 2.852 0.00931 0.0100 -7.3 50.0 N-2-Chlorotoluene Ave 3.157 2.852 0.00931 0.0100 -7.3 50.0 N-2-Chlorotoluene Ave 3.037 2.997 0.00937 0.0100 -0.3 50.0 Sec-Butylbenzene Ave 3.213 3.309 0.0103 0.0100 3.0 50.0 N-2-C-Butylbenzene Ave 3.213 3.309 0.0103 0.0100 3.0 50.0 50.0 N-2-C-Butylbenzene Ave 3.213 3.309 0.0101 0.0100 3.0 50.0 50.0 N-2-C-Butylbenzene Ave 3.213 3.309 0.0101 0.0100 3.0 50.0 50.0 N-2-C-Butylbenzene Ave 3.213 3.309 0.0101 0.0100 3.0 50.0 50.0 N-2-C-Butylbenzene Ave 3.213 3.309 0.0101 0.0100 3.0 50.0 50.0 N-2-C-Butylbenzene Ave 3.213 3.309 0.0101 0.0100 3.0 50.0 50.0 N-2-C-Butylbenzene Ave 3.213 3.309 0.0101 0.0100 3.0 50.0 50.0 5	1,3-Dichloropropane	Ave	0.5823	0.5892		0.0101	0.0100	1.2	50.0
1,2-Dibromoethane	2-Hexanone	Ave	0.1630	0.1718		0.0211	0.0200	5.4	50.0
Chlorobenzene	Chlorodibromomethane	Ave	0.2750	0.3161		0.0115	0.0100	14.9	50.0
1,1,1,2-Tetrachloroethane	1,2-Dibromoethane	Ave	0.2951	0.3173		0.0108	0.0100	7.5	50.0
Ethylbenzene Ave 0.6168 0.6932 0.0112 0.0100 12.4 20.0 m-Xylene & p-Xylene Ave 1.527 1.687 0.0110 0.0100 10.5 50.0 o-Xylene Ave 0.7251 0.8439 0.0116 0.0100 16.4 50.0 Styrene Ave 1.217 1.432 0.0118 0.0100 17.6 50.0 styrene Ave 1.217 1.432 0.1018 0.0100 17.6 50.0 Isopropylbenzene Ave 1.715 2.113 0.1000 0.0102 0.0100 2.4 50.0 Isopropylbenzene Ave 1.715 2.113 0.0123 0.0100 23.2 50.0 1,1,2,2-Tetrachloroethane Ave 0.7771 0.6435 0.3000 0.00828 0.0100 -17.2 50.0 Bromobenzene Ave 1.036 0.9319 0.000829 0.0100 -17.2 50.0 Itzans-1,4-Dichloro-2-butene Ave 0.2460 0.2022 0.00822 0.0100 -17.8 50.0 Itzans-1,4-Dichloro-2-butene Ave 0.2183 0.1513 0.00693 0.0100 -30.7 50.0 N-Propylbenzene Ave 0.9116 0.8448 0.00927 0.0100 -7.3 50.0 1,3,5-Trimethylbenzene Ave 2.964 2.849 0.00931 0.0100 -3.9 50.0 4-Chlorotoluene Ave 2.964 2.849 0.00961 0.0100 -3.9 50.0 Itzans-1,4-Trimethylbenzene Ave 2.964 2.849 0.00961 0.0100 -3.9 50.0 Itzans-1,4-Trimethylbenzene Ave 3.157 2.852 0.00903 0.0100 -7.3 50.0 Itzans-1,4-Trimethylbenzene Ave 3.157 2.852 0.00903 0.0100 -9.7 50.0 Itzans-1,4-Trimethylbenzene Ave 3.213 3.309 0.0103 0.0100 3.1 50.0 Itzans-1,2-Trimethylbenzene Ave 3.213 3.309 0.0103 0.0100 3.0 50.0 Itzans-1,2-Trimethylbenzene Ave 3.213 3.309 0.0103 0.0100 3.0 50.0 Itzans-1,3-Dichlorobenzene Ave 2.700 2.997 0.0103 0.0100 3.0 50.0 Itzans-1,3-Dichlorobenzene Ave 2.700 2.990 0.0111 0.0100 10.8 50.0 Itzans-1,4-Dichlorobenzene Ave 2.700 2.990 0.0111 0.0100 10.8 50.0 Itzans-1,4-Dichlorobenzene Ave 2.151 2.356 0.00110 0.0100 3.0 50.0	Chlorobenzene	Ave	1.164	1.290	0.3000	0.0111	0.0100	10.8	50.0
m-Xylene Ave 1.527 1.687 0.0110 0.0100 10.5 50.0 o-Xylene Ave 0.7251 0.8439 0.0116 0.0100 16.4 50.0 Styrene Ave 1.217 1.432 0.0118 0.0100 17.6 50.0 Bromoform Lin1 0.1599 0.1000 0.0102 0.0100 2.4 50.0 Isopropylbenzene Ave 1.715 2.113 0.0123 0.0100 23.2 50.0 1,1,2,2-Tetrachloroethane Ave 0.7771 0.6435 0.3000 0.00828 0.0100 -17.2 50.0 Bromobenzene Ave 1.036 0.9319 0.00899 0.0100 -17.2 50.0 1,2,3-Trichloropropane Ave 0.2460 0.2022 0.00822 0.0100 -17.8 50.0 1,2,3-Trichloropropane Ave 0.2183 0.1513 0.00693 0.0100 -30.7 50.0 1xrans-1,4-Dichloro-2-butene Ave 0.2183	1,1,1,2-Tetrachloroethane	Ave	0.3072	0.3944		0.0128	0.0100	28.4	50.0
o-Xylene Ave 0.7251 0.8439 0.0116 0.0100 16.4 50.0 Styrene Ave 1.217 1.432 0.0118 0.0100 17.6 50.0 Bromoform Linl 0.1599 0.1000 0.0102 0.0100 2.4 50.0 Isopropylbenzene Ave 1.715 2.113 0.0123 0.0100 23.2 50.0 1,1,2,2-Tetrachloroethane Ave 0.7771 0.6435 0.3000 0.0828 0.0100 -17.2 50.0 Bromobenzene Ave 1.036 0.9319 0.00082 0.0100 -10.1 50.0 1,2,3-Trichloropropane Ave 0.2460 0.2022 0.00822 0.0100 -17.8 50.0 N-Propylbenzene Ave 0.2460 0.2022 0.00822 0.0100 -30.7 50.0 N-Propylbenzene Ave 0.9186 0.9745 0.00931 0.0100 -6.9 50.0 2-Chlorotoluene Ave 2.964 2.849 <td>Ethylbenzene</td> <td>Ave</td> <td>0.6168</td> <td>0.6932</td> <td></td> <td>0.0112</td> <td>0.0100</td> <td>12.4</td> <td>20.0</td>	Ethylbenzene	Ave	0.6168	0.6932		0.0112	0.0100	12.4	20.0
Styrene Ave 1.217 1.432 0.0118 0.0100 17.6 50.0 Bromoform Lin1 0.1599 0.1000 0.0102 0.0100 2.4 50.0 Isopropylbenzene Ave 1.715 2.113 0.0123 0.0100 23.2 50.0 1,1,2,2-Tetrachloroethane Ave 0.7771 0.6435 0.3000 0.00828 0.0100 -17.2 50.0 Bromobenzene Ave 1.036 0.9319 0.00899 0.0100 -10.1 50.0 1,2,3-Trichloropropane Ave 0.2460 0.2022 0.00822 0.0100 -17.8 50.0 trans-1,4-Dichloro-2-butene Ave 0.2183 0.1513 0.00693 0.0100 -30.7 50.0 N-Propylbenzene Ave 1.046 0.9745 0.00931 0.0100 -6.9 50.0 2-Chlorotoluene Ave 0.9116 0.8448 0.00927 0.0100 -7.3 50.0 4-Chlorotoluene Ave 3.157	m-Xylene & p-Xylene	Ave	1.527	1.687		0.0110	0.0100	10.5	50.0
Description Description	o-Xylene	Ave	0.7251	0.8439		0.0116	0.0100	16.4	50.0
Taspropylbenzene Ave 1.715 2.113 0.0123 0.0100 23.2 50.0	Styrene	Ave	1.217	1.432		0.0118	0.0100	17.6	50.0
1,1,2,2-Tetrachloroethane Ave 0.7771 0.6435 0.3000 0.00828 0.0100 -17.2 50.0 Bromobenzene Ave 1.036 0.9319 0.00899 0.0100 -10.1 50.0 1,2,3-Trichloropropane Ave 0.2460 0.2022 0.00822 0.0100 -17.8 50.0 trans-1,4-Dichloro-2-butene Ave 0.2183 0.1513 0.00693 0.0100 -30.7 50.0 N-Propylbenzene Ave 1.046 0.9745 0.00931 0.0100 -6.9 50.0 2-Chlorotoluene Ave 0.9116 0.8448 0.00927 0.0100 -7.3 50.0 4-Chlorotoluene Ave 2.964 2.849 0.00931 0.0100 -3.9 50.0 4-Chlorotoluene Ave 2.401 2.476 0.0093 0.0100 -9.7 50.0 tert-Butylbenzene Ave 2.401 2.476 0.0103 0.0100 3.1 50.0 sec-Butylbenzene Ave <	Bromoform	Lin1		0.1599	0.1000	0.0102	0.0100	2.4	50.0
Bromobenzene Ave 1.036 0.9319 0.00899 0.0100 -10.1 50.0	Isopropylbenzene	Ave	1.715	2.113		0.0123	0.0100	23.2	50.0
1,2,3-Trichloropropane Ave 0.2460 0.2022 0.00822 0.0100 -17.8 50.0 trans-1,4-Dichloro-2-butene Ave 0.2183 0.1513 0.00693 0.0100 -30.7 50.0 N-Propylbenzene Ave 1.046 0.9745 0.00931 0.0100 -6.9 50.0 2-Chlorotoluene Ave 0.9116 0.8448 0.00927 0.0100 -7.3 50.0 1,3,5-Trimethylbenzene Ave 2.964 2.849 0.00961 0.0100 -3.9 50.0 4-Chlorotoluene Ave 3.157 2.852 0.00903 0.0100 -9.7 50.0 tert-Butylbenzene Ave 2.401 2.476 0.0103 0.0100 3.1 50.0 1,2,4-Trimethylbenzene Ave 3.213 3.309 0.00997 0.0100 -0.3 50.0 sec-Butylbenzene Ave 1.723 1.775 0.0103 0.0100 3.0 50.0 4-Isopropyltoluene Ave 2.700	1,1,2,2-Tetrachloroethane	Ave	0.7771	0.6435	0.3000	0.00828	0.0100	-17.2	50.0
trans-1,4-Dichloro-2-butene Ave 0.2183 0.1513 0.00693 0.0100 -30.7 50.0 N-Propylbenzene Ave 1.046 0.9745 0.00931 0.0100 -6.9 50.0 2-Chlorotoluene Ave 0.9116 0.8448 0.00927 0.0100 -7.3 50.0 1,3,5-Trimethylbenzene Ave 2.964 2.849 0.00961 0.0100 -3.9 50.0 4-Chlorotoluene Ave 3.157 2.852 0.00903 0.0100 -9.7 50.0 tert-Butylbenzene Ave 2.401 2.476 0.0103 0.0100 3.1 50.0 1,2,4-Trimethylbenzene Ave 3.007 2.997 0.00997 0.0100 -0.3 50.0 sec-Butylbenzene Ave 3.213 3.309 0.0103 0.0100 3.0 50.0 1,3-Dichlorobenzene Ave 1.723 1.775 0.0103 0.0100 3.0 50.0 4-Isopropyltoluene Ave 2.700 2.	Bromobenzene	Ave	1.036	0.9319		0.00899	0.0100	-10.1	50.0
N-Propylbenzene	1,2,3-Trichloropropane	Ave	0.2460	0.2022		0.00822	0.0100	-17.8	50.0
2-Chlorotoluene Ave 0.9116 0.8448 0.00927 0.0100 -7.3 50.0 1,3,5-Trimethylbenzene Ave 2.964 2.849 0.00961 0.0100 -3.9 50.0 4-Chlorotoluene Ave 3.157 2.852 0.00903 0.0100 -9.7 50.0 tert-Butylbenzene Ave 2.401 2.476 0.0103 0.0100 3.1 50.0 1,2,4-Trimethylbenzene Ave 3.007 2.997 0.00997 0.0100 -0.3 50.0 sec-Butylbenzene Ave 3.213 3.309 0.0103 0.0100 3.0 50.0 1,3-Dichlorobenzene Ave 1.723 1.775 0.0103 0.0100 3.0 50.0 4-Isopropyltoluene Ave 2.700 2.990 0.0111 0.0100 10.8 50.0 1,4-Dichlorobenzene Ave 1.765 1.817 0.0103 0.0100 9.5 50.0 n-Butylbenzene Ave 2.151 2.356	trans-1,4-Dichloro-2-butene	Ave	0.2183	0.1513		0.00693	0.0100	-30.7	50.0
1,3,5-Trimethylbenzene Ave 2.964 2.849 0.00961 0.0100 -3.9 50.0 4-Chlorotoluene Ave 3.157 2.852 0.00903 0.0100 -9.7 50.0 tert-Butylbenzene Ave 2.401 2.476 0.0103 0.0100 3.1 50.0 1,2,4-Trimethylbenzene Ave 3.007 2.997 0.00997 0.0100 -0.3 50.0 sec-Butylbenzene Ave 3.213 3.309 0.0103 0.0100 3.0 50.0 1,3-Dichlorobenzene Ave 1.723 1.775 0.0103 0.0100 3.0 50.0 4-Isopropyltoluene Ave 2.700 2.990 0.0111 0.0100 10.8 50.0 1,4-Dichlorobenzene Ave 1.765 1.817 0.0103 0.0100 3.0 50.0 n-Butylbenzene Ave 2.151 2.356 0.0110 0.0100 9.5 50.0	N-Propylbenzene	Ave	1.046	0.9745		0.00931	0.0100	-6.9	50.0
4-Chlorotoluene Ave 3.157 2.852 0.00903 0.0100 -9.7 50.0 tert-Butylbenzene Ave 2.401 2.476 0.0103 0.0100 3.1 50.0 1,2,4-Trimethylbenzene Ave 3.007 2.997 0.00997 0.0100 -0.3 50.0 sec-Butylbenzene Ave 3.213 3.309 0.0103 0.0100 3.0 50.0 1,3-Dichlorobenzene Ave 1.723 1.775 0.0103 0.0100 3.0 50.0 4-Isopropyltoluene Ave 2.700 2.990 0.0111 0.0100 10.8 50.0 1,4-Dichlorobenzene Ave 1.765 1.817 0.0103 0.0100 3.0 50.0 n-Butylbenzene Ave 2.151 2.356 0.0110 0.0100 9.5 50.0	2-Chlorotoluene	Ave	0.9116	0.8448		0.00927	0.0100	-7.3	50.0
tert-Butylbenzene Ave 2.401 2.476 0.0103 0.0100 3.1 50.0 1,2,4-Trimethylbenzene Ave 3.007 2.997 0.00997 0.0100 -0.3 50.0 sec-Butylbenzene Ave 3.213 3.309 0.0103 0.0100 3.0 50.0 1,3-Dichlorobenzene Ave 1.723 1.775 0.0103 0.0100 3.0 50.0 4-Isopropyltoluene Ave 2.700 2.990 0.0111 0.0100 10.8 50.0 1,4-Dichlorobenzene Ave 1.765 1.817 0.0103 0.0100 3.0 50.0 n-Butylbenzene Ave 2.151 2.356 0.0110 0.0100 9.5 50.0	1,3,5-Trimethylbenzene	Ave	2.964	2.849		0.00961	0.0100	-3.9	50.0
1,2,4-Trimethylbenzene Ave 3.007 2.997 0.00997 0.0100 -0.3 50.0 sec-Butylbenzene Ave 3.213 3.309 0.0103 0.0100 3.0 50.0 1,3-Dichlorobenzene Ave 1.723 1.775 0.0103 0.0100 3.0 50.0 4-Isopropyltoluene Ave 2.700 2.990 0.0111 0.0100 10.8 50.0 1,4-Dichlorobenzene Ave 1.765 1.817 0.0103 0.0100 3.0 50.0 n-Butylbenzene Ave 2.151 2.356 0.0110 0.0100 9.5 50.0	4-Chlorotoluene	Ave	3.157	2.852		0.00903	0.0100	-9.7	50.0
sec-Butylbenzene Ave 3.213 3.309 0.0103 0.0100 3.0 50.0 1,3-Dichlorobenzene Ave 1.723 1.775 0.0103 0.0100 3.0 50.0 4-Isopropyltoluene Ave 2.700 2.990 0.0111 0.0100 10.8 50.0 1,4-Dichlorobenzene Ave 1.765 1.817 0.0103 0.0100 3.0 50.0 n-Butylbenzene Ave 2.151 2.356 0.0110 0.0100 9.5 50.0	tert-Butylbenzene	Ave	2.401	2.476		0.0103	0.0100	3.1	50.0
1,3-Dichlorobenzene Ave 1.723 1.775 0.0103 0.0100 3.0 50.0 4-Isopropyltoluene Ave 2.700 2.990 0.0111 0.0100 10.8 50.0 1,4-Dichlorobenzene Ave 1.765 1.817 0.0103 0.0100 3.0 50.0 n-Butylbenzene Ave 2.151 2.356 0.0110 0.0100 9.5 50.0	1,2,4-Trimethylbenzene	Ave	3.007	2.997		0.00997	0.0100	-0.3	50.0
4-Isopropyltoluene Ave 2.700 2.990 0.0111 0.0100 10.8 50.0 1,4-Dichlorobenzene Ave 1.765 1.817 0.0103 0.0100 3.0 50.0 n-Butylbenzene Ave 2.151 2.356 0.0110 0.0100 9.5 50.0	sec-Butylbenzene	Ave	3.213	3.309		0.0103	0.0100	3.0	50.0
1,4-Dichlorobenzene Ave 1.765 1.817 0.0103 0.0100 3.0 50.0 n-Butylbenzene Ave 2.151 2.356 0.0110 0.0100 9.5 50.0	1,3-Dichlorobenzene	Ave	1.723	1.775		0.0103	0.0100	3.0	50.0
n-Butylbenzene Ave 2.151 2.356 0.0110 0.0100 9.5 50.0	4-Isopropyltoluene	Ave	2.700	2.990		0.0111	0.0100	10.8	50.0
	1,4-Dichlorobenzene	Ave	1.765	1.817		0.0103	0.0100	3.0	50.0
1,2-Dichlorobenzene Ave 1.577 1.696 0.0107 0.0100 7.5 50.0	n-Butylbenzene	Ave	2.151	2.356		0.0110	0.0100	9.5	50.0
	1,2-Dichlorobenzene	Ave	1.577	1.696		0.0107	0.0100	7.5	50.0

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Canton Job No.: 240-73352-1

SDG No.:

Lab Sample ID: CCVIS 240-260599/2 Calibration Date: 12/22/2016 10:48

Instrument ID: A3UX15 Calib Start Date: 06/23/2016 12:01

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 06/23/2016 13:53

Lab File ID: UXC0630.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.0839	0.0927		0.0111	0.0100	10.5	50.0
1,2,4-Trichlorobenzene	Ave	0.8173	1.022		0.0125	0.0100	25.1	50.0
Hexachlorobutadiene	Ave	0.3769	0.4624		0.0123	0.0100	22.7	50.0
Naphthalene	Ave	1.726	1.993		0.0115	0.0100	15.5	50.0
1,2,3-Trichlorobenzene	Ave	0.7228	0.9212		0.0127	0.0100	27.5	50.0
Dibromofluoromethane (Surr)	Ave	0.2601	0.2907		0.00895	0.00801	11.8	50.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.3152	0.3145		0.00799	0.00801	-0.2	50.0
Toluene-d8 (Surr)	Ave	1.543	1.589		0.00825	0.00801	2.9	50.0
4-Bromofluorobenzene (Surr)	Ave	0.5279	0.5912		0.00897	0.00801	12.0	50.0

FORM IV GC/MS VOA METHOD BLANK SUMMARY

Lab Name: TestAmerica Canton	Job No.: 240-73352-1		
SDG No.:			
Lab File ID: UXC0632.D	Lab Sample ID: MB 240-260599/7		
Matrix: Water	Heated Purge: (Y/N) N		
Instrument ID: A3UX15	Date Analyzed: 12/22/2016 11:33		
GC Column: DB-624 ID: 0.18(mm)			

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 240-260599/4	UXC0628.D	12/22/2016 10:03
TB-121316	240-73352-1	UXC0642.D	12/22/2016 15:17
MRC-SW10A-D-121316	240-73352-2	UXC0643.D	12/22/2016 15:39
MRC-SW10A-S-121316	240-73352-3	UXC0644.D	12/22/2016 16:02
MRC-SW10B-D-121316	240-73352-4	UXC0645.D	12/22/2016 16:25
MRC-SW10B-S-121316	240-73352-5	UXC0646.D	12/22/2016 16:47
MRC-SW11A-D-121316	240-73352-6	UXC0647.D	12/22/2016 17:10
MRC-SW11A-S-121316	240-73352-7	UXC0648.D	12/22/2016 17:33
MRC-SW11B-D-121316	240-73352-8	UXC0649.D	12/22/2016 17:55
MRC-SW11B-S-121316	240-73352-9	UXC0650.D	12/22/2016 18:17
MRC-SW12A-D-121316	240-73352-10	UXC0651.D	12/22/2016 18:40
MRC-SW12A-S-121316	240-73352-11	UXC0652.D	12/22/2016 19:02
MRC-SW12B-D-121316	240-73352-12	UXC0653.D	12/22/2016 19:24
MRC-SW12B-S-121316	240-73352-13	UXC0654.D	12/22/2016 19:46

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Canton	Job No.: 240-73352-1		
SDG No.:			
Client Sample ID:	Lab Sample ID: MB 240-260599/7		
Matrix: Water	Lab File ID: UXC0632.D		
Analysis Method: 8260B	Date Collected:		
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 11:33		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18 (mm	.)	
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 260599	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	1.8	U	10	1.8
630-20-6	1,1,1,2-Tetrachloroethane	0.46	U	1.0	0.46
71-43-2	Benzene	0.28	U	1.0	0.28
75-27-4	Bromodichloromethane	0.30	U	1.0	0.30
75-25-2	Bromoform	0.43	U	1.0	0.43
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone (MEK)	1.0	U	10	1.0
75-15-0	Carbon disulfide	0.34	U	1.0	0.34
56-23-5	Carbon tetrachloride	0.35	U	1.0	0.35
108-90-7	Chlorobenzene	0.32	U	1.0	0.32
75-00-3	Chloroethane	0.41	U	1.0	0.41
67-66-3	Chloroform	0.31	U	1.0	0.31
563-58-6	1,1-Dichloropropene	0.28	U	1.0	0.28
74-87-3	Chloromethane	0.43	U	1.0	0.43
75-34-3	1,1-Dichloroethane	0.25	U	1.0	0.25
87-61-6	1,2,3-Trichlorobenzene	0.35	U	1.0	0.35
96-18-4	1,2,3-Trichloropropane	0.54	U	1.0	0.54
107-06-2	1,2-Dichloroethane	0.30	U	1.0	0.30
75-35-4	1,1-Dichloroethene	0.27	U	1.0	0.27
526-73-8	1,2,3-Trimethylbenzene	0.22	U	5.0	0.22
78-87-5	1,2-Dichloropropane	0.30	U	1.0	0.30
95-63-6	1,2,4-Trimethylbenzene	0.24	U	1.0	0.24
10061-01-5	cis-1,3-Dichloropropene	0.26	U	1.0	0.26
10061-02-6	trans-1,3-Dichloropropene	0.31	U	1.0	0.31
100-41-4	Ethylbenzene	0.26	U	1.0	0.26
591-78-6	2-Hexanone	1.2	U	10	1.2
75-09-2	Methylene Chloride	0.53	U	1.0	0.53
108-10-1	4-Methyl-2-pentanone (MIBK)	0.71	U	10	0.71
100-42-5	Styrene	0.23	U	1.0	0.23
79-34-5	1,1,2,2-Tetrachloroethane	0.32	U	1.0	0.32
127-18-4	Tetrachloroethene	0.30	U	1.0	0.30
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	0.33	U	1.0	0.33
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.24	U	2.0	0.24
71-55-6	1,1,1-Trichloroethane	0.23	U	1.0	0.23

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Canton	JOD NO.: 240-/3352-1			
SDG No.:				
Client Sample ID:	Lab Sample ID: MB 240-260599/7			
Matrix: Water	Lab File ID: UXC0632.D			
Analysis Method: 8260B	Date Collected:			
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/20	016 11:33		
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624	ID: <u>0.18(mm)</u>		
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 260599	Units: ug/L	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
142-28-9	1,3-Dichloropropane	0.29	Ū	1.0	0.29
96-12-8	1,2-Dibromo-3-Chloropropane	0.47	U	2.0	0.47
106-93-4	1,2-Dibromoethane	0.23	U	1.0	0.23
75-71-8	Dichlorodifluoromethane	0.50	U	1.0	0.50
156-59-2	cis-1,2-Dichloroethene	0.30	U	1.0	0.30
156-60-5	trans-1,2-Dichloroethene	0.29	U	1.0	0.29
98-82-8	Isopropylbenzene	0.21	U	1.0	0.21
1634-04-4	Methyl tert-butyl ether	0.27	U	1.0	0.27
76-13-1	1,1,2-Trichlorotrifluoroethane	0.41	U	1.0	0.41
120-82-1	1,2,4-Trichlorobenzene	0.27	U	1.0	0.27
594-20-7	2,2-Dichloropropane	0.34	U	1.0	0.34
95-50-1	1,2-Dichlorobenzene	0.26	U	1.0	0.26
541-73-1	1,3-Dichlorobenzene	0.32	U	1.0	0.32
106-46-7	1,4-Dichlorobenzene	0.23	U	1.0	0.23
110-75-8	2-Chloroethyl vinyl ether	0.65	U	10	0.65
75-69-4	Trichlorofluoromethane	0.50	U	1.0	0.50
95-49-8	2-Chlorotoluene	0.28	U	1.0	0.28
124-48-1	Chlorodibromomethane	0.25	U	1.0	0.25
108-86-1	Bromobenzene	0.31	U	1.0	0.31
74-97-5	Bromochloromethane	0.47	U	1.0	0.47
106-43-4	4-Chlorotoluene	0.23	U	1.0	0.23
99-87-6	4-Isopropyltoluene	0.29	U	1.0	0.29
87-68-3	Hexachlorobutadiene	0.36	U	1.0	0.36
74-95-3	Dibromomethane	0.46	U	1.0	0.46
108-20-3	Diisopropyl ether	0.44	U	10	0.44
91-20-3	Naphthalene	0.25	U	1.0	0.25
104-51-8	n-Butylbenzene	0.21	U	1.0	0.21
103-65-1	N-Propylbenzene	0.45	U	1.0	0.45
135-98-8	sec-Butylbenzene	0.27	U	1.0	0.27
994-05-8	Tert-amyl methyl ether	0.29	U	5.0	0.29
637-92-3	Ethyl tert-butyl ether	0.35	U	5.0	0.35
98-06-6	tert-Butylbenzene	0.26	U	1.0	0.26
108-05-4	Vinyl acetate	0.28	U	2.0	0.28
75-65-0	tert-Butyl alcohol	4.6	U	50	4.6

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Canton	Job No.: <u>240-73352-1</u>	Job No.: 240-73352-1		
SDG No.:				
Client Sample ID:	Lab Sample ID: MB 240-26	60599/7		
Matrix: Water	Lab File ID: UXC0632.D			
Analysis Method: 8260B	Date Collected:			
Sample wt/vol: 5 (mL)	Date Analyzed: 12/22/201	16 11:33		
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18 (mm)		
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 260599	Units: ug/L			

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	101		63-132
460-00-4	4-Bromofluorobenzene (Surr)	101		73-120
2037-26-5	Toluene-d8 (Surr)	100		73-124
1868-53-7	Dibromofluoromethane (Surr)	111		80-120

FORM II GC/MS VOA SURROGATE RECOVERY

ab Name:	TestAmerica	Canton	Job No.:	240-73352-1
----------	-------------	--------	----------	-------------

SDG No.: ____

Matrix: Water Level: Low

GC Column (1): DB-624 ID: 0.18(mm)

	I				
Client Sample ID	Lab Sample ID	DBFM #	DCA #	TOL #	BFB #
TB-121316	240-73352-1	110	104	98	103
MRC-SW10A-D-121316	240-73352-2	115	107	94	102
MRC-SW10A-S-121316	240-73352-3	115	109	95	104
MRC-SW10B-D-121316	240-73352-4	115	107	93	103
MRC-SW10B-S-121316	240-73352-5	109	106	98	100
MRC-SW11A-D-121316	240-73352-6	115	107	94	101
MRC-SW11A-S-121316	240-73352-7	115	107	96	102
MRC-SW11B-D-121316	240-73352-8	114	108	96	99
MRC-SW11B-S-121316	240-73352-9	119	108	93	98
MRC-SW12A-D-121316	240-73352-10	120	111	95	100
MRC-SW12A-S-121316	240-73352-11	116	110	95	104
MRC-SW12B-D-121316	240-73352-12	119	109	96	93
MRC-SW12B-S-121316	240-73352-13	117	108	98	94
	MB 240-260599/7	111	101	100	101
	LCS 240-260599/4	107	96	101	107

	QC LIMITS
DBFM = Dibromofluoromethane (Surr)	80-120
DCA = 1,2-Dichloroethane-d4 (Surr)	63-132
TOL = Toluene-d8 (Surr)	73-124
BFB = 4-Bromofluorobenzene (Surr)	73-120

FORM III GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Nam	ab Name: TestAmerica Canton		Job No.: 240-73352-1		
SDG No.	:				
Matrix:	Water	Level: Low	Lab File ID: UXC0628.D		
Lab ID:	LCS 240-260599/4		Client ID:		

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
Acetone	20.0	12.7	63	46-120	
1,1,1,2-Tetrachloroethane	10.0	12.0	120	77-126	
Benzene	10.0	10.7	107	80-120	
Bromodichloromethane	10.0	11.3	113	76-125	
Bromoform	10.0	10.0	100	52-157	
Bromomethane	10.0	5.21	52	24-160	
2-Butanone (MEK)	20.0	16.6	83	54-122	
Carbon disulfide	10.0	10.9	109	58-160	
Carbon tetrachloride	10.0	15.3	153	69-149	*
Chlorobenzene	10.0	10.4	104	80-120	
Chloroethane	10.0	3.23	32	24-147	
Chloroform	10.0	10.9	109	80-120	
1,1-Dichloropropene	10.0	10.7	107	80-120	
Chloromethane	10.0	8.90	89	50-135	
1,1-Dichloroethane	10.0	10.2	102	77-121	
1,2,3-Trichlorobenzene	10.0	8.14	81	53-135	
1,2,3-Trichloropropane	10.0	8.21	82	65-135	
1,2-Dichloroethane	10.0	10.1	101	76-130	
1,1-Dichloroethene	10.0	9.12	91	70-141	
1,2-Dichloropropane	10.0	11.0	110	79-121	
1,2,4-Trimethylbenzene	10.0	9.13	91	77-120	
cis-1,3-Dichloropropene	10.0	10.6	106	75-120	
trans-1,3-Dichloropropene	10.0	8.95	89	65-120	
Ethylbenzene	10.0	10.3	103	80-120	
2-Hexanone	20.0	16.8	84	56-124	
Methylene Chloride	10.0	11.4	114	68-136	
4-Methyl-2-pentanone (MIBK)	20.0	18.5	92	60-131	
Styrene	10.0	10.7	107	80-120	
1,1,2,2-Tetrachloroethane	10.0	7.89	79	61-130	
Tetrachloroethene	10.0	11.2	112	80-123	
Toluene	10.0	10.2	102	80-121	
Trichloroethene	10.0	11.8	118		
Vinyl chloride	10.0	7.43	74	60-129	
Xylenes, Total	20.0	20.3	102		
1,1,1-Trichloroethane	10.0	12.9	129		
1,3-Dichloropropane	10.0	9.35	93		
1,2-Dibromo-3-Chloropropane	10.0	8.93	89		
1,2-Dibromoethane	10.0	9.88	99		
Dichlorodifluoromethane	10.0	12.4	124		
cis-1,2-Dichloroethene	10.0	10.9	109		
trans-1,2-Dichloroethene	10.0	11.3	113		
Isopropylbenzene	10.0	11.0	110		

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM III GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Nam	ab Name: TestAmerica Canton		Job No.: 240-73352-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: UXC0628.D	
Lab ID:	LCS 240-260599/4		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
Methyl tert-butyl ether	10.0	10.6	106	75-126	
1,1,2-Trichlorotrifluoroethane	10.0	11.3	113	65-151	
1,2,4-Trichlorobenzene	10.0	8.15	82	53-137	
2,2-Dichloropropane	10.0	14.1	141	70-137	*
1,2-Dichlorobenzene	10.0	9.62	96		
1,3-Dichlorobenzene	10.0	9.58	96	80-120	
1,4-Dichlorobenzene	10.0	9.62	96	80-120	
2-Chloroethyl vinyl ether	10.0	9.22 J	92	51-138	
Trichlorofluoromethane	10.0	13.7	137	56-161	
2-Chlorotoluene	10.0	9.25	93		
Bromobenzene	10.0	9.19	92	79-120	
Bromochloromethane	10.0	11.3	113		
4-Chlorotoluene	10.0	9.02	90		
4-Isopropyltoluene	10.0	9.90	99		
m-Xylene & p-Xylene	10.0	9.84	98	80-120	
o-Xylene	10.0	10.5	105		
Hexachlorobutadiene	10.0	9.37	94	55-134	
Dibromomethane	10.0	10.3	103	73-127	
Naphthalene	10.0	6.73	67	39-148	
n-Butylbenzene	10.0	9.20	92	66-120	
N-Propylbenzene	10.0	9.37	94	75-121	
sec-Butylbenzene	10.0	9.52	95	72-120	
tert-Butylbenzene	10.0	9.69	97	78-120	
Vinyl acetate	10.0	9.95	100	57-144	
tert-Butyl alcohol	100	100	100	47-137	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM VIII GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab	Name:	TestAmerica	Canton	Job No.:	240-73352-1

SDG No.:

Sample No.: STD8260 240-235700/4 Date Analyzed: 06/23/2016 12:46

Instrument ID: A3UX15 GC Column: DB-624 ID: 0.18(mm)

Lab File ID (Standard): UXC9010.D Heated Purge: (Y/N) N

Calibration ID: 34930

		FB		CBNZd5		DCBd4	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MID-POINT		1646184	5.13	1222360	7.81	530154	10.04
UPPER LIMIT		3292368	5.63	2444720	8.31	1060308	10.54
LOWER LIMIT		823092	4.63	611180	7.31	265077	9.54
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICV 240-235700/14		1661685	5.13	1268289	7.81	530949	10.04
ICV 240-235700/15		1649875	5.13	1270373	7.81	493234	10.04
CCVIS 240-260599/2		1451104	5.03	1214573	7.68	743858	9.93

FB = Fluorobenzene
CBNZd5 = Chlorobenzene-d5
DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Column used to flag values outside QC limits

FORM VIII 8260B

FORM VIII GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TestAmerica Canton Job No.: 240-73352-1

SDG No.:

Sample No.: CCVIS 240-260599/2 Date Analyzed: 12/22/2016 10:48

Instrument ID: A3UX15 GC Column: DB-624 ID: 0.18(mm)

Lab File ID (Standard): UXC0630.D Heated Purge: (Y/N) N

Calibration ID: 36079

		FB		CBNZd5		DCBd4	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		1451104	5.03	1214573	7.68	743858	9.93
UPPER LIMIT		2902208	5.53	2429146	8.18	1487716	10.43
LOWER LIMIT		725552	4.53	607287	7.18	371929	9.43
LAB SAMPLE ID	CLIENT SAMPLE ID						
MB 240-260599/7		1409598	5.03	1212636	7.68	676660	9.93
240-73352-1	TB-121316	1370505	5.03	1130787	7.68	654568	9.93
240-73352-2	MRC-SW10A-D-121316	1302816	5.03	1120092	7.68	656973	9.93
240-73352-3	MRC-SW10A-S-121316	1299123	5.03	1097899	7.68	628119	9.93
240-73352-4	MRC-SW10B-D-121316	1267624	5.03	1072095	7.68	634017	9.93
240-73352-5	MRC-SW10B-S-121316	1375621	5.03	1139095	7.68	641993	9.93
240-73352-6	MRC-SW11A-D-121316	1265447	5.03	1082316	7.68	623806	9.93
240-73352-7	MRC-SW11A-S-121316	1283158	5.03	1100431	7.68	635445	9.93
240-73352-8	MRC-SW11B-D-121316	1307750	5.03	1115789	7.68	627914	9.93
240-73352-9	MRC-SW11B-S-121316	1218199	5.03	1057887	7.68	522686	9.93
240-73352-10	MRC-SW12A-D-121316	1260103	5.03	1076267	7.68	565664	9.93
240-73352-11	MRC-SW12A-S-121316	1259002	5.03	1076845	7.68	678607	9.93
240-73352-12	MRC-SW12B-D-121316	1244428	5.03	1045001	7.68	473337	9.93
240-73352-13	MRC-SW12B-S-121316	1262603	5.03	1050079	7.68	485396	9.93

FB = Fluorobenzene

CBNZd5 = Chlorobenzene-d5

DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

FORM VIII 8260B

GC/MS VOA ANALYSIS RUN LOG

Lab Name: TestAmerica Canton	Job No.: 240-73352-1
SDG No.:	
Instrument ID: A3UX15	Start Date: 06/23/2016 11:35
Analysis Batch Number: 235700	End Date: 06/23/2016 23:14

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 240-235700/1		06/23/2016 11:35	1	BFB619.D	DB-624 0.18 (mm)
STD8260 240-235700/2		06/23/2016 12:01	1	UXC9008.D	DB-624 0.18 (mm)
IC STD8260 240-235700/3		06/23/2016 12:23	1	UXC9009.D	DB-624 0.18(mm)
STD8260 240-235700/4 ICIS		06/23/2016 12:46	1	UXC9010.D	DB-624 0.18(mm)
STD8260 240-235700/5		06/23/2016 13:08	1	UXC9011.D	DB-624 0.18(mm)
STD8260 240-235700/6		06/23/2016 13:31	1	UXC9012.D	DB-624 0.18(mm)
STD8260 240-235700/7 IC		06/23/2016 13:53	1	UXC9013.D	DB-624 0.18 (mm)
ICV 240-235700/14		06/23/2016 14:16	1	UXC9014.D	DB-624 0.18(mm)
STD 240-235700/8 IC		06/23/2016 14:38	1	UXC9015.D	DB-624 0.18(mm)
STD 240-235700/9 IC		06/23/2016 15:00	1	UXC9016.D	DB-624 0.18(mm)
STD 240-235700/10 IC		06/23/2016 15:22	1	UXC9017.D	DB-624 0.18(mm)
STD 240-235700/11 IC		06/23/2016 15:45	1	UXC9018.D	DB-624 0.18(mm)
STD 240-235700/12 IC		06/23/2016 16:07	1	UXC9019.D	DB-624 0.18(mm)
STD 240-235700/13 IC		06/23/2016 16:30	1	UXC9020.D	DB-624 0.18(mm)
ICV 240-235700/15		06/23/2016 16:52	1	UXC9021.D	DB-624 0.18(mm)
ZZZZZ		06/23/2016 17:15	1		DB-624 0.18(mm)
ZZZZZ		06/23/2016 18:00	1		DB-624 0.18(mm)
ZZZZZ		06/23/2016 18:23	1		DB-624 0.18(mm)
ZZZZZ		06/23/2016 18:45	1		DB-624 0.18(mm)
ZZZZZ		06/23/2016 19:08	1		DB-624 0.18(mm)
ZZZZZ		06/23/2016 19:30	1		DB-624 0.18 (mm)
ZZZZZ		06/23/2016 19:53	1		DB-624 0.18 (mm)
ZZZZZ		06/23/2016 20:15	1		DB-624 0.18(mm)
ZZZZZ		06/23/2016 20:37	1		DB-624 0.18 (mm)
ZZZZZ		06/23/2016 21:00	1		DB-624 0.18(mm)
ZZZZZ		06/23/2016 21:22	1		DB-624 0.18 (mm)
ZZZZZ		06/23/2016 21:45	4		DB-624 0.18 (mm)
ZZZZZ		06/23/2016 22:07	1		DB-624 0.18(mm)
ZZZZZ		06/23/2016 22:30	1		DB-624 0.18 (mm)
ZZZZZ		06/23/2016 22:52	1		DB-624 0.18 (mm)
ZZZZZ		06/23/2016 23:14	1		DB-624 0.18 (mm)

GC/MS VOA ANALYSIS RUN LOG

Lab Name: TestAmerica Canton	Job No.: 240-73352-1
SDG No.:	
Instrument ID: A3UX15	Start Date: 12/22/2016 08:59
Analysis Batch Number: 260599	End Date: 12/22/2016 20:54

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 240-260599/1		12/22/2016 08:59	1	BFB61222.D	DB-624 0.18(mm)
LCS 240-260599/4		12/22/2016 10:03	1	UXC0628.D	DB-624 0.18(mm)
CCV 240-260599/3		12/22/2016 10:25	1	UXC0629.D	DB-624 0.18(mm)
CCVIS 240-260599/2		12/22/2016 10:48	1	UXC0630.D	DB-624 0.18(mm)
MB 240-260599/7		12/22/2016 11:33	1	UXC0632.D	DB-624 0.18(mm)
ZZZZZ		12/22/2016 12:18	100		DB-624 0.18(mm)
ZZZZZ		12/22/2016 12:40	2		DB-624 0.18(mm)
ZZZZZ		12/22/2016 13:02	10		DB-624 0.18(mm)
ZZZZZ		12/22/2016 13:25	5		DB-624 0.18(mm)
ZZZZZ		12/22/2016 13:48	142.86		DB-624 0.18(mm)
ZZZZZ		12/22/2016 14:10	142.86		DB-624 0.18(mm)
ZZZZZ		12/22/2016 14:55	142.86		DB-624 0.18(mm)
240-73352-1		12/22/2016 15:17	1	UXC0642.D	DB-624 0.18(mm)
240-73352-2		12/22/2016 15:39	1	UXC0643.D	DB-624 0.18(mm)
240-73352-3		12/22/2016 16:02	1	UXC0644.D	DB-624 0.18(mm)
240-73352-4		12/22/2016 16:25	1	UXC0645.D	DB-624 0.18(mm)
240-73352-5		12/22/2016 16:47	1	UXC0646.D	DB-624 0.18(mm)
240-73352-6		12/22/2016 17:10	1	UXC0647.D	DB-624 0.18(mm)
240-73352-7		12/22/2016 17:33	1	UXC0648.D	DB-624 0.18(mm)
240-73352-8		12/22/2016 17:55	1	UXC0649.D	DB-624 0.18(mm)
240-73352-9		12/22/2016 18:17	1	UXC0650.D	DB-624 0.18(mm)
240-73352-10		12/22/2016 18:40	1	UXC0651.D	DB-624 0.18(mm)
240-73352-11		12/22/2016 19:02	1	UXC0652.D	DB-624 0.18 (mm)
240-73352-12		12/22/2016 19:24	1	UXC0653.D	DB-624 0.18 (mm)
240-73352-13		12/22/2016 19:46	1	UXC0654.D	DB-624 0.18 (mm)
ZZZZZ		12/22/2016 20:09	1000		DB-624 0.18(mm)
ZZZZZ		12/22/2016 20:31	625		DB-624 0.18(mm)
ZZZZZ		12/22/2016 20:54	16666. 67		DB-624 0.18(mm)

SAMPLE IDENTIFICATION MRC-SW10A-D-121316

COMPOUND	Trichloroethene

COMPOUND AREA	29515
INTERNAL STANDARD AMOUNT	10
DILUTION FACTOR	1
INTERNAL STANDARD AREA	1302816
AVERAGE RRF	0.3242

0.70 μg/L

29515 x 10 x 1 / 1302816 x 0.3242

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Canton	Job No.: 240-73352-1						
SDG No.:							
Client Sample ID: MRC-SW10A-D-121316	Lab Sample ID: 240-73352-2						
Matrix: Water	Lab File ID: UXC0643.D						
Analysis Method: 8260B	Date Collected: 12/13/2016 09:16						
Sample wt/vol: 5(mL)	Date Analyzed: 12/22/2016 15:39						
Soil Aliquot Vol:	Dilution Factor: 1						
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)						
% Moisture:	Level: (low/med) Low						

Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	2.6	J	10	1.8
630-20-6	1,1,1,2-Tetrachloroethane	0.46	U	1.0	0.46
71-43-2	Benzene	0.28	U	1.0	0.28
75-27-4	Bromodichloromethane	0.30	U	1.0	0.30
75-25-2	Bromoform	0.43	U	1.0	0.43
74-83-9	Bromomethane	0.42	U	1.0	0.42
78-93-3	2-Butanone (MEK)	1.0	U	10	1.0
75-15-0	Carbon disulfide	0.34	U	1.0	0.34
56-23-5	Carbon tetrachloride	0.35	U *	1.0	0.35
108-90-7	Chlorobenzene	0.32	U	1.0	0.32
75-00-3	Chloroethane	0.41	U	1.0	0.41
67-66-3	Chloroform	0.31	U	1.0	0.31
563-58-6	1,1-Dichloropropene	0.28	U	1.0	0.28
74-87-3	Chloromethane	0.43	U	1.0	0.43
75-34-3	1,1-Dichloroethane	0.25	U	1.0	0.25
87-61-6	1,2,3-Trichlorobenzene	0.35	U	1.0	0.35
96-18-4	1,2,3-Trichloropropane	0.54	U	1.0	0.54
107-06-2	1,2-Dichloroethane	0.30	U	1.0	0.30
75-35-4	1,1-Dichloroethene	0.27	U	1.0	0.27
526-73-8	1,2,3-Trimethylbenzene	0.22	U	5.0	0.22
78-87-5	1,2-Dichloropropane	0.30	U	1.0	0.30
95-63-6	1,2,4-Trimethylbenzene	0.24	U	1.0	0.24
10061-01-5	cis-1,3-Dichloropropene	0.26	U	1.0	0.26
10061-02-6	trans-1,3-Dichloropropene	0.31	U	1.0	0.31
100-41-4	Ethylbenzene	0.26	U	1.0	0.26
591-78-6	2-Hexanone	1.2	U	10	1.2
75-09-2	Methylene Chloride	0.53	U	1.0	0.53
108-10-1	4-Methyl-2-pentanone (MIBK)	0.71	U	10	0.71
100-42-5	Styrene	0.23	U	1.0	0.23
79-34-5	1,1,2,2-Tetrachloroethane	0.32	U	1.0	0.32
127-18-4	Tetrachloroethene	0.30	U	1.0	0.30
108-88-3	Toluene	0.23	U	1.0	0.23
79-01-6	Trichloroethene	0.70	J	1.0	0.33
75-01-4	Vinyl chloride	0.45	U	1.0	0.45
1330-20-7	Xylenes, Total	0.24	U	2.0	0.24
71-55-6	1,1,1-Trichloroethane	0.23	U	1.0	0.23

Analysis Batch No.: 260599

Report Date: 23-Dec-2016 08:25:54 Chrom Revision: 2.2 05-Dec-2016 12:37:22

TestAmerica Canton
Target Compound Quantitation Report

Data File: \ChromNA\Canton\ChromData\A3UX15\20161222-61021.b\UXC0643.D

Lims ID: 240-73352-B-2

Client ID: MRC-SW10A-D-121316

Sample Type: Client

Inject. Date: 22-Dec-2016 15:39:30 ALS Bottle#: 17 Worklist Smp#: 44

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 240-0061021-044

Misc. Info.: C61222A,8260LLUX15,,43582

Operator ID: Instrument ID: A3UX15

Method: \\ChromNA\Canton\ChromData\A3UX15\20161222-61021.b\8260_15.m

Limit Group: MSV 8260B ICAL

Last Update:23-Dec-2016 08:24:55Calib Date:17-Sep-2016 00:05:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\ChromNA\Canton\ChromData\A3UX15\20160916-58103.b\UXC8208.D

Column 1 : DB-624 (0.18 mm) Det: MS SCAN

Process Host: XAWRK009

First Level Reviewer: evansle Date: 23-Dec-2016 08:14:07

First Level Reviewer: evansle	Date:			23-Dec-2016 08:14:07				
		RT	Exp RT	Dlt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	Flags
* 45	٠,	- aa-	5 000	0.004	00/	100001/	10.0	
* 1 Fluorobenzene	96	5.027	5.028	-0.001	99 (1302816	10.0	
* 2 Chlorobenzene-d5	117	7.684	7.684	0.000	85	1120092	10.0	
* 3 1,4-Dichlorobenzene-d4	152	9.925	9.913	0.012	93	656973	10.0	
\$ 4 Dibromofluoromethane (Surr	113	4.470	4.470	0.000	95	312395	9.22	
\$ 5 1,2-Dichloroethane-d4 (Sur	65	4.755	4.755	0.000	0	350603	8.54	
\$ 6 Toluene-d8 (Surr)	98	6.379	6.379	0.000	93	1305314	7.55	
\$ 7 4-Bromofluorobenzene (Surr	95	8.798	8.798	0.000	97	485204	8.21	
9 Dichlorodifluoromethane	85		1.446				ND	
10 Chloromethane	50		1.588				ND	
11 Vinyl chloride	62		1.683				ND	
13 Bromomethane	94		1.956				ND	
14 Chloroethane	64		2.039				ND	
16 Trichlorofluoromethane	101		2.217				ND	
19 1,1-Dichloroethene	96		2.644				ND	
20 1,1,2-Trichloro-1,2,2-trif	151		2.667				ND	
22 Acetone	43	2.703	2.703	0.000	99	43128	2.60	
24 Carbon disulfide	76		2.834				ND	
28 Methylene Chloride	84		3.047				ND	
29 2-Methyl-2-propanol	59		3.130				ND	
31 Methyl tert-butyl ether	73		3.249				ND	
30 trans-1,2-Dichloroethene	96		3.260				ND	
34 1,1-Dichloroethane	63		3.604				ND	
36 Vinyl acetate	43		3.640				ND	
35 Isopropyl ether	87		3.640				ND	
38 Tert-butyl ethyl ether	59		3.925				ND	
40 2,2-Dichloropropane	77		4.079				ND	
39 cis-1,2-Dichloroethene	96	4.079	4.079	0.000	75	7484	0.1674	
41 2-Butanone (MEK)	43	4.103	4.091	0.013	63	5493	0.4143	
45 Chlorobromomethane	128		4.280				ND	
47 Chloroform	83		4.340			ND		
48 1,1,1-Trichloroethane	97		4.494				ND	
			5	450 (40	_			

Report Date: 23-Dec-2016 08:25:54 Chrom Revision: 2.2 05-Dec-2016 12:37:22

Data File: \ChromNA\Canton\ChromData\A3UX15\20161222-61021.b\UXC0643.D

Data File: \\ChromNA\C	antony	Suromua	ita\A3UX I	5\201612.	22-61	021.b\UXC06	43.D	
Compound	Cia	RT (min.)	Exp RT	Dlt RT		Docnopco	OnCol Amt	Flogs
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	Flags
50 Carbon tetrachloride	117		4.624				ND	
51 1,1-Dichloropropene	75		4.624				ND	
53 Benzene	78		4.802				ND	
54 1,2-Dichloroethane	62		4.826				ND	
55 Tert-amyl methyl ether	73		4.861				ND	
58 Trichloroethene	130	5.324	5.336	-0.012	94	29515	0.6988	
61 1,2-Dichloropropane	63		5.537				ND	
63 Dibromomethane	93		5.644				ND	
65 Dichlorobromomethane	83		5.763				ND	
67 2-Chloroethyl vinyl ether	63		6.012				ND	
68 cis-1,3-Dichloropropene	75		6.142				ND	
69 4-Methyl-2-pentanone (MIBK	43		6.272				ND	
70 Toluene	91	6.439	6.438	0.001	96	40386	0.1992	
71 trans-1,3-Dichloropropene	75		6.640				ND	
74 Tetrachloroethene	164		6.925				ND	
75 1,3-Dichloropropane	76		6.960				ND	
76 2-Hexanone	43		7.020				ND	
79 Chlorodibromomethane	129		7.162				ND	
80 Ethylene Dibromide	107		7.280				ND	
82 Chlorobenzene	112		7.719				ND	
83 1,1,1,2-Tetrachloroethane	131		7.790				ND	
84 Ethylbenzene	106		7.802				ND	
85 m-Xylene & p-Xylene	91	7.909	7.909	0.000	92	31221	0.1826	
86 o-Xylene	106	8.289	8.288	0.001	96	8563	0.1054	
87 Styrene	104		8.312				ND	
88 Bromoform	173		8.502				ND	
89 Isopropylbenzene	105		8.632				ND	
93 1,1,2,2-Tetrachloroethane	83		8.941				ND	
92 Bromobenzene	156		8.952				ND	
94 1,2,3-Trichloropropane	110		8.988				ND	
96 N-Propylbenzene	120		9.036				ND	
97 2-Chlorotoluene	126		9.130				ND	
99 4-Chlorotoluene	91		9.225				ND	
101 tert-Butylbenzene	119		9.522				ND	
103 1,2,4-Trimethylbenzene	105		9.569				ND	
105 sec-Butylbenzene	105		9.735				ND	
106 1,3-Dichlorobenzene	146		9.854				ND	
107 4-Isopropyltoluene	119		9.877				ND	
108 1,4-Dichlorobenzene	146 105		9.937				ND	
109 1,2,3-Trimethylbenzene			9.984				ND	
111 n-Butylbenzene	91 146		10.281				ND	
112 1,2-Dichlorobenzene	146		10.316				ND	
113 1,2-Dibromo-3-Chloropropan	157		11.099				ND	
115 1,2,4-Trichlorobenzene 116 Hexachlorobutadiene	180 225		11.905				ND	
	225 128		12.059				ND ND	
117 Naphthalene	128		12.154				ND ND	
118 1,2,3-Trichlorobenzene	106		12.391		0		0.2880	
S 129 Xylenes, Total	100				U		0.2880	

FORM VI GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Canton Job No.: 240-73352-1 Analy Batch No.: 235700

SDG No.:

Instrument ID: A3UX15 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 06/23/2016 12:01 Calibration End Date: 06/23/2016 13:53 Calibration ID: 34930

ANALYTE			RRF			CURVE		COEFFICIE	ENT #	MIN RRF	%RSD					N R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%RS	SD	OR COD	OR	COD
	LVL 6															
Isobutyl alcohol	0.0044	0.0050	0.0049	0.0045	0.0052	Ave		0.0048			6.2	15	.0			
	0.0049															
Benzene	1.2947 1.3224	1.3476	1.2332	1.2686	1.3184	Ave		1.2975			3.2	15	.0			
1,2-Dichloroethane	0.3772	0.3872	0.3588	0.3580	0.3701	Δττο		0.3701			3.0	15	. 0			
1,2 Dieniolocchane	0.3692	0.3072	0.5500	0.3300	0.5701	7100		0.5701			3.0	13	• 0			
n-Heptane	0.0707	0.0678	0.0671	0.0694	0.0748	Ave		0.0709			5.0	15	.0			
	0.0754								_							
Trichloroethene	0.3257	0.3303	0.3132	0.3205	0.3298	Ave		0.3242			2.0	15	.0			
	0.3255															
Methylcyclohexane	0.4725	0.4829	0.4609	0.4756	0.5114	Ave		0.4846			4.0	15	.0			
	0.5041															
1,2-Dichloropropane	0.2716	0.2967	0.2760	0.2859	0.2981	Ave		0.2882			4.3	15	.0			
77	0.3011	0 1546	0.1476	0 1505	0 1554	_		0.1500			0 0	1-	_			
Dibromomethane	0.1477 0.1578	0.1546	0.1476	0.1507	0.1554	Ave		0.1523			2.8	15	.0			
1,4-Dioxane	0.0018	0.0021	0.0022	0.0020	0.0024	Ave		0.0021			10.4	15	. 0			
I, I Dionane	0.0020	0.0021	0.0022	0.0020	0.0021	1100		0.0021			10.1	1.0				
Bromodichloromethane	0.2755	0.2939	0.2900	0.3099	0.3353	Ave		0.3088			9.1	15	.0			
	0.3482															
2-Chloroethyl vinyl ether	0.1285	0.1385	0.1373	0.1440	0.1608	Ave		0.1461			10.3	15	.0			
	0.1675															
cis-1,3-Dichloropropene	0.2821	0.3138	0.3239	0.3522	0.4012	Lin1	-0.207	0.4144						0.9960	0	.9900
4 27 13 1 0 (27777)	0.4251	0 1650	0.1680	0 1700	0 1000	_		0.1740			0 0	1-	0			
4-Methyl-2-pentanone (MIBK)	0.1559 0.1939	0.1659	0.1670	0.1782	0.1883	Ave		0.1749			8.3	15	.0			
Toluene	1.8454	1.8252	1.6979	1.7996	1.8461	7		1.8097			3.2	1 5	.0			
Totuelle	1.8440	1.0232	1.09/9	1.7990	1.0401	Ave		1.0097			3.2	1 1 2	. 0			
trans-1,3-Dichloropropene	0.2726	0.3002	0.3104	0.3649	0.4144	T.in1	-0 265	0.4348						0.9930	0	.9900
crans 1,5 brenioropropene	0.4490	0.5002	0.5104	0.5045	0.1111	11111	0.203	0.1310						0.5550		. 5500
Ethyl methacrylate	0.3014	0.3234	0.3291	0.3763	0.4067	Ave		0.3599			13.7	15	.0			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.4225															
1,1,2-Trichloroethane	0.3188	0.3102	0.2977	0.3101	0.3157	Ave		0.3112			2.4	15	.0			
	0.3147															
Tetrachloroethene	0.3611	0.3544	0.3269	0.3481	0.3554	Ave		0.3500			3.4	15	.0			
	0.3541															
1,3-Dichloropropane	0.5883	0.5978	0.5552	0.5681	0.5922	Ave		0.5823			2.9	15	.0			
	0.5924															
2-Hexanone	0.1386	0.1470	0.1601	0.1648	0.1828	Ave		0.1630			11.4	15	.0			
	0.1847															

Note: The ml coefficient is the same as Ave RRF for an Ave curve type.

APPENDIX C—CHEMICAL-RESULTS DATA TABLES

Table C-1

Primary VOC and 1,4-Dioxane Results for Surface Water Samples, 2012-2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 1 of 3

Location/Date	Trichloroethene (µg/L)	cis-1,2-Dichloroethene (µg/L)	Vinyl chloride (μg/L)	1,4-Dioxane (µg/L)						
Cow Pen Creek	•	•		•						
SW1A										
2016 (Sept.)	0.27 J			NA						
2016 (June)				0.13 J						
2015 (June)				0.13						
2014 (June)				0.235 J						
2013 (June)	0.33 J									
2012 (June)				NA						
SW2A										
2016 (Sept.)				NA						
2016 (June)				0.16 J						
2016 (June)-Dupl.				0.12 J						
2015 (June)				0.13						
2014 (June)				0.156 J						
2014 (June)				0.1303						
2013 (June)				NA						
2012 (Julie)				NA						
Dark Head Cove										
SW5A1										
2016 (Sept.)				NA						
2016 (June)				NA						
2015 (June)				NA						
2014 (June)				NA						
2014 (June)	1.1	0.17 J		NA						
2013 (June)	0.17 J	0.17 J		NA NA						
SW5A2	0.173			INA						
				NI A						
2016 (Sept.)				NA NA						
2016 (June)				NA						
2015 (June)	0.42J			NA						
2014 (June)	0.3 J			NA						
2013 (June)	1.9	0.26 J		NA						
2012 (June)	0.19 J			NA						
SW5B										
2016 (Sept.)	0.22 J			NA						
2016 (Sept.)-Dupl.				NA						
2016 (June)				NA						
2015 (June)				NA						
2014 (June)				NA						
2013 (June)	1.5	0.35 J		NA						
2012 (June)	0.19 J			NA						
SW6A										
2016 (Sept.)	0.59 J			NA						
2016 (June)	0.26 J			NA						
2016 (June)-Dupl.	0.25 J			NA						
2015 (June)				NA						
2014 (June)	0.52 J			NA						
2013 (June)	0.46 J			NA						
2012 (June)	0.55 J			NA						
SW6B										
2016 (Sept.)	0.62 J			NA						
2016 (June)	0.49J			NA						
2015 (June)				NA						
2013 (June) 2014 (June)	0.39 J			NA NA						
2014 (June)	0.39 J			INA						
2013 (June)	0.81 J			NA						

Table C-1

Primary VOC and 1,4-Dioxane Results for Surface Water Samples, 2012-2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 2 of 3

	rage 2 of 3									
Location/Date	Trichloroethene (µg/L)	cis-1,2-Dichloroethene (µg/L)	Vinyl chloride (µg/L)	1,4-Dioxane (µg/L)						
Dark Head Cove										
SW7A										
2016 (Sept.)	0.56 J			NA						
2016 (June)				NA						
2015 (June)				NA						
2014 (June)	0.44 J			NA						
2013 (June)	0.70 J			NA						
2012 (June)				NA						
SW7B				1,12						
2016 (Sept.)	0.58 J			NA						
2016 (June)				NA NA						
2015 (June)				NA						
2013 (June)	0.49 J			NA NA						
				1						
2013 (June)	0.51 J			NA NA						
2012 (June)	0.32 J			NA						
SW8A	0.61.1			NTA						
2016 (Sept.)	0.61 J			NA NA						
2016 (June)	0.48 J			NA						
2015 (June)				NA						
2014 (June)	0.54 J			NA						
2013 (June)	0.65 J			NA						
2012 (June)	0.66 J			NA						
SW8B										
2016 (Sept.)	0.62 J			NA						
2016 (June)	0.42 J			NA						
2015 (June)				NA						
2014 (June)	0.47 J			NA						
2013 (June)	0.65 J			NA						
2012 (June)	0.82 J			NA						
SW9A										
2016 (Sept.)	0.52 J			NA						
2016 (June)				NA						
2015 (June)				NA						
2014 (June)	0.45 J			NA						
2013 (June)	0.62 J			NA						
2012 (June)	0.33 J			NA						
SW9B										
2016 (Sept.)	0.62 J			NA						
2016 (June)				NA						
2015 (June)				NA						
2014 (June)	0.47 J			NA						
2013 (June)	0.35 J			NA						
2012 (June)	0.34 J			NA						
SW10A-S	0.519			11/1						
2016 (Dec.)	4.4			NA						
SW10A-D	7.4			INA						
2016 (Dec.)	0.70 J			NA						
` ′	0.70 J			INA						
<u>SW10B-S</u>	1.2			NT A						
2016 (Dec.)	1.2			NA						
SW10B-D	0.117									
2016 (Dec.)	0.44 J			NA						
SW11A-S										
2016 (Dec.)	4.1			NA						
SW11A-D										
2016 (Dec.)	2.7	0.49 J		NA						

Table C-1

Primary VOC and 1,4-Dioxane Results for Surface Water Samples, 2012-2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 3 of 3

	Trichloroethene	cis-1,2-Dichloroethene	Vinyl chloride	1,4-Dioxane
Location/Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Dark Head Cove	*	•		•
2016 (Dec.)	1.2			NA
SW11B-D				
2016 (Dec.)	3.7	2.8		NA
SW12A-S				
2016 (Dec.)	4.1			NA
SW12A-D				
2016 (Dec.)	2.4	0.45 J		NA
SW12B-S				
2016 (Dec.)	1.4			NA
SW12B-D				
2016 (Dec.)	7.8	5.5		NA

-- not detected

NA - not analyzed

J - estimated concentration

VOC - volatile organic compound

 $\mu g \! / \! L$ - micrograms per liter

Table C-2

Chemical Results for Surface Water Samples - June 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 1 of 8

LOCATION	MRC-SW1A	1	MRC-SW2A	
SAMPLE ID	MRC-SW1A-061316	MRC-SW2A-061316	MRC-SW2A-061316-AVG	MRC-SW2A-061316-D
SAMPLE DATE	20160613	20160613	20160613	20160613
VOLATILES (UG/L)	20100013	20100013	20100013	20100013
1,1,1-TRICHLOROETHANE	0.44 U	0.44 U	0.44 U	NA
1,1,2,2-TETRACHLOROETHANE	0.22 U	0.22 U	0.22 U	NA
1,1,2-TRICHLOROETHANE	0.24 U	0.24 U	0.24 U	NA
1.1.2-TRICHLOROTRIFLUOROETHANE	0.45 U	0.45 U	0.45 U	NA
1,1-DICHLOROETHANE	0.3 U	0.3 U	0.3 U	NA
1,1-DICHLOROETHENE	0.45 U	0.45 U	0.45 U	NA
1,2,4-TRICHLOROBENZENE	0.32 U	0.32 U	0.32 U	NA
1.2-DIBROMO-3-CHLOROPROPANE	0.82 UJ	0.82 UJ	0.82 UJ	NA
1.2-DIBROMOETHANE	0.32 U	0.32 U	0.32 U	NA
1,2-DICHLOROBENZENE	0.25 U	0.25 U	0.25 U	NA
1,2-DICHLOROETHANE	0.23 U	0.23 U	0.23 U	NA
1,2-DICHLOROPROPANE	0.25 U	0.25 U	0.25 U	NA
1,3-DICHLOROBENZENE	0.19 U	0.19 U	0.19 U	NA
1,4-DICHLOROBENZENE	0.27 U	0.27 U	0.27 U	NA
2-BUTANONE	0.53 U	0.53 U	0.53 U	NA
2-HEXANONE	0.48 U	0.48 U	0.48 U	NA
4-METHYL-2-PENTANONE	0.99 U	0.99 U	0.99 U	NA
ACETONE	0.94 U	0.94 U	0.94 U	NA
BENZENE	0.35 U	0.35 U	0.35 U	NA
BROMODICHLOROMETHANE	0.29 U	0.29 U	0.29 U	NA
BROMOFORM	0.56 U	0.56 U	0.56 U	NA
BROMOMETHANE	0.44 U	0.44 U	0.44 U	NA
CARBON DISULFIDE	0.38 U	0.38 U	0.38 U	NA
CARBON TETRACHLORIDE	0.43 U	0.43 U	0.43 U	NA
CHLOROBENZENE	0.25 U	0.25 U	0.25 U	NA
CHLORODIBROMOMETHANE	0.43 U	0.43 U	0.43 U	NA
CHLOROETHANE	0.32 U	0.32 U	0.32 U	NA
CHLOROFORM	0.25 U	0.25 U	0.25 U	NA
CHLOROMETHANE	0.44 UJ	0.44 UJ	0.44 UJ	NA
CIS-1,2-DICHLOROETHENE	0.26 U	0.26 U	0.26 U	NA
CIS-1,3-DICHLOROPROPENE	0.46 U	0.46 U	0.46 U	NA
CYCLOHEXANE	0.45 U	0.45 U	0.45 U	NA
DICHLORODIFLUOROMETHANE	0.32 UJ	0.32 UJ	0.32 UJ	NA
ETHYLBENZENE	0.25 U	0.25 U	0.25 U	NA
ISOPROPYLBENZENE	0.35 U	0.35 U	0.35 U	NA
METHYL ACETATE	2.3 U	2.3 U	2.3 U	NA
METHYL CYCLOHEXANE	0.43 U	0.43 U	0.43 U	NA

Table C-2

Chemical Results for Surface Water Samples - June 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 2 of 8

LOCATION	MRC-SW1A	MRC-SW2A					
SAMPLE ID	MRC-SW1A-061316	MRC-SW2A-061316	MRC-SW2A-061316-AVG	MRC-SW2A-061316-D			
SAMPLE DATE	20160613	20160613	20160613	20160613			
METHYL TERT-BUTYL ETHER	0.2 U	0.2 U	0.2 U	NA			
METHYLENE CHLORIDE	0.33 U	0.33 U	0.33 U	NA			
STYRENE	0.45 U	0.45 U	0.45 U	NA			
TETRACHLOROETHENE	0.31 U	0.31 U	0.31 U	NA			
TOLUENE	0.23 U	0.23 U	0.23 U	NA			
TOTAL XYLENES	0.52 U	0.52 U	0.52 U	NA			
TRANS-1,2-DICHLOROETHENE	0.3 U	0.3 U	0.3 U	NA			
TRANS-1,3-DICHLOROPROPENE	0.56 U	0.56 U	0.56 U	NA			
TRICHLOROETHENE	0.22 U	0.22 U	0.22 U	NA			
TRICHLOROFLUOROMETHANE	0.49 UJ	0.49 UJ	0.49 UJ	NA			
VINYL CHLORIDE	0.29 U	0.29 U	0.29 U	NA			
SEMIVOLATILES (UG/L)							
1,4-DIOXANE	0.13 J	0.16 J	0.14	0.12 J			
PCBS (UG/L)							
DECACHLOROBIPHENYL	NA	NA	NA	NA			
DICHLOROBIPHENYLS	NA	NA	NA	NA			
HEPTACHLOROBIPHENYLS	NA	NA	NA	NA			
HEXACHLOROBIPHENYLS	NA	NA	NA	NA			
MONOCHLOROBIPHENYLS	NA	NA	NA	NA			
NONACHLOROBIPHENYLS	NA	NA	NA	NA			
OCTACHLOROBIPHENYLS	NA	NA	NA	NA			
PENTACHLOROBIPHENYLS	NA	NA	NA	NA			
TETRACHLOROBIPHENYLS	NA	NA	NA	NA			
TRICHLOROBIPHENYLS	NA	NA	NA	NA			

Table C-2

Chemical Results for Surface Water Samples - June 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 3 of 8

rage 3 01 6									
LOCATION	MRC-SW5A1	MRC-SW5A2	MRC-SW5B						
SAMPLE ID	MRC-SW5A1-061316	MRC-SW5A2-061316	MRC-SW5B-061316	MRC-SW6A-061316					
SAMPLE DATE	20160613	20160613	20160613	20160613					
VOLATILES (UG/L)									
1,1,1-TRICHLOROETHANE	0.44 U	0.44 U	0.44 U	0.44 U					
1,1,2,2-TETRACHLOROETHANE	0.22 U	0.22 U	0.22 U	0.22 U					
1,1,2-TRICHLOROETHANE	0.24 U	0.24 U	0.24 U	0.24 U					
1,1,2-TRICHLOROTRIFLUOROETHANE	0.45 U	0.45 U	0.45 U	0.45 U					
1,1-DICHLOROETHANE	0.3 U	0.3 U	0.3 U	0.3 U					
1,1-DICHLOROETHENE	0.45 U	0.45 U	0.45 U	0.45 U					
1,2,4-TRICHLOROBENZENE	0.32 U	0.32 U	0.32 U	0.32 U					
1,2-DIBROMO-3-CHLOROPROPANE	0.82 UJ	0.82 UJ	0.82 UJ	0.82 UJ					
1,2-DIBROMOETHANE	0.32 U	0.32 U	0.32 U	0.32 U					
1,2-DICHLOROBENZENE	0.25 U	0.25 U	0.25 U	0.25 U					
1,2-DICHLOROETHANE	0.23 U	0.23 U	0.23 U	0.23 U					
1,2-DICHLOROPROPANE	0.25 U	0.25 U	0.25 U	0.25 U					
1,3-DICHLOROBENZENE	0.19 U	0.19 U	0.19 U	0.19 U					
1,4-DICHLOROBENZENE	0.27 U	0.27 U	0.27 U	0.27 U					
2-BUTANONE	0.53 U	0.53 U	0.53 U	0.53 U					
2-HEXANONE	0.48 U	0.48 U	0.48 U	0.48 U					
4-METHYL-2-PENTANONE	0.99 U	0.99 U	0.99 U	0.99 U					
ACETONE	0.94 U	0.94 U	0.94 U	0.94 U					
BENZENE	0.35 U	0.35 U	0.35 U	0.35 U					
BROMODICHLOROMETHANE	0.29 U	0.29 U	0.29 U	0.29 U					
BROMOFORM	0.56 U	0.56 U	0.56 U	0.56 U					
BROMOMETHANE	0.44 UJ	0.44 UJ	0.44 UJ	0.44 UJ					
CARBON DISULFIDE	0.38 U	0.38 U	0.38 U	0.38 U					
CARBON TETRACHLORIDE	0.43 U	0.43 U	0.43 U	0.43 U					
CHLOROBENZENE	0.25 U	0.25 U	0.25 U	0.25 U					
CHLORODIBROMOMETHANE	0.43 U	0.43 U	0.43 U	0.43 U					
CHLOROETHANE	0.32 U	0.32 U	0.32 U	0.32 U					
CHLOROFORM	0.25 U	0.25 U	0.25 U	0.25 U					
CHLOROMETHANE	0.44 UJ	0.44 UJ	0.44 UJ	0.44 UJ					
CIS-1,2-DICHLOROETHENE	0.26 U	0.26 U	0.26 U	0.26 U					
CIS-1,3-DICHLOROPROPENE	0.46 U	0.46 U	0.46 U	0.46 U					
CYCLOHEXANE	0.45 U	0.45 U	0.45 U	0.45 U					
DICHLORODIFLUOROMETHANE	0.32 UJ	0.32 UJ	0.32 UJ	0.32 UJ					
ETHYLBENZENE	0.25 U	0.25 U	0.25 U	0.25 U					
ISOPROPYLBENZENE	0.35 U	0.35 U	0.35 U	0.35 U					
METHYL ACETATE	2.3 U	2.3 U	2.3 U	2.3 U					
METHYL CYCLOHEXANE	0.43 U	0.43 U	0.43 U	0.43 U					

Table C-2

Chemical Results for Surface Water Samples - June 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 4 of 8

LOCATION	MRC-SW5A1	MRC-SW5A2	MRC-SW5B	
SAMPLE ID	MRC-SW5A1-061316	MRC-SW5A2-061316	MRC-SW5B-061316	MRC-SW6A-061316
SAMPLE DATE	20160613	20160613	20160613	20160613
METHYL TERT-BUTYL ETHER	0.2 U	0.2 U	0.2 U	0.2 U
METHYLENE CHLORIDE	0.33 U	0.33 U	0.33 U	0.33 U
STYRENE	0.45 U	0.45 U	0.45 U	0.45 U
TETRACHLOROETHENE	0.31 U	0.31 U	0.31 U	0.31 U
TOLUENE	0.23 U	0.23 U	0.23 U	0.23 U
TOTAL XYLENES	0.52 U	0.52 U	0.52 U	0.52 U
TRANS-1,2-DICHLOROETHENE	0.3 U	0.3 U	0.3 U	0.3 U
TRANS-1,3-DICHLOROPROPENE	0.56 U	0.56 U	0.56 U	0.56 U
TRICHLOROETHENE	0.22 U	0.22 U	0.22 U	0.26 J
TRICHLOROFLUOROMETHANE	0.49 UJ	0.49 UJ	0.49 UJ	0.49 UJ
VINYL CHLORIDE	0.29 U	0.29 U	0.29 U	0.29 U
SEMIVOLATILES (UG/L)				
1,4-DIOXANE	NA	NA	NA	NA
PCBS (UG/L)				
DECACHLOROBIPHENYL	0.069 U	0.069 U	0.067 U	0.067 U
DICHLOROBIPHENYLS	0.0054 U	0.0053 U	0.0052 U	0.0052 U
HEPTACHLOROBIPHENYLS	0.03 U	0.029 U	0.029 U	0.029 U
HEXACHLOROBIPHENYLS	0.015 U	0.015 U	0.014 U	0.014 U
MONOCHLOROBIPHENYLS	0.0056 U	0.0055 U	0.0054 U	0.0054 U
NONACHLOROBIPHENYLS	0.049 U	0.048 U	0.047 U	0.047 U
OCTACHLOROBIPHENYLS	0.038 U	0.037 U	0.037 U	0.037 U
PENTACHLOROBIPHENYLS	0.014 U	0.014 U	0.013 U	0.013 U
TETRACHLOROBIPHENYLS	0.013 U	0.013 U	0.013 U	0.013 U
TRICHLOROBIPHENYLS	0.0064 U	0.0064 U	0.0063 U	0.0063 U

Table C-2

Chemical Results for Surface Water Samples - June 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 5 of 8

SAMPLE DATE DIGOGIS	LOCATION	MRC-SW6A	1 age 3 of 0	MRC-SW6B	MRC-SW7A
Nample Date 20160613 201606			MBC SWEA 061316 D		
VOLATILES (UG/L)					
1.1_TRICHLOROETHANE		20160613	20160613	20160613	20160613
1.1,2,2-TETRACHLOROETHANE 0.22 U 0.22 U 0.22 U 0.22 U 0.22 U 0.24 U 0.24 U 0.24 U 0.24 U 0.24 U 0.24 U 0.24 U 0.24 U 0.24 U 0.24 U 0.24 U 0.24 U 0.24 U 0.24 U 0.24 U 0.25 U 0.35 U 0.35 U 0.35 U 0.35 U 0.31 U 0.31 U 0.31 U 0.32 U		0.44.11	0.44.11	0.44.11	0.44.11
1,1,2-TRICHLOROETHANE 0.24 U 0.24 U 0.24 U 0.24 U 0.25 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.30 U 0.3 U 0.3 U 0.3 U 0.3 U 0.3 U 0.3 U 0.3 U 0.3 U 0.32 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.32 U	, ,				
1,1,2-TICHLOROTRIFLUOROETHANE 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.3 U 0.3 U 0.3 U 0.3 U 0.3 U 0.3 U 0.3 U 0.3 U 0.3 U 0.3 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.32 U 0.25 U 0.27 U 0.27 U 0.27 U	, , ,				
1,1-DICHLOROETHANE	, ,				
1,1-DICHLOROETHENE	, ,				
1,2,4-TRICHLOROBENZENE 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.82 UJ 0.82 UJ 0.82 UJ 0.82 UJ 0.82 UJ 0.82 UJ 0.82 UJ 0.82 UJ 0.82 UJ 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.25 U					
1,2-DIBROMO-3-CHLOROPROPANE 0.82 U 0.82 UJ 0.82 UJ 0.82 UJ 0.82 UJ 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U 0.23 U 0.23 U 0.23 U 0.23 U 0.23 U 0.23 U 0.23 U 0.23 U 0.23 U 0.23 U 0.23 U 0.23 U 0.23 U 0.25 U 0.27 U 0.27 U 0.27 U 0.27 U 0.27 U 0.27 U 0.27 U 0.27 U					
1,2-DIBROMOETHANE	, ,				
1,2-DICHLOROBENZENE 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U 0.23 U 0.23 U 0.23 U 0.23 U 0.23 U 0.23 U 0.23 U 0.23 U 0.25 U 0.27 U 0.28 U 0.28 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.29 U 0.29 U	,				
1,2-DICHLOROETHANE 0.23 U 0.23 U 0.23 U 0.23 U 0.23 U 0.23 U 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.27 U 0.28 U 0.38 U 0.49 U 0.99 U 0.99 U 0.99 U 0.99 U	,				
1,2-DICHLOROPROPANE 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.27 U 0.23 U 0.53 U 0.53 U 0.53 U 0.53 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.99 U	•				
1,3-DICHLOROBENZENE 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.27 U 0.28 U 0.53 U 0.53 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.99 U	,				
1,4-DICHLOROBENZENE 0.27 U 0.27 U 0.27 U 0.27 U 0.27 U 0.27 U 0.27 U 0.27 U 0.27 U 0.27 U 0.27 U 0.27 U 0.27 U 0.27 U 0.27 U 0.27 U 0.27 U 0.27 U 0.28 U 0.53 U 0.53 U 0.53 U 0.53 U 0.48 U 0.49 U 0.99 U	,				
2-BUTANONE 0.53 U 0.53 U 0.53 U 0.53 U 2-HEXANONE 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 4-METHYL-2-PENTANONE 0.99 U 0.99 U 0.99 U 0.99 U 0.99 U ACETONE 0.94 U 0.94 U 0.94 U 0.94 U 0.94 U BENZENE 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U BROMODICHLOROMETHANE 0.29 U 0.29 U 0.29 U 0.29 U BROMOFORM 0.56 U 0.56 U 0.56 U 0.56 U BROMOMETHANE 0.44 U 0.44 U 0.44 UJ 0.44 UJ CARBON DISULFIDE 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U CARBON TETRACHLORIDE 0.43 U 0.4	7-				
2-HEXANONE 0.48 U 0.48 U 0.48 U 0.48 U 4-METHYL-2-PENTANONE 0.99 U 0.99 U 0.99 U 0.99 U 0.99 U ACETONE 0.94 U 0.94 U 0.94 U 0.94 U 0.94 U 0.94 U BENZENE 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U BROMODICHLOROMETHANE 0.29 U 0.29 U 0.29 U 0.29 U 0.29 U 0.29 U BROMOFORM 0.56 U 0.58 U 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U 0.43 U 0.43 U 0.43 U 0.43 U 0.43 U 0.43 U	,				
4-METHYL-2-PENTANONE 0.99 U 0.99 U 0.99 U 0.99 U 0.99 U 0.99 U 0.99 U 0.99 U 0.99 U 0.94 U 0.95 U 0.25 U 0.25 U 0.25 U 0.29 U 0.28 U 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U 0.43 U 0.43 U <td< td=""><td></td><td></td><td></td><td>i</td><td></td></td<>				i	
ACETONE 0.94 U 0.94 U 0.94 U 0.94 U 0.94 U 0.94 U 0.94 U 0.94 U 0.94 U 0.94 U 0.95 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.29 U 0.29 U 0.29 U 0.29 U 0.29 U 0.29 U 0.29 U 0.29 U 0.29 U 0.29 U 0.25 U 0.56 U 0.56 U 0.56 U 0.56 U 0.56 U 0.56 U 0.56 U 0.56 U 0.56 U 0.56 U 0.44 U 0.44 U 0.44 U 0.44 U 0.44 U 0.44 U 0.44 U 0.44 U 0.44 U 0.44 U 0.44 U 0.44 U 0.43 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.25 U					
BENZENE 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.29 U 0.29 U 0.29 U 0.29 U 0.29 U 0.29 U 0.29 U 0.29 U 0.29 U 0.29 U 0.29 U 0.29 U 0.29 U 0.29 U 0.25 U 0.56 U 0.44 UJ 0.44 UJ 0.44 UJ 0.44 UJ 0.44 UJ 0.43 U 0					
BROMODICHLOROMETHANE 0.29 U 0.29 U 0.29 U 0.29 U BROMOFORM 0.56 U 0.56 U 0.56 U 0.56 U 0.56 U BROMOMETHANE 0.44 U 0.44 U 0.44 UJ 0.44 UJ 0.44 UJ CARBON DISULFIDE 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U CARBON TETRACHLORIDE 0.43 U 0.43 U 0.43 U 0.43 U 0.43 U CHLOROBENZENE 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U CHLOROBIBROMOMETHANE 0.43 U 0.43 U 0.43 U 0.43 U 0.43 U CHLOROFTHANE 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U CHLOROMETHANE 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U CHLOROMETHANE 0.44 U 0.44 UJ 0.44 UJ 0.44 UJ 0.44 UJ 0.44 UJ 0.44 UJ 0.44 UJ 0.44 UJ 0.44 UJ 0.44 UJ 0.45 U 0.26 U 0.26 U 0.26 U 0.26 U 0.26 U 0.26 U 0.26 U <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
BROMOFORM 0.56 U 0.56 U 0.56 U 0.56 U BROMOMETHANE 0.44 U 0.44 U 0.44 UJ 0.44 UJ CARBON DISULFIDE 0.38 U 0.38 U 0.38 U 0.38 U CARBON TETRACHLORIDE 0.43 U 0.43 U 0.43 U 0.43 U CHLOROBENZENE 0.25 U 0.25 U 0.25 U 0.25 U CHLORODIBROMOMETHANE 0.43 U 0.43 U 0.43 U 0.43 U CHLOROFTHANE 0.32 U 0.32 U 0.32 U 0.32 U CHLOROFORM 0.25 U 0.25 U 0.25 U 0.25 U CHLOROMETHANE 0.44 U 0.44 UJ 0.44 UJ 0.44 UJ 0.44 UJ CIS-1,2-DICHLOROETHENE 0.26 U 0.26 U 0.26 U 0.26 U 0.26 U CIS-1,3-DICHLOROPROPENE 0.46 U 0.46 U 0.46 U 0.45 U 0.45 U CYCLOHEXANE 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U DICHLORODIFLUOROMETHANE 0.32 U 0.32 UJ 0.32 UJ 0.32 UJ 0.32					
BROMOMETHANE 0.44 U 0.44 U 0.44 UJ 0.44 UJ 0.44 UJ CARBON DISULFIDE 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U CARBON TETRACHLORIDE 0.43 U 0.43 U 0.43 U 0.43 U 0.43 U CHLOROBENZENE 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U CHLORODIBROMOMETHANE 0.43 U 0.43 U 0.43 U 0.43 U 0.43 U CHLOROFORM 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U CHLOROMETHANE 0.44 U 0.44 UJ 0.44 UJ 0.44 UJ 0.44 UJ CIS-1,2-DICHLOROETHENE 0.26 U 0.26 U 0.26 U 0.26 U CIS-1,3-DICHLOROPROPENE 0.46 U 0.46 U 0.46 U 0.46 U CYCLOHEXANE 0.45 U 0.45 U 0.45 U 0.45 U DICHLORODIFLUOROMETHANE 0.32 U 0.32 UJ 0.32 UJ 0.32 UJ ETHYLBENZENE 0.25 U 0.25 U 0.25 U 0.25 U ISOPROPYLBENZENE 0.35 U					
CARBON DISULFIDE 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U 0.43 U 0.43 U 0.43 U 0.43 U 0.25 U 0.25 U 0.25 U 0.25 U 0.43 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U 0.26 U 0.26 U 0.26 U 0.26 U 0.26 U 0.26 U 0.26 U 0.26 U 0.26 U 0.26 U 0.26 U 0.46 U 0.46 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.32 UJ 0.32 UJ 0.32 UJ 0.32 UJ					
CARBON TETRACHLORIDE 0.43 U 0.43 U 0.43 U 0.43 U CHLOROBENZENE 0.25 U 0.25 U 0.25 U 0.25 U CHLORODIBROMOMETHANE 0.43 U 0.43 U 0.43 U 0.43 U CHLOROFORM 0.32 U 0.32 U 0.32 U 0.32 U CHLOROMETHANE 0.44 U 0.44 UJ 0.44 UJ 0.44 UJ CIS-1,2-DICHLOROETHENE 0.26 U 0.26 U 0.26 U 0.26 U CIS-1,3-DICHLOROPROPENE 0.46 U 0.46 U 0.46 U 0.45 U 0.45 U CYCLOHEXANE 0.45 U 0.32 UJ 0.32 UJ 0.32 UJ 0.32 UJ DICHLORODIFLUOROMETHANE 0.32 U 0.32 UJ 0.32 UJ 0.32 UJ 0.32 UJ ETHYLBENZENE 0.25 U 0.25 U 0.25 U 0.25 U 0.35 U 0.35 U					
CHLOROBENZENE 0.25 U 0.25 U 0.25 U CHLORODIBROMOMETHANE 0.43 U 0.43 U 0.43 U CHLOROFTHANE 0.32 U 0.32 U 0.32 U CHLOROFORM 0.25 U 0.25 U 0.25 U CHLOROMETHANE 0.44 U 0.44 UJ 0.44 UJ 0.44 UJ CIS-1,2-DICHLOROETHENE 0.26 U 0.26 U 0.26 U 0.26 U CIS-1,3-DICHLOROPROPENE 0.46 U 0.46 U 0.46 U 0.46 U 0.46 U CYCLOHEXANE 0.45 U 0.45 U 0.45 U 0.45 U 0.32 UJ 0.32 UJ 0.32 UJ 0.32 UJ 0.32 UJ 0.32 UJ 0.32 UJ 0.35 U 0.25 U 0.25 U 0.25 U 0.25 U 0.35					
CHLORODIBROMOMETHANE 0.43 U 0.43 U 0.43 U 0.43 U CHLOROFTHANE 0.32 U 0.32 U 0.32 U 0.32 U CHLOROFORM 0.25 U 0.25 U 0.25 U 0.25 U CHLOROMETHANE 0.44 U 0.44 UJ 0.44 UJ 0.44 UJ CIS-1,2-DICHLOROETHENE 0.26 U 0.26 U 0.26 U 0.26 U CIS-1,3-DICHLOROPROPENE 0.46 U 0.46 U 0.46 U 0.46 U CYCLOHEXANE 0.45 U 0.45 U 0.45 U 0.45 U DICHLORODIFLUOROMETHANE 0.32 U 0.32 UJ 0.32 UJ 0.32 UJ ETHYLBENZENE 0.25 U 0.25 U 0.25 U 0.25 U ISOPROPYLBENZENE 0.35 U 0.35 U 0.35 U 0.35 U					
CHLOROETHANE 0.32 U 0.32 U 0.32 U 0.32 U CHLOROFORM 0.25 U 0.25 U 0.25 U 0.25 U CHLOROMETHANE 0.44 U 0.44 UJ 0.44 UJ 0.44 UJ CIS-1,2-DICHLOROETHENE 0.26 U 0.26 U 0.26 U 0.26 U CIS-1,3-DICHLOROPROPENE 0.46 U 0.46 U 0.46 U 0.46 U CYCLOHEXANE 0.45 U 0.45 U 0.45 U 0.45 U DICHLORODIFLUOROMETHANE 0.32 U 0.32 UJ 0.32 UJ 0.32 UJ ETHYLBENZENE 0.25 U 0.25 U 0.25 U 0.25 U ISOPROPYLBENZENE 0.35 U 0.35 U 0.35 U 0.35 U				i	
CHLOROFORM 0.25 U 0.25 U 0.25 U CHLOROMETHANE 0.44 U 0.44 UJ 0.44 UJ 0.44 UJ CIS-1,2-DICHLOROETHENE 0.26 U 0.26 U 0.26 U 0.26 U CIS-1,3-DICHLOROPROPENE 0.46 U 0.46 U 0.46 U 0.46 U CYCLOHEXANE 0.45 U 0.45 U 0.45 U 0.45 U DICHLORODIFLUOROMETHANE 0.32 U 0.32 UJ 0.32 UJ 0.32 UJ ETHYLBENZENE 0.25 U 0.25 U 0.25 U 0.25 U ISOPROPYLBENZENE 0.35 U 0.35 U 0.35 U 0.35 U					
CHLOROMETHANE 0.44 U 0.44 UJ 0.44 UJ 0.44 UJ CIS-1,2-DICHLOROETHENE 0.26 U 0.26 U 0.26 U 0.26 U CIS-1,3-DICHLOROPROPENE 0.46 U 0.46 U 0.46 U 0.46 U CYCLOHEXANE 0.45 U 0.45 U 0.45 U 0.45 U DICHLORODIFLUOROMETHANE 0.32 U 0.32 UJ 0.32 UJ 0.32 UJ ETHYLBENZENE 0.25 U 0.25 U 0.25 U 0.25 U ISOPROPYLBENZENE 0.35 U 0.35 U 0.35 U 0.35 U					
CIS-1,2-DICHLOROETHENE 0.26 U 0.26 U 0.26 U 0.26 U CIS-1,3-DICHLOROPROPENE 0.46 U 0.46 U 0.46 U 0.46 U CYCLOHEXANE 0.45 U 0.45 U 0.45 U 0.45 U DICHLORODIFLUOROMETHANE 0.32 U 0.32 UJ 0.32 UJ 0.32 UJ ETHYLBENZENE 0.25 U 0.25 U 0.25 U 0.25 U ISOPROPYLBENZENE 0.35 U 0.35 U 0.35 U 0.35 U					
CIS-1,3-DICHLOROPROPENE 0.46 U 0.46 U 0.46 U 0.46 U CYCLOHEXANE 0.45 U 0.45 U 0.45 U 0.45 U DICHLORODIFLUOROMETHANE 0.32 U 0.32 UJ 0.32 UJ 0.32 UJ ETHYLBENZENE 0.25 U 0.25 U 0.25 U 0.25 U ISOPROPYLBENZENE 0.35 U 0.35 U 0.35 U 0.35 U					
CYCLOHEXANE 0.45 U 0.45 U 0.45 U 0.45 U DICHLORODIFLUOROMETHANE 0.32 U 0.32 UJ 0.32 UJ 0.32 UJ ETHYLBENZENE 0.25 U 0.25 U 0.25 U 0.25 U ISOPROPYLBENZENE 0.35 U 0.35 U 0.35 U 0.35 U	,				
DICHLORODIFLUOROMETHANE 0.32 U 0.32 UJ 0.32 UJ 0.32 UJ ETHYLBENZENE 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U ISOPROPYLBENZENE 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U	,				
ETHYLBENZENE 0.25 U 0.25 U 0.25 U 0.25 U ISOPROPYLBENZENE 0.35 U 0.35 U 0.35 U 0.35 U					
ISOPROPYLBENZENE 0.35 U 0.35 U 0.35 U 0.35 U					
IMETHYLACETATE 23 U 23 U 23 U 23 U 23 U	METHYL ACETATE	2.3 U	2.3 U	2.3 U	2.3 U
METHYL CYCLOHEXANE 0.43 U 0.43 U 0.43 U 0.43 U					

Table C-2

Chemical Results for Surface Water Samples - June 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 6 of 8

LOCATION	MRC-SW6A		MRC-SW6B	MRC-SW7A
SAMPLE ID	MRC-SW6A-061316-AVG	MRC-SW6A-061316-D	MRC-SW6B-061316	MRC-SW7A-061316
SAMPLE DATE	20160613	20160613	20160613	20160613
METHYL TERT-BUTYL ETHER	0.2 U	0.2 U	0.2 U	0.2 U
METHYLENE CHLORIDE	0.33 U	0.33 U	0.33 U	0.33 U
STYRENE	0.45 U	0.45 U	0.45 U	0.45 U
TETRACHLOROETHENE	0.31 U	0.31 U	0.31 U	0.31 U
TOLUENE	0.23 U	0.23 U	0.23 U	0.23 U
TOTAL XYLENES	0.52 U	0.52 U	0.52 U	0.52 U
TRANS-1,2-DICHLOROETHENE	0.3 U	0.3 U	0.3 U	0.3 U
TRANS-1,3-DICHLOROPROPENE	0.56 U	0.56 U	0.56 U	0.56 U
TRICHLOROETHENE	0.255	0.25 J	0.49 J	0.22 U
TRICHLOROFLUOROMETHANE	0.49 U	0.49 UJ	0.49 UJ	0.49 UJ
VINYL CHLORIDE	0.29 U	0.29 U	0.29 U	0.29 U
SEMIVOLATILES (UG/L)				
1,4-DIOXANE	NA	NA	NA	NA
PCBS (UG/L)				
DECACHLOROBIPHENYL	0.0675 U	0.068 U	0.067 U	0.07 U
DICHLOROBIPHENYLS	0.0052 U	0.0052 U	0.0052 U	0.0054 U
HEPTACHLOROBIPHENYLS	0.029 U	0.029 U	0.029 U	0.03 U
HEXACHLOROBIPHENYLS	0.014 U	0.014 U	0.014 U	0.015 U
MONOCHLOROBIPHENYLS	0.0054 U	0.0054 U	0.0054 U	0.0056 U
NONACHLOROBIPHENYLS	0.047 U	0.047 U	0.047 U	0.049 U
OCTACHLOROBIPHENYLS	0.037 U	0.037 U	0.036 U	0.038 U
PENTACHLOROBIPHENYLS	0.0135 U	0.014 U	0.036 J	0.014 U
TETRACHLOROBIPHENYLS	0.013 U	0.013 U	0.012 U	0.013 U
TRICHLOROBIPHENYLS	0.0063 U	0.0063 U	0.0062 U	0.0065 U

Table C-2

Chemical Results for Surface Water Samples - June 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 7 of 8

LOCATION	MRC-SW7B	MRC-SW8A	MRC-SW8B	MRC-SW9A	MRC-SW9B
SAMPLE ID	MRC-SW7B-061316	MRC-SW8A-061316	MRC-SW8B-061316	MRC-SW9A-061316	MRC-SW9B-061316
SAMPLE DATE	20160613	20160613	20160613	20160613	20160613
VOLATILES (UG/L)					
1,1,1-TRICHLOROETHANE	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U
1,1,2,2-TETRACHLOROETHANE	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
1,1,2-TRICHLOROETHANE	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
1,1,2-TRICHLOROTRIFLUOROETHANE	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U
1,1-DICHLOROETHANE	0.3 U				
1,1-DICHLOROETHENE	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U
1,2,4-TRICHLOROBENZENE	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-DIBROMO-3-CHLOROPROPANE	0.82 UJ	0.82 UJ	0.82 UJ	0.82 UJ	0.82 UJ
1,2-DIBROMOETHANE	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
1,2-DICHLOROBENZENE	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-DICHLOROETHANE	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U
1,2-DICHLOROPROPANE	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,3-DICHLOROBENZENE	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U
1,4-DICHLOROBENZENE	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
2-BUTANONE	0.53 U	0.53 U	0.53 U	0.53 U	0.53 U
2-HEXANONE	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U
4-METHYL-2-PENTANONE	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U
ACETONE	2.2 J	0.94 U	0.94 U	0.94 U	0.94 U
BENZENE	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
BROMODICHLOROMETHANE	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U
BROMOFORM	0.56 U	0.56 U	0.56 U	0.56 U	0.56 U
BROMOMETHANE	0.44 UJ	0.44 UJ	0.44 UJ	0.44 UJ	0.44 UJ
CARBON DISULFIDE	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U
CARBON TETRACHLORIDE	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U
CHLOROBENZENE	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
CHLORODIBROMOMETHANE	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U
CHLOROETHANE	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
CHLOROFORM	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
CHLOROMETHANE	1.1	0.44 UJ	0.44 UJ	0.44 UJ	0.44 UJ
CIS-1,2-DICHLOROETHENE	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U
CIS-1,3-DICHLOROPROPENE	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U
CYCLOHEXANE	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U
DICHLORODIFLUOROMETHANE	0.32 UJ	0.32 UJ	0.32 UJ	0.32 UJ	0.32 UJ
ETHYLBENZENE	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
ISOPROPYLBENZENE	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
METHYL ACETATE	2.3 U				
METHYL CYCLOHEXANE	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U

Table C-2

Chemical Results for Surface Water Samples - June 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 8 of 8

LOCATION	MRC-SW7B	MRC-SW8A	MRC-SW8B	MRC-SW9A	MRC-SW9B
SAMPLE ID	MRC-SW7B-061316	MRC-SW8A-061316	MRC-SW8B-061316	MRC-SW9A-061316	MRC-SW9B-061316
SAMPLE DATE	20160613	20160613	20160613	20160613	20160613
METHYL TERT-BUTYL ETHER	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
METHYLENE CHLORIDE	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
STYRENE	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U
TETRACHLOROETHENE	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U
TOLUENE	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U
TOTAL XYLENES	0.52 U	0.52 U	0.52 U	0.52 U	0.52 U
TRANS-1,2-DICHLOROETHENE	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
TRANS-1,3-DICHLOROPROPENE	0.56 U	0.56 U	0.56 U	0.56 U	0.56 U
TRICHLOROETHENE	0.22 U	0.48 J	0.42 J	0.22 U	0.22 U
TRICHLOROFLUOROMETHANE	0.49 UJ	0.49 UJ	0.49 UJ	0.49 UJ	0.49 UJ
VINYL CHLORIDE	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U
SEMIVOLATILES (UG/L)					
1,4-DIOXANE	NA	NA	NA	NA	NA
PCBS (UG/L)					
DECACHLOROBIPHENYL	0.069 U	0.067 U	0.069 U	0.067 U	0.067 U
DICHLOROBIPHENYLS	0.0053 U	0.0052 U	0.0054 U	0.0052 U	0.0052 U
HEPTACHLOROBIPHENYLS	0.03 U	0.029 U	0.03 U	0.029 U	0.029 U
HEXACHLOROBIPHENYLS	0.015 U	0.014 U	0.015 U	0.014 U	0.014 U
MONOCHLOROBIPHENYLS	0.0055 U	0.0054 U	0.0056 U	0.0054 U	0.0054 U
NONACHLOROBIPHENYLS	0.048 U	0.047 U	0.049 U	0.047 U	0.047 U
OCTACHLOROBIPHENYLS	0.038 U	0.037 U	0.038 U	0.037 U	0.037 U
PENTACHLOROBIPHENYLS	0.014 U	0.013 U	0.014 U	0.013 U	0.013 U
TETRACHLOROBIPHENYLS	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U
TRICHLOROBIPHENYLS	0.0064 U	0.0063 U	0.0064 U	0.0063 U	0.0063 U

[&]quot;-D" - duplicate sample

MRC - Middle River Complex

NA - not analyzed

SW - surface water

U - not detected at the concentration left of the letter

UG/L - micrograms per liter

UJ - analyte not detected. Quantitation limit or detection limit may be inacurate or imprecise.

J - chemical detected, concentration is estimated above the method detection limit but below the practical quantitation limit.

Table C-3

Chemical Results for Surface Water Samples - September 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 1 of 6

LOCATION	MRC-SW1A	MRC-SW2A	MRC-SW5A1	MRC-SW5A2		MRC-SW5B
SAMPLE ID	MRC-SW1A-092716	MRC-SW2A-092716	MRC-SW5A1-092716	MRC-SW5A2-092716	MRC-SW5B-092716	MRC-SW5B-092716-AVG
SAMPLE DATE	20160927	20160927	20160927	20160927	20160927	20160927
VOLATILES (UG/L)						
1.1.1.2-TETRACHLOROETHANE	0.28 UJ	0.28 UJ	0.28 UJ	0.28 UJ	0.28 UJ	0.28 U
1.1.1-TRICHLOROETHANE	0.44 UJ	0.44 UJ	0.44 UJ	0.44 UJ	0.44 UJ	0.44 U
1,1,2,2-TETRACHLOROETHANE	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
1,1,2-TRICHLOROTRIFLUOROETHANE	0.45 UJ	0.45 UJ	0.45 UJ	0.45 UJ	0.45 UJ	0.45 U
1,1-DICHLOROETHANE	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
1.1-DICHLOROETHENE	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U
1,1-DICHLOROPROPENE	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U
1,2,3-TRICHLOROBENZENE	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U
1,2,3-TRICHLOROPROPANE	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U
1.2.3-TRIMETHYLBENZENE	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U
1.2.4-TRICHLOROBENZENE	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
1.2.4-TRIMETHYLBENZENE	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U
1.2-DIBROMO-3-CHLOROPROPANE	0.41 U	0.82 U	0.41 U	0.41 U	0.41 U	0.41 U
1.2-DIBROMOETHANE	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
1.2-DICHLOROBENZENE	0.25 U	0.25 U	0.25 U	0.25 U	0.32 U	0.32 U
1.2-DICHLOROETHANE	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U
1.2-DICHLOROPROPANE	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,3-DICHLOROBENZENE	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U
1,3-DICHLOROPROPANE	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U
1.4-DICHLOROBENZENE	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
2.2-DICHLOROPROPANE	0.26 UJ	0.26 UJ	0.26 UJ	0.26 UJ	0.26 UJ	0.26 U
2-BUTANONE	5.1 J	0.92 J	0.53 UJ	0.53 UJ	0.53 UJ	0.53 U
2-CHLOROETHYL VINYL ETHER	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U
2-CHLOROTOLUENE	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
2-HEXANONE	0.55 J	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U
4-CHLOROTOLUENE	0.29 U	0.48 U	0.49 U	0.48 U	0.48 U	0.48 U
4-ISOPROPYLTOLUENE	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U
4-METHYL-2-PENTANONE	0.43 U	0.99 U	0.99 U	0.99 U	0.43 U	0.43 U
ACETONE	7.7 J	0.94 UJ	0.94 UJ	0.94 UJ	0.94 UJ	0.94 U
BENZENE	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
BROMOBENZENE	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
BROMOCHLOROMETHANE	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
BROMODICHLOROMETHANE	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U
BROMOFORM	0.56 U	0.56 U	0.56 U	0.56 U	0.56 U	0.56 U
BROMOMETHANE	0.44 UJ	0.44 UJ	0.44 UJ	0.44 UJ	0.44 UJ	0.44 U
CARBON DISULFIDE	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U
CARBON TETRACHLORIDE	0.43 UJ	0.43 UJ	0.43 UJ	0.43 UJ	0.43 UJ	0.43 U
CHLOROBENZENE	0.25 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U
CHLORODIBROMOMETHANE	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U
CHLOROETHANE	0.43 UJ	0.43 UJ	0.43 UJ	0.43 UJ	0.43 UJ	0.43 U
CHLOROFORM	0.32 U	0.32 U	0.32 U	0.32 UJ	0.32 U	0.32 U
CHLOROMETHANE	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.44 U
CIS-1.2-DICHLOROETHENE	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U
CIS-1,2-DICHLOROPENE	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U
DIBROMOMETHANE	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U
DICHLORODIFLUOROMETHANE	0.42 UJ	0.42 UJ	0.42 U 0.32 UJ	0.42 UJ	0.42 UJ	0.42 U
DIISOPROPYL ETHER	0.32 UJ 0.5 U	0.32 UJ 0.5 U	0.32 UJ 0.5 U	0.32 UJ 0.5 U	0.32 UJ 0.5 U	0.32 U

Chemical Results for Surface Water Samples - September 2016
Cow Pen Creek and Dark Head Cove
Lockheed Martin Middle River Complex, Middle River, Maryland
Page 2 of 6

Table C-3

LOCATION	MRC-SW1A	MRC-SW2A	MRC-SW5A1	MRC-SW5A2		MRC-SW5B
SAMPLE ID	MRC-SW1A-092716	MRC-SW2A-092716	MRC-SW5A1-092716	MRC-SW5A2-092716	MRC-SW5B-092716	MRC-SW5B-092716-AVG
SAMPLE DATE	20160927	20160927	20160927	20160927	20160927	20160927
ETHYL TERT-BUTYL ETHER	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U
ETHYLBENZENE	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
HEXACHLOROBUTADIENE	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
ISOPROPYLBENZENE	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
METHYL TERT-BUTYL ETHER	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
METHYLENE CHLORIDE	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
NAPHTHALENE	0.45 UJ	0.45 UJ	0.45 UJ	0.45 UJ	0.45 UJ	0.45 U
N-BUTYLBENZENE	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U
N-PROPYLBENZENE	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
SEC-BUTYLBENZENE	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U
STYRENE	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U
TERT-AMYL METHYL ETHER	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
TERT-BUTYLBENZENE	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U
TERTIARY-BUTYL ALCOHOL	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U
TETRACHLOROETHENE	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U
TOLUENE	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U
TOTAL XYLENES	0.52 U	0.52 U	0.52 U	0.52 U	0.52 U	0.52 U
TRANS-1,2-DICHLOROETHENE	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
TRANS-1,3-DICHLOROPROPENE	0.56 U	0.56 U	0.56 U	0.56 U	0.56 U	0.56 U
TRICHLOROETHENE	0.27 J	0.22 U	0.22 U	0.22 U	0.22 J	0.165
TRICHLOROFLUOROMETHANE	0.49 UJ	0.49 UJ	0.49 UJ	0.49 UJ	0.49 UJ	0.49 U
VINYL ACETATE	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U
VINYL CHLORIDE	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U

Table C-3

Chemical Results for Surface Water Samples - September 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 3 of 6

LOCATION		MRC-SW6A	MRC-SW6B	MRC-SW7A	MRC-SW7B	MRC-SW8A
SAMPLE ID	MRC-SW5B-092716-D	MRC-SW6A-092716	MRC-SW6B-092716	MRC-SW7A-092716	MRC-SW7B-092716	MRC-SW8A-092716
SAMPLE DATE	20160927	20160927	20160927	20160927	20160927	20160927
VOLATILES (UG/L)	20100927	20100927	20100327	20100327	20100327	20100327
1.1.1.2-TETRACHLOROETHANE	0.28 UJ	0.28 UJ	0.28 UJ	0.28 UJ	0.28 UJ	0.28 UJ
1.1.1-TRICHLOROETHANE	0.44 UJ	0.28 UJ	0.28 UJ	0.44 UJ	0.28 UJ	0.44 UJ
1,1,2,2-TETRACHLOROETHANE	0.44 03 0.22 U	0.44 03 0.22 U	0.44 UJ	0.44 UJ	0.44 UJ 0.22 U	0.44 UJ
1,1,2-TRICHLOROTRIFLUOROETHANE	0.45 UJ	0.45 UJ	0.45 UJ	0.45 UJ	0.45 UJ	0.45 UJ
1,1-DICHLOROETHANE	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U
1.1-DICHLOROETHENE	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U
1,1-DICHLOROPROPENE	0.43 U	0.43 U	0.43 U	0.42 U	0.42 U	0.42 U
1,2,3-TRICHLOROBENZENE	0.37 U	0.42 U	0.42 U	0.42 U	0.37 U	0.37 U
1,2,3-TRICHLOROPROPANE	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U
1.2.3-TRIMETHYLBENZENE	0.44 U	0.44 U	0.47 U	0.47 U	0.47 U	0.47 U
1.2.4-TRICHLOROBENZENE	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U
1.2.4-TRIMETHYLBENZENE	0.32 U	0.32 U	0.32 U 0.41 U	0.32 U 0.41 U	0.32 U 0.41 U	0.32 U 0.41 U
1.2-DIBROMO-3-CHLOROPROPANE	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U
1.2-DIBROMOETHANE	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U
1,2-DISKOMOETHANE 1,2-DICHLOROBENZENE	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
1.2-DICHLOROETHANE	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U
1.2-DICHLOROPROPANE	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,3-DICHLOROBENZENE	0.25 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U
1,3-DICHLOROBENZENE	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U
1.4-DICHLOROBENZENE	0.19 U	0.19 U	0.13 U	0.13 U	0.13 U	0.13 U
2.2-DICHLOROPROPANE	0.27 U	0.27 U	0.26 UJ	0.26 UJ	0.26 UJ	0.26 UJ
2-BUTANONE	0.53 UJ	0.53 UJ	0.53 UJ	0.53 UJ	0.53 UJ	0.53 UJ
2-CHLOROETHYL VINYL ETHER	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U
2-CHLOROTOLUENE	0.4 U	0.39 U	0.39 U	0.59 U	0.4 U	0.4 U
2-HEXANONE	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U
4-CHLOROTOLUENE	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U
4-ISOPROPYLTOLUENE	0.43 U	0.43 U	0.29 U	0.23 U	0.23 U	0.23 U
4-METHYL-2-PENTANONE	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U
ACETONE	0.94 UJ	0.94 UJ	0.94 UJ	0.94 UJ	0.94 UJ	0.94 UJ
BENZENE	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
BROMOBENZENE	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
BROMOCHLOROMETHANE	0.5 U	0.55 U	0.5 U	0.5 U	0.5 U	0.5 U
BROMODICHLOROMETHANE	0.3 U	0.29 U	0.3 U	0.3 U	0.3 U	0.3 U
BROMOFORM	0.56 U	0.56 U	0.56 U	0.56 U	0.56 U	0.56 U
BROMOMETHANE	0.44 UJ	0.44 UJ	0.44 UJ	0.44 UJ	0.44 UJ	0.44 UJ
CARBON DISULFIDE	0.44 UJ	0.44 U	0.44 UJ 0.38 U	0.44 U	0.44 U	0.38 U
CARBON DISOLFIDE CARBON TETRACHLORIDE	0.38 UJ	0.38 UJ	0.38 UJ	0.38 UJ	0.38 UJ	0.43 UJ
CHLOROBENZENE	0.45 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 UJ 0.25 U
CHLORODIBROMOMETHANE	0.43 U	0.43 U	0.23 U	0.43 U	0.23 U	0.23 U
CHLOROETHANE	0.43 UJ	0.43 UJ	0.43 UJ	0.43 UJ	0.43 UJ	0.43 UJ
CHLOROFORM	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
CHLOROMETHANE	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U 0.44 U	0.23 U
CIS-1.2-DICHLOROETHENE	0.44 U	0.44 U 0.26 U	0.44 U 0.26 U	0.44 U	0.44 U	0.44 U 0.26 U
CIS-1,2-DICHLOROPROPENE	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U
DIBROMOMETHANE	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U
DICHLORODIFLUOROMETHANE	0.42 UJ	0.42 UJ	0.42 U 0.32 UJ	0.42 UJ	0.42 U 0.32 UJ	0.42 UJ
DIISOPROPYL ETHER	0.32 UJ	0.32 UJ 0.5 U	0.32 UJ 0.5 U	0.32 UJ 0.5 U	0.32 UJ 0.5 U	0.32 UJ 0.5 U

Chemical Results for Surface Water Samples - September 2016
Cow Pen Creek and Dark Head Cove
Lockheed Martin Middle River Complex, Middle River, Maryland
Page 4 of 6

Table C-3

LOCATION SAMPLE ID	MRC-SW5B-092716-D	MRC-SW6A MRC-SW6A-092716	MRC-SW6B MRC-SW6B-092716	MRC-SW7A MRC-SW7A-092716	MRC-SW7B MRC-SW7B-092716	MRC-SW8A MRC-SW8A-092716
SAMPLE DATE	20160927	20160927	20160927	20160927	20160927	20160927
ETHYL TERT-BUTYL ETHER	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U
ETHYLBENZENE	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
HEXACHLOROBUTADIENE	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
ISOPROPYLBENZENE	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
METHYL TERT-BUTYL ETHER	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
METHYLENE CHLORIDE	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
NAPHTHALENE	0.45 UJ	0.45 UJ	0.45 UJ	0.45 UJ	0.45 UJ	0.45 UJ
N-BUTYLBENZENE	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U
N-PROPYLBENZENE	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
SEC-BUTYLBENZENE	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U
STYRENE	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U
TERT-AMYL METHYL ETHER	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
TERT-BUTYLBENZENE	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U
TERTIARY-BUTYL ALCOHOL	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U
TETRACHLOROETHENE	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U
TOLUENE	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U
TOTAL XYLENES	0.52 U	0.52 U	0.52 U	0.52 U	0.52 U	0.52 U
TRANS-1,2-DICHLOROETHENE	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
TRANS-1,3-DICHLOROPROPENE	0.56 U	0.56 U	0.56 U	0.56 U	0.56 U	0.56 U
TRICHLOROETHENE	0.22 U	0.59 J	0.62 J	0.56 J	0.58 J	0.61 J
TRICHLOROFLUOROMETHANE	0.49 UJ	0.49 UJ	0.49 UJ	0.49 UJ	0.49 UJ	0.49 UJ
VINYL ACETATE	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U
VINYL CHLORIDE	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U

Chemical Results for Surface Water Samples - September 2016 Cow Pen Creek and Dark Head Cove

Table C-3

Lockheed Martin Middle River Complex, Middle River, Maryland Page 5 of 6

LOCATION	MRC-SW8B	MRC-SW9A	MRC-SW9B
SAMPLE ID	MRC-SW8B-092716	MRC-SW9A-092716	MRC-SW9B-092716
SAMPLE DATE	20160927	20160927	20160927
VOLATILES (UG/L)			
1,1,1,2-TETRACHLOROETHANE	0.28 UJ	0.28 UJ	0.28 UJ
1,1,1-TRICHLOROETHANE	0.44 UJ	0.44 UJ	0.44 UJ
1,1,2,2-TETRACHLOROETHANE	0.22 U	0.22 U	0.22 U
1,1,2-TRICHLOROTRIFLUOROETHANE	0.45 UJ	0.45 UJ	0.45 UJ
1,1-DICHLOROETHANE	0.3 U	0.3 U	0.3 U
1,1-DICHLOROETHENE	0.45 U	0.45 U	0.45 U
1,1-DICHLOROPROPENE	0.42 U	0.42 U	0.42 U
1,2,3-TRICHLOROBENZENE	0.37 U	0.37 U	0.37 U
1,2,3-TRICHLOROPROPANE	0.44 U	0.44 U	0.44 U
1,2,3-TRIMETHYLBENZENE	0.47 U	0.47 U	0.47 U
1,2,4-TRICHLOROBENZENE	0.32 U	0.32 U	0.32 U
1,2,4-TRIMETHYLBENZENE	0.41 U	0.41 U	0.41 U
1,2-DIBROMO-3-CHLOROPROPANE	0.82 U	0.82 U	0.82 U
1,2-DIBROMOETHANE	0.32 U	0.32 U	0.32 U
1,2-DICHLOROBENZENE	0.25 U	0.25 U	0.25 U
1,2-DICHLOROETHANE	0.23 U	0.23 U	0.23 U
1,2-DICHLOROPROPANE	0.25 U	0.25 U	0.25 U
1,3-DICHLOROBENZENE	0.19 U	0.19 U	0.19 U
1,3-DICHLOROPROPANE	0.19 U	0.19 U	0.19 U
1,4-DICHLOROBENZENE	0.27 U	0.27 U	0.27 U
2,2-DICHLOROPROPANE	0.26 UJ	0.26 UJ	0.26 UJ
2-BUTANONE	0.53 UJ	0.53 UJ	0.53 UJ
2-CHLOROETHYL VINYL ETHER	0.59 U	0.59 U	0.59 U
2-CHLOROTOLUENE	0.4 U	0.4 U	0.4 U
2-HEXANONE	0.48 U	0.48 U	0.48 U
4-CHLOROTOLUENE	0.29 U	0.29 U	0.29 U
4-ISOPROPYLTOLUENE	0.43 U	0.43 U	0.43 U
4-METHYL-2-PENTANONE	0.99 U	0.99 U	0.99 U
ACETONE	0.94 UJ	0.94 UJ	0.94 UJ
BENZENE	0.35 U	0.35 U	0.35 U
BROMOBENZENE	0.35 U	0.35 U	0.35 U
BROMOCHLOROMETHANE	0.5 U	0.5 U	0.5 U
BROMODICHLOROMETHANE	0.29 U	0.29 U	0.29 U
BROMOFORM	0.56 U	0.56 U	0.56 U
BROMOMETHANE	0.44 UJ	0.44 UJ	0.44 UJ
CARBON DISULFIDE	0.38 U	0.38 U	0.38 U
CARBON TETRACHLORIDE	0.43 UJ	0.43 UJ	0.43 UJ
CHLOROBENZENE	0.25 U	0.25 U	0.25 U
CHLORODIBROMOMETHANE	0.43 U	0.43 U	0.43 U
CHLOROETHANE	0.32 UJ	0.32 UJ	0.32 UJ
CHLOROFORM	0.25 U	0.25 U	0.25 U
CHLOROMETHANE	0.44 U	0.44 U	0.44 U
CIS-1,2-DICHLOROETHENE	0.26 U	0.26 U	0.26 U
CIS-1,3-DICHLOROPROPENE	0.46 U	0.46 U	0.46 U
DIBROMOMETHANE	0.42 U	0.42 U	0.42 U
DICHLORODIFLUOROMETHANE	0.32 UJ	0.32 UJ	0.32 UJ
DIISOPROPYL ETHER	0.5 U	0.5 U	0.5 U

Table C-3

Chemical Results for Surface Water Samples - September 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 6 of 6

LOCATION	MRC-SW8B	MRC-SW9A	MRC-SW9B
SAMPLE ID	MRC-SW8B-092716	MRC-SW9A-092716	MRC-SW9B-092716
SAMPLE DATE	20160927	20160927	20160927
ETHYL TERT-BUTYL ETHER	0.23 U	0.23 U	0.23 U
ETHYLBENZENE	0.25 U	0.25 U	0.25 U
HEXACHLOROBUTADIENE	0.35 U	0.35 U	0.35 U
ISOPROPYLBENZENE	0.35 U	0.35 U	0.35 U
METHYL TERT-BUTYL ETHER	0.2 U	0.2 U	0.2 U
METHYLENE CHLORIDE	0.33 U	0.33 U	0.33 U
NAPHTHALENE	0.45 UJ	0.45 UJ	0.45 UJ
N-BUTYLBENZENE	0.31 U	0.31 U	0.31 U
N-PROPYLBENZENE	0.4 U	0.4 U	0.4 U
SEC-BUTYLBENZENE	0.48 U	0.48 U	0.48 U
STYRENE	0.45 U	0.45 U	0.45 U
TERT-AMYL METHYL ETHER	0.3 U	0.3 U	0.3 U
TERT-BUTYLBENZENE	0.41 U	0.41 U	0.41 U
TERTIARY-BUTYL ALCOHOL	4.9 U	4.9 U	4.9 U
TETRACHLOROETHENE	0.31 U	0.31 U	0.31 U
TOLUENE	0.23 U	0.23 U	0.23 U
TOTAL XYLENES	0.52 U	0.52 U	0.52 U
TRANS-1,2-DICHLOROETHENE	0.3 U	0.3 U	0.3 U
TRANS-1,3-DICHLOROPROPENE	0.56 U	0.56 U	0.56 U
TRICHLOROETHENE	0.62 J	0.52 J	0.62 J
TRICHLOROFLUOROMETHANE	0.49 UJ	0.49 UJ	0.49 UJ
VINYL ACETATE	0.41 U	0.41 U	0.41 U
VINYL CHLORIDE	0.29 U	0.29 U	0.29 U

"-D" - duplicate sample

J - chemical detected, concentration is estimated above the method detection limit but below the practical quantitation limit.

MRC - Middle River Complex

NA - not analyzed

SW - surface water

U - not detected at the concentration left of the letter

UG/L - micrograms per liter

UJ - analyte not detected. Quantitation limit or detection limit may be inacurate or imprecise.

Table C-4

Chemical Results for Surface Water Samples - December 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 1 of 4

LOCATION	SW-10A		SW-10B		SW-11A		SW-11B	
SAMPLE ID	MRC-SW10A-D-121316 MRC-SW10A-S-121316		MRC-SW10B-D-121316 MRC-SW10B-S-121316		MRC-SW11A-D-121316	MRC-SW11A-S-121316		
SAMPLE DATE	20161213	20161213	20161213	20161213	20161213	20161213	MRC-SW11B-D-121316 20161213	MRC-SW11B-S-121316 20161213
VOLATILES (UG/L)	20101213	20101213	20101213	20101213	20101213	20101213	20101213	20101213
1,1,1,2-TETRACHLOROETHANE	0.46 UJ	0.46 UJ	0.46 UJ	0.46 UJ	0.46 UJ	0.46 UJ	0.46 UJ	0.46 UJ
1,1,1-TRICHLOROETHANE	0.40 UJ	0.40 UJ	0.40 UJ	0.40 UJ	0.40 UJ	0.40 UJ	0.40 UJ	0.40 UJ
1,1,2,2-TETRACHLOROETHANE	0.32 U	0.23 U	0.23 U	0.23 U	0.23 U	0.32 U	0.23 U	0.23 U
1,1,2-TRICHLOROTRIFLUOROETHANE	0.32 U	0.32 U 0.41 UJ	0.32 U 0.41 UJ	0.32 U 0.41 UJ	0.32 U 0.41 UJ	0.41 UJ	0.32 U 0.41 UJ	0.41 UJ
1.1-DICHLOROETHANE	0.41 UJ	0.41 UJ 0.25 U	0.41 UJ	0.41 03 0.25 U	0.41 U	0.41 UJ	0.41 UJ	0.41 U
1,1-DICHLOROETHENE	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U
1.1-DICHLOROPROPENE	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
1,2,3-TRICHLOROBENZENE	0.25 UJ	0.25 UJ	0.28 UJ	0.35 UJ	0.25 UJ	0.25 UJ	0.25 UJ	0.25 UJ
1,2,3-TRICHLOROPROPANE	0.54 U	0.54 U	0.54 U	0.54 U	0.54 U	0.54 U	0.54 U	0.54 U
1,2,3-TRIMETHYLBENZENE	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
1,2,4-TRICHLOROBENZENE	0.27 UJ	0.27 UJ	0.27 UJ	0.27 UJ	0.27 UJ	0.27 UJ	0.27 UJ	0.27 UJ
1.2.4-TRIMETHYLBENZENE	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
1.2-DIBROMO-3-CHLOROPROPANE	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U
1,2-DIBROMOETHANE	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U
1,2-DICHLOROBENZENE	0.25 U	0.26 U	0.25 U	0.25 U	0.26 U	0.26 U	0.26 U	0.25 U
1,2-DICHLOROETHANE	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
1,2-DICHLOROPROPANE	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
1,3-DICHLOROBENZENE	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
1,3-DICHLOROPROPANE	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U
1,4-DICHLOROBENZENE	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U
2.2-DICHLOROPROPANE	0.34 UJ	0.34 UJ	0.34 UJ	0.34 UJ	0.34 UJ	0.34 UJ	0.34 UJ	0.34 UJ
2-BUTANONE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-CHLOROETHYL VINYL ETHER	0.65 UR	0.65 UR	0.65 UR	0.65 UR	0.65 UR	0.65 UR	0.65 UR	0.65 UR
2-CHLOROTOLUENE	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
2-HEXANONE	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
4-CHLOROTOLUENE	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U
4-ISOPROPYLTOLUENE	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U
4-METHYL-2-PENTANONE	0.71 UJ	0.71 UJ	0.71 UJ	0.71 UJ	0.71 UJ	0.71 UJ	0.71 UJ	0.71 UJ
ACETONE	2.6 J	2.9 J	2.4 J	1.8 U	2 J	2.1 J	1.8 U	1.8 U
BENZENE	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
BROMOBENZENE	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U
BROMOCHLOROMETHANE	0.47 UJ	0.47 UJ	0.47 UJ	0.47 UJ	0.47 UJ	0.47 UJ	0.47 UJ	0.47 UJ
BROMODICHLOROMETHANE	0.3 UJ	0.3 UJ	0.3 UJ	0.3 UJ	0.3 UJ	0.3 UJ	0.3 UJ	0.3 UJ
BROMOFORM	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U
BROMOMETHANE	0.42 UJ	0.42 UJ	0.42 UJ	0.42 UJ	0.42 UJ	0.42 UJ	0.42 UJ	0.42 UJ
CARBON DISULFIDE	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U
CARBON TETRACHLORIDE	0.35 UJ	0.35 UJ	0.35 UJ	0.35 UJ	0.35 UJ	0.35 UJ	0.35 UJ	0.35 UJ
CHLOROBENZENE	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
CHLORODIBROMOMETHANE	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
CHLOROETHANE	0.41 UJ	0.41 UJ	0.41 UJ	0.41 UJ	0.41 UJ	0.41 UJ	0.41 UJ	0.41 UJ
CHLOROFORM	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U
CHLOROMETHANE	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U
CIS-1,2-DICHLOROETHENE	0.3 U	0.3 U	0.3 U	0.3 U	0.49 J	0.3 U	2.8	0.3 U
CIS-1,3-DICHLOROPROPENE	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U
DIBROMOMETHANE	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U
DICHLORODIFLUOROMETHANE	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ
DIISOPROPYL ETHER	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U
ETHYL TERT-BUTYL ETHER	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
ETHYLBENZENE	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U
HEXACHLOROBUTADIENE	0.36 UJ	0.36 UJ	0.36 UJ	0.36 UJ	0.36 UJ	0.36 UJ	0.36 UJ	0.36 UJ
ISOPROPYLBENZENE	0.21 UJ	0.21 UJ	0.21 UJ	0.21 UJ	0.21 UJ	0.21 UJ	0.21 UJ	0.21 UJ

Table C-4

Chemical Results for Surface Water Samples - December 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 2 of 4

LOCATION	SW-10A		SW-10B		SW-11A		SW-11B	
SAMPLE ID	MRC-SW10A-D-121316	MRC-SW10A-S-121316	MRC-SW10B-D-121316	MRC-SW10B-S-121316	MRC-SW11A-D-121316	MRC-SW11A-S-121316	MRC-SW11B-D-121316	MRC-SW11B-S-121316
SAMPLE DATE	20161213	20161213	20161213	20161213	20161213	20161213	20161213	20161213
METHYL TERT-BUTYL ETHER	0.27 UJ	0.27 UJ	0.27 UJ	0.27 UJ	0.27 UJ	0.27 UJ	0.27 UJ	0.27 UJ
METHYLENE CHLORIDE	0.53 UJ	0.53 UJ	0.53 UJ	0.53 UJ	0.53 UJ	0.53 UJ	0.53 UJ	0.53 UJ
NAPHTHALENE	0.25 U							
N-BUTYLBENZENE	0.21 U							
N-PROPYLBENZENE	0.45 U							
SEC-BUTYLBENZENE	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
STYRENE	0.23 U							
TERT-AMYL METHYL ETHER	0.29 UJ	0.29 UJ	0.29 UJ	0.29 UJ	0.29 UJ	0.29 UJ	0.29 UJ	0.29 UJ
TERT-BUTYLBENZENE	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U
TERTIARY-BUTYL ALCOHOL	4.6 UJ	4.6 UJ	4.6 UJ	4.6 UJ	4.6 UJ	4.6 UJ	4.6 UJ	4.6 UJ
TETRACHLOROETHENE	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
TOLUENE	0.23 U	0.41 J	0.23 U	0.34 J	0.23 U	0.66 J	0.23 U	0.45 J
TOTAL XYLENES	0.24 U	0.35 J	0.24 U	0.33 J	0.24 U	0.53 J	0.24 U	0.37 J
TRANS-1,2-DICHLOROETHENE	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U
TRANS-1,3-DICHLOROPROPENE	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U
TRICHLOROETHENE	0.7 J	4.4 J	0.44 J	1.2 J	2.7 J	4.1 J	3.7 J	1.2 J
TRICHLOROFLUOROMETHANE	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ
VINYL ACETATE	0.28 UJ							
VINYL CHLORIDE	0.45 U							

Table C-4

Chemical Results for Surface Water Samples - December 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 3 of 4

LOCATION	SW-	-12A	SW-12B		
SAMPLE ID	MRC-SW12A-D-121316	MRC-SW12A-S-121316	MRC-SW12B-D-121316 MRC-SW12B-S-121316		
SAMPLE DATE	20161213	20161213	20161213	20161213	
VOLATILES (UG/L)					
1,1,1,2-TETRACHLOROETHANE	0.46 UJ	0.46 UJ	0.46 UJ	0.46 UJ	
1,1,1-TRICHLOROETHANE	0.23 UJ	0.23 UJ	0.23 UJ	0.23 UJ	
1,1,2,2-TETRACHLOROETHANE	0.32 U	0.32 U	0.32 U	0.32 U	
1,1,2-TRICHLOROTRIFLUOROETHANE	0.41 UJ	0.41 UJ	0.41 UJ	0.41 UJ	
1,1-DICHLOROETHANE	0.25 U	0.25 U	0.25 U	0.25 U	
1,1-DICHLOROETHENE	0.27 U	0.27 U	0.27 U	0.27 U	
1,1-DICHLOROPROPENE	0.28 U	0.28 U	0.28 U	0.28 U	
1,2,3-TRICHLOROBENZENE	0.35 UJ	0.35 UJ	0.35 UJ	0.35 UJ	
1,2,3-TRICHLOROPROPANE	0.54 U	0.54 U	0.54 U	0.54 U	
1,2,3-TRIMETHYLBENZENE	0.22 U	0.22 U	0.22 U	0.22 U	
1,2,4-TRICHLOROBENZENE	0.27 UJ	0.27 UJ	0.27 UJ	0.27 UJ	
1,2,4-TRIMETHYLBENZENE	0.24 U	0.24 U	0.24 U	0.24 J	
1,2-DIBROMO-3-CHLOROPROPANE	0.47 U	0.47 U	0.47 U	0.47 U	
1,2-DIBROMOETHANE	0.23 U	0.23 U	0.23 U	0.23 U	
1,2-DICHLOROBENZENE	0.26 U	0.26 U	0.26 U	0.26 U	
1,2-DICHLOROETHANE	0.3 U	0.3 U	0.3 U	0.3 U	
1,2-DICHLOROPROPANE	0.3 U	0.3 U	0.3 U	0.3 U	
1,3-DICHLOROBENZENE	0.32 U	0.32 U	0.32 U	0.32 U	
1,3-DICHLOROPROPANE	0.29 U	0.29 U	0.29 U	0.29 U	
1,4-DICHLOROBENZENE	0.23 U	0.23 U	0.23 U	0.23 U	
2,2-DICHLOROPROPANE	0.34 UJ	0.34 UJ	0.34 UJ	0.34 UJ	
2-BUTANONE	1 U	1 U	1 U	1 U	
2-CHLOROETHYL VINYL ETHER	0.65 UR	0.65 UR	0.65 UR	0.65 UR	
2-CHLOROTOLUENE	0.28 U	0.28 U	0.28 U	0.28 U	
2-HEXANONE	1.2 U	1.2 U	1.2 U	1.2 U	
4-CHLOROTOLUENE	0.23 U	0.23 U	0.23 U	0.23 U	
4-ISOPROPYLTOLUENE	0.29 U	0.29 U	0.29 U	0.29 U	
4-METHYL-2-PENTANONE	0.71 UJ	0.71 UJ	0.71 UJ	0.71 UJ	
ACETONE	1.8 U	2.2 J	1.8 U	1.8 U	
BENZENE	0.28 U	0.28 U	0.28 U	0.28 U	
BROMOBENZENE	0.31 U	0.31 U	0.31 U	0.31 U	
BROMOCHLOROMETHANE	0.47 UJ	0.47 UJ	0.47 UJ	0.47 UJ	
BROMODICHLOROMETHANE	0.3 UJ	0.3 UJ	0.3 UJ	0.3 UJ	
BROMOFORM	0.43 U	0.43 U	0.43 U	0.43 U	
BROMOMETHANE	0.42 UJ	0.42 UJ	0.42 UJ	0.42 UJ	
CARBON DISULFIDE	0.34 U	0.34 U	0.34 U	0.34 U	
CARBON TETRACHLORIDE	0.35 UJ	0.35 UJ	0.35 UJ	0.35 UJ	
CHLOROBENZENE	0.32 U	0.32 U	0.32 U	0.32 U	
CHLORODIBROMOMETHANE	0.25 U	0.25 U	0.25 U	0.25 U	
CHLOROETHANE	0.41 UJ	0.41 UJ	0.41 UJ	0.41 UJ	
CHLOROFORM	0.31 U	0.31 U	0.31 U	0.31 U	
CHLOROMETHANE	0.43 U	0.43 U	0.43 U	0.43 U	
CIS-1,2-DICHLOROETHENE	0.45 J	0.3 U	5.5	0.3 U	
CIS-1,3-DICHLOROPROPENE	0.26 U	0.26 U	0.26 U	0.26 U	
DIBROMOMETHANE	0.46 U	0.46 U	0.46 U	0.46 U	
DICHLORODIFLUOROMETHANE	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	
DIISOPROPYL ETHER	0.44 U	0.44 U	0.44 U	0.44 U	
ETHYL TERT-BUTYL ETHER	0.35 U	0.35 U	0.35 U	0.35 U	
ETHYLBENZENE	0.26 U	0.26 U	0.26 U	0.26 U	
HEXACHLOROBUTADIENE	0.36 UJ	0.36 UJ	0.36 UJ	0.36 UJ	
ISOPROPYLBENZENE	0.21 UJ	0.21 UJ	0.21 UJ	0.21 UJ	

Table C-4

Chemical Results for Surface Water Samples - December 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 4 of 4

LOCATION SW-12A SW-12B						

SAMPLE ID	MRC-SW12A-D-121316	MRC-SW12A-S-121316	MRC-SW12B-D-121316	MRC-SW12B-S-121316		
SAMPLE DATE	20161213	20161213	20161213	20161213		
METHYL TERT-BUTYL ETHER	0.27 UJ	0.27 UJ	0.27 UJ	0.27 UJ		
METHYLENE CHLORIDE	0.53 UJ	0.53 UJ	0.53 UJ	0.53 UJ		
NAPHTHALENE	0.25 U	0.25 U	0.25 U	0.25 U		
N-BUTYLBENZENE	0.21 U	0.21 U	0.21 U	0.21 U		
N-PROPYLBENZENE	0.45 U	0.45 U	0.45 U	0.45 U		
SEC-BUTYLBENZENE	0.27 U	0.27 U	0.27 U	0.27 U		
STYRENE	0.23 U	0.23 U	0.23 U	0.23 U		
TERT-AMYL METHYL ETHER	0.29 UJ	0.29 UJ	0.29 UJ	0.29 UJ		
TERT-BUTYLBENZENE	0.26 U	0.26 U	0.26 U	0.26 U		
TERTIARY-BUTYL ALCOHOL	4.6 UJ	4.6 UJ	4.6 UJ	4.6 UJ		
TETRACHLOROETHENE	0.3 U	0.3 U	0.3 U	0.3 U		
TOLUENE	0.23 U	0.29 J	0.23 U	0.79 J		
TOTAL XYLENES	0.24 U	0.28 J	0.24 U	0.9 J		
TRANS-1,2-DICHLOROETHENE	0.29 U	0.29 U	0.29 U	0.29 U		
TRANS-1,3-DICHLOROPROPENE	0.31 U	0.31 U	0.31 U	0.31 U		
TRICHLOROETHENE	2.4 J	4.1 J	7.8 J	1.4 J		
TRICHLOROFLUOROMETHANE	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ		
VINYL ACETATE	0.28 UJ	0.28 UJ	0.28 UJ	0.28 UJ		
VINYL CHLORIDE	0.45 U	0.45 U	0.45 U	0.45 U		

"-D" - duplicate sample

J - chemical detected, concentration is estimated above the method detection limit but below the practical quantit

MRC - Middle River Complex

NA - not analyzed

SW - surface water

U - not detected at the concentration left of the letter

UG/L - micrograms per liter

UJ - analyte not detected. Quantitation limit or detection limit may be inacurate or imprecise.

UR - non-detect result is considered to be qualitatively or quantitatively unreliable.

APPENDIX D—RISK ESTIMATES FOR RECREATIONAL SWIMMING IN DARK HEAD COVE

Memorandum

To: Michael Martin, P.G. Tetra Tech

From: Edmund Crouds

Edmund Crouch

Date: November 18, 2014

Subject: Risk estimates for recreational swimming in Dark Head Cove

As requested, we have evaluated risk estimates for recreational contact with water containing dissolved PCBs in the water column at Dark Head Cove. These risk estimates are conservative, in that they address the activity associated with the greatest level of exposure — that is, swimming — and make very conservative exposure assumptions for exposure time, duration and contact rates in the absence of site-specific measurements. In particular, we assume:

- The measurements represent dissolved PCBs in the water column (*i.e.*, the samples include no contaminated sediment). The samples were not filtered and the total PCB values reported may include some component of suspended sediment that would result in an overestimation of dissolved PCB concentrations.
- The measurements are representative of the water in Dark Head Cove where recreational swimming might occur. The samples were collected off the Middle River Complex outfalls where the concentrations would be expected to be the highest in the cove.
- The recreational swimmer is in the water for 4 hours/day, 70 days/year, for 6 years as a child and 20 years as an adult.
- The tetrachlorobiphenyls and pentachlorobiphenyls detected have an ingestion carcinogenic potency equal to the highest current estimate for the most carcinogenic tested PCB mixture. Other cancer potency values are available which would result in lower estimated potential risk.
- The tetrachlorobiphenyls and pentachlorobiphenyls detected have an ingestion reference dose (RfD) equal to that of Aroclor 1254, the lowest among PCB mixtures that have assigned RfDs.
- Cancer potency and RfD are the same for dermal exposure as for ingestion exposure.

The recreational activity exposure assumptions of 4 hours/day and 70 days/year were initially introduced in the January 2006 *Revised Human Risk Assessment for Martin State Airport* prepared for Lockheed Martin by Tetra Tech. In the subsequent April 2006 report *Surface Water and Sediment Sampling Report Lockheed Martin Middle River Complex* prepared by Tetra Tech, the 70

Michael Martin, P.G., Tetra Tech November 18, 2014 Page 2

day/year exposure frequency assumption was used for swimming exposures, but with a 2 hours/day exposure time. It is important to note for a recreational swimming exposure scenario, adjusting the exposure time from four hours to two hours does not reduce the cancer or noncancer risk by a factor of two. For ingestion of surface water, the risk estimate scales linearly with the daily exposure time; while for dermal contact with surface water, the risk estimate is a sub-linear function of the daily exposure time. In other words, for dermal exposure absorption continues even after the exposure time in the water has ended.

With the stated site-specific exposure assumptions, and using other default exposure assumptions from the Regional Screening Level (RSL) table (EPA 2014a), together with the dermal exposure methodology described in the Risk Assessment Guidance for Superfund, Volume 1E, and the estimated 95 percent upper confidence limit (95% UCL) of the mean of the measurements as exposure point concentrations, the lifetime risk estimates are:

 $\begin{array}{ll} \text{Incidental water ingestion} & 1.7 \times 10^{-8} \\ \text{Dermal absorption} & 4.9 \times 10^{-6} \\ \end{array}$

with highest hazard quotients (for children)

Incidental water ingestion 0.003 Dermal absorption 0.47

The calculations documenting these estimates are included in the accompanying workbook *Dark Head Cove Swimming PCBs.xlsx*, which also contains references for the values of all parameters used.

Modifying the daily exposure period to 2 hours/day halves the incidental water ingestion lifetime risk estimate and reduces the dermal absorption estimate to 3.2×10^{-6} , with similar effects on the hazard quotients (0.0014 and 0.30).

There are considerable uncertainties in these estimates that have been resolved in a conservative direction. As noted, the samples were not filtered, allowing potential incorporation of contaminated sediment, which would not contribute to dermal absorption — the dermal absorption calculation assumes dissolved PCBs. Two observations support the likelihood of sediment incorporation in the samples — the lack of detection of the more soluble (lower chlorinated) homologs, and the analysis of sample MRC-SW8B. This sample as originally tested contained a higher total PCB content than any other sample; but those results were rejected because of low recovery of the spike surrogates. Re-extraction and re-analysis of the sample produced non-detect results, suggesting that the first extraction included contaminated sediment (that may also have contributed to the low surrogate recovery) that was missing from the second.

The default ingestion rate of 50 ml/hour assumed for both children and adults as presented in EPA's RSL Risk-Based Concentration Table Equations for a recreational user exposed to surface water may be a conservative assumption for this evaluation. The Exposure Factors Handbook (EPA 2011) recommends a swimming water ingestion rate of 50 ml/hour for children under 18, but a

Michael Martin, P.G., Tetra Tech November 18, 2014 Page 3

value of 21 ml/hour for adults which likely contributes to an overestimation of risk for the adult population swimming in Dark Head Cove. Further, the 50 ml/hour value is based on mean ingestion rates derived from swimming pool studies, while results from seawater ingestion studies indicate lower mean values for children (31 ml/hour), men (27 ml/hour and women (18 ml/hour) (EPA 2011). Dark Head Cove averages approximately 2% salt content, closer to seawater than the fresh water of swimming pools. Therefore, the use of the EPA default surface water ingestion rate likely overestimates ingestion risk.

There are additional uncertainties related to dermal risk estimates. In general, chemical specific permeability coefficients (Kp) are used to estimate dermal absorption of a chemical from water. A Kp is a predicted value obtained from a regression equation using a chemical-specific octanol-water coefficient (Kow) and molecular weight (MW). However, for some chemicals, the Kow value or the MW may be too high or too low (outside the effective prediction domain) and the estimated Kp using the regression is uncertain. For PCBs, both the Kow and MW values are high outside of effective prediction domain resulting in an uncertain predicted Kp value that is combined with a theoretical correction factor (EPA 2004).

The assignment of the highest (most conservative) carcinogenic and noncarcinogenic toxicity values measured for any PCB mixtures for the combinations of PCB homologs measured here (where only tetrachlorobiphenyls and pentachlorobiphenyls were detected) likely overestimates risk calculations

Even with the use of conservative assumptions, the resultant risk estimates lie below the MDE threshold of 1×10^{-5} lifetime increased cancer risk and hazard quotient of 1.0, and within the EPA's range 1×10^{-6} to 1×10^{-4} and hazard quotient of 1.0, indicating no significant risk from exposures due to swimming in Dark Head Cove.

References

- Schets FM, Schijven JF, de Roda Husman AM. (2011). Exposure assessment for swimmers in bathing waters and swimming pools. Water Res 45(7):2392–2400. doi: 10.1016/j.watres.2011.01.025.
- U.S. EPA (2004). Risk Assessment Guidance for Superfund, Volume 1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. EPA/540/R/99/005, OSWER 9285.7-02EP, July 2004.
- U.S. EPA (2011). Exposure Factors Handbook: 2011 Edition. EPA/600/R-09/052F, September 2011. Available at http://www.epa.gov/ncea/efh/pdfs/efh-complete.pdf.
- U.S. EPA (2014a). Regional Screening Level (RSL) Summary Table May 2014. Available at http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/
- U.S. EPA (2014b). Integrated Risk Information System (IRIS), online database. Available at http://www.epa.gov/iris/